
Statistics 3657 : Moment Approximations

1 Preliminaries

Suppose that we have a r.v. X and that we wish to calculate the expectation of g(X) for some function g.

Of course we could calculate it as E(g(X)) by the appropriate integral (continuous r.v. ) or sum (discrete

r.v. ). This may not always be easy, for example when X itself is a function of several other r.v.’s.

An approximation can be constructed using Taylor’s series. In practice usually we are only interested

in first or second order approximations. Below we assume that g has enough derivatives for the expressions

to be valid.

A first order Taylor’s series of a function g, about x0 is

g(x) = g(x0) + g′(x0)(x− x0) +R1(x)

where R1(x) is the remainder term.

A second order Taylor’s series of a function g, about x0 is

g(x) = g(x0) + g′(x0)(x− x0) +
1

2
g′′(x0)(x− x0)

2 +R2(x)

where R2(x) is the remainder term.

The remainder terms R1 and R2 are of the forms

R1(x) =
1

2
g′′(x∗)(x− x0)

2

R2(x) =
1

3!
g(3)(x∗)(x− x0)

3

where x∗ is some number between x0 and x. More specifically there is a number α ∈ [0, 1] such that

x∗ = αx0 + (1− α)x. Typically it is not easy to calculate x∗, but there are often nice upper bounds on

the remainder terms. However in this course we will not be concerned with these beyond noting that

they exist. In further probability courses these are studied.
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Now consider the Taylor approximation obtained by taking the polynomial part of the Taylor’s series,

but ignoring the remainder. That is we consider

g1(x) = g(x0) + g′(x0)(x− x0)

g2(x) = g(x0) + g′(x0)(x− x0) +
1

2
g′′(x0)(x− x0)

2

The function g1 is a polynomial of degree 1, and the function g2 is a polynomial of degree 2. We

also call g1 a first order Taylor’s approximation of the function g, and call g2 a second order Taylor’s

approximation of the function g.

2 Moment Approximation

Let X be a random variable with enough finite moments so that the calculations below are well defined.

They will be given in more detail below as needed.

Suppose that E(X) = µ is finite, and that σ2 = Var(X) is also finite. Let g1 be the first order Taylor’s

approximation of g about the x0 = µ, that is

g1(x) = g(µ) + g′(µ)(x− µ) .

Consider the random variable g1(X). It is an approximation to the random variable g(X). We can

use moments of g1(X) to approximate moments of g(X). Using this first Taylor’s approximation we can

easily calculate

E(g1(X)) = E (g(µ) + g′(µ)(X − µ))

= g(µ) + g′(µ)E (X − µ)

= g(µ)

and

Var(g1(X)) = Var (g(µ) + g′(µ)(X − µ))

= (g′(µ))
2
Var (X − µ)

= (g′(µ))
2
σ2 .

The idea of the moment approximation is to approximate E(g(X)) and Var(g(X)) by moments of the

Taylor functions used to approximate g.
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Example :

Suppose X ∼ Unif(1, 3) and Y =
√
X. Find the first order Taylor approximation to the mean and

variance of Y .

µ = E(X) =

∫ 3

1

x
1

2
dx = 2

Also find the variance of X, as Var(X) = 1
3 .

Consider g(x) =
√
x as a mapping from [1,3] to the reals. g′(x) = 1

2x
−1/2. Thus the first order

Taylor’s approximation about µ = 2 is

g1(x) = g(2) +
1

2
√
2
(x− 2) .

Then

E(g1(X)) =
√
2

Var(g1(X)) =

(
1

2
√
2

)2
1

3

=
1

24

Thus we find the first order Taylor’s approximation for the mean and variance of Y as

E(Y ) ≈ E(g1(X)) =
√
2

Var(Y ) ≈ Var(g1(X)) =
1

24

If we approximate E(g(X)) by

E(g1(X)) = E(g(µ) + g′(µ)(X − µ)) = g(µ)

we do not have a good approximation. Thus we often use the second order Taylor series to approximate

E(g(X)), that is

E(g2(X)) = E(g(µ) + g′(µ)(X − µ) +
1

2
g′′(µ)(X − µ)2) = g(µ) +

g′′(µ)

2
σ2 .

