
Sample Mean and Variance for I.I.D. Normals

Suppose that Xi, i = 1, . . . , n are i.i.d. N(0, 1) random variables, n ≥ 2. The sample mean and
variance are then given by

X̄ =
1

n

n∑
i=1

Xi

s2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
Theorem 1 Under the condition above, that is Xi, i = 1, . . . , n are i.i.d. N(0, 1) random variables,
then

1. the random variables X̄ and
∑n

i=1

(
Xi − X̄

)2
are independent

2. √
nX