To use the second order approximation for the variance we obtain

Var(g2(X)) = Var

(
g(µ) + g′(µ)(X − µ) +

1

2
g′′(µ)(X − µ)2

)
= g′(µ)2Var(X) + 2g′(µ)

1

2
g′′(µ)Cov(X − µ, (X − µ)2) +

1

4
g′′(µ)2Var((X − µ)2)
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Aside : The student should find the mean and variance of Y =
√
X. These are exactly and rounded

to 4 decimal places

E(Y ) =

√
27− 1

3
= 1.3987

Var(Y ) =
6
√
3− 10

9
= .0436 .

Aside : In general there is no need to carry more digits than required to get a meaningful answer.

Here 3 or 4 decimal digits is reasonable, whereas 1 decimal digit is not as it would give a variance of

approximately 0.0, and hence not reasonable.

Remark Recall VarY ≥ 0. Also Var(g1(X)) ≥ 0 and Var(g2(X)) ≥ 0. However it is not always true

that

E(g2(X)2)− (E(g1(X)))
2

is greater than or equal to 0. Similarly it is also not guaranteed that

E(g1(X)2)− (E(g2(X)))
2 ≥ 0 .

Thus when approximating variances with this method we should in general not mix the two different

degrees of approximation.
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Functions of Several Variables and Moment Approximation

This idea of moment approximation also extends to functions of several variables. Here we only

consider two variables.

Suppose (X,Y ) are bivariate r.v.s and Z = g(X,Y ). We suppose that g has derivatives and hence

Taylor approximations.

For ease of writing we use the notation

gx(x, y) =
∂g(x, y)

∂x

gy(x, y) =
∂g(x, y)

∂y

gxx(x, y) =
∂2g(x, y)

∂2x

gyy(y, y) =
∂2g(x, y)

∂2y

gxy(x, y) =
∂2g(x, y)

∂x ∂y
.

First order Taylor’s approximation about (x0, y0) :

g1(x, y) = g(x0, y0) + gx(x0, y0)(x− x0) + gy(x0, y0)(y − y0) .

Second order Taylor’s approximation about (x0, y0) :

g2(x, y) = g(x0, y0) + gx(x0, y0)(x− x0) + gy(x0, y0)(y − y0) +

1

2
gxx(x0, y0)(x− x0)

2 + gxy(x0, y0)(x− x0)(y − y0) +

1

2
gyy(x0, y0)(y − y0)

2 .

Again we approximate

E(g(X,Y )) ≈ E(g2(X,Y ))

and

Var(g(X,Y )) ≈ Var(g1(X,Y ))

where the Taylor’s approximation are obtained about (x0, y0) = (µX , µY ).
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Example

Suppose that X and Y are independent and we are interested in the ratio g(X,Y ) = Y
X .

Then

g1(X,Y ) =
µY

µX
− µY

µ2
X

(X − µX) +
1

µX
(Y − µY )

and

g2(X,Y ) =
µY

µX
− µY

µ2
X

(X − µX) +
1

µX
(Y − µY ) +

1

2

2µY

µ3
X

(X − µX)2 + 0× (X − µX)(Y − µY ) + 0× (Y − µY )
2

=
µY

µX
− µY

µ2
X

(X − µX) +
1

µX
(Y − µY ) +

µY

µ3
X

(X − µX)2 .

Using the second order Taylor approximation we obtain

E(g(X,Y )) ≈ E(g2(X,Y ))

=
µY

µX
− µY

µ3
X

σ2
X .

Using the first order Taylor approximation we obtain

Var(g(X,Y )) ≈ Var(g1(X,Y ))

= Var

(
µY

µX
− µY

µ2
X

(X − µX) +
1

µX
(Y − µY )

)
=

µ2
Y

µ4
X

σ2
X − 2

µY

µ3
X

Cov(X,Y ) +
1

µ2
X

σ2
Y

=
µ2
Y

µ4
X

σ2
X +

1

µ2
X

σ2
Y .
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QQ Plots

Consider the iid random variables X1, X2, . . . , Xn from a continuous cdf F .

Next consider the ordered data X(1), X(2), . . . , X(n), that is the order statistics from these n r.v.s.

Notice that Ui = F (Xi) are iid Uniform(0,1), and that U(i) = F (X(i)). Thus

X(i) = F−1(U(i))

We can find the marginal distribution of U(i) from the methods above. Thus X(i) = F−1(U(i))

In Chapter 3.7 we found the distribution of U(i), specifically it has the pdf, say fi given by

fi(x) =
n!

(i− 1)!(n− i)!
F (x)i−1f(x)(1− F (x))n−i

where F and f are the cdf and pdf of U ∼ Uniform(0, 1). In particular we have

fi(x) =

{
n!

(i−1)!(n−i)!x
i−1(1− x)n−i if 0 < x < 1

0 otherwise

Remark : This is a special case of a Beta distribution.

Remark : Since this is a probability density for any positive integer n and i ≤ i ≤ n, we also have

(replacing the integers n, i by m, k) that∫ 1

0

xk−1(1− x)m−kdx =
(k − 1)!(m− k)!

m!

Thus

E(U(i)) =

∫ 1

0

xfi(x)dx

=

∫ 1

0

x
n!

(i− 1)!(n− i)!
xi−1(1− x)n−idx

=
n!

(i− 1)!(n− i)!

∫ 1

0

xi(1− x)(n+1)−(i+1)dx

=
n!

(i− 1)!(n− i)!
· i!(n− i)!

(n+ 1)!

=
i

n+ 1

Thus to a first order Taylor’s approximation we have

E(X(i)) = E(F−1(U(i)) = F−1(E(U(i))) = F−1

(
i

n+ 1

)
.



Moment Approximations 8

Thus when we order the iid data X1, X2, . . . , Xn, and plot the pairs F−1
(

i
n+1

)
, X(i) on average these

points are of the form
(
F−1

(
i

n+1

)
, F−1

(
i

n+1

))
, that is they fall on a straight line of slope 1. This

notion corresponds to plotting on one axis the theoretical quantiles and on the other hand the empirical

quantiles or order statistics. This type of plot is called a quantile-quantile or QQ plot.

Normal QQ Plots

In some cases, namely location and scale families of distributions, it is possible to make QQ plots

with respect to a particular member of this family. This is what is done for normal QQ plots.

First we find the relation between non-standard normal and standard normal quantiles.

Recall for a given number 0 < q < 1, the q-th quantile of a distribution with cdf F is defined as the

solution, say xq of the equation F (x) = q. Let xq be the q-th quantile for a N(µ, σ2) distribution, and zq

be the q-th quantile for a standard normal distribution. Thus, letting X ∼ N(µ, σ2) and Z ∼ N(0, 1)

P (X ≤ xq) = P

(
X − µ

σ
≤ xq − µ

σ

)
= P

(
Z ≤ xq − µ

σ

)
Therefore

xq − µ

σ
= zq

or equivalently

F−1(q) = xq = σzq + µ

where F is the N(µ, σ2) cdf. Let Φ be the N(0, 1) cdf.

PlottingX(i) against F
−1

(
i

n+1

)
will follow approximately a line with intercept 0 and slope 1. However

plotting X(i) against Φ
−1

(
i

n+1

)
will follow approximately a straight line of slope σ and intercept µ. In

fact this is what is done in software implementations of normal QQ plots, such as qqnorm in the statistical

programming language R.

Aside : R actually does something slightly different.

E(X(i)) = Φ−1

(
i− 1

2

n

)
.

In R the qqnorm function plots the observed data x(i) against the normal quantiles above. The student

might wish to check this by making the corresponding plots in R.
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Exponential QQ Plots

One may construct other QQ plots for continuous distributions. Consider the exponential distribution,

with cdf

F (x) = 1− e−λx if x > 0

and F (x) = 0 for x ≤ 0. Quantiles are easy to obtain, so that the q-th quantile is the solution of

q = F (x) .

Let xq be this solution. Therefore

q = 1− e−λxq

or equivalently

xq = − 1

λ
log(1− q) =

1

λ
log(1/(1− q)) .

For data x1, . . . , xn the exponential λ QQ plot would plot the pairs(
− 1

λ
log(1− i

n+ 1
), x(i)

)
=

(
− 1

λ
log(

n+ 1− i

n+ 1
), x(i)

)
,

i = 1, . . . , n. This plot of course would require knowing λ. Since the exponential λ quantiles are the

standard exponential (exponential parameter 1) quantiles divided by λ, one may also plot(
− log(1− i

n+ 1
), x(i)

)
=

(
− log(

n+ 1− i

n+ 1
), x(i)

)
,

i = 1, . . . , n. Notice that if the Xi are iid exponential, no mater what value for λ, this plot will be ap-

proximately a straight line. The departures from the straight line will depend on the sampling variability

of the order statistics.

The student might wish to write an R, matlab or other program to make these exponential QQ plots

and then try it for some simulated exponential data. You will then see the variability is much more than

for normal QQ plots, but useful nonetheless.


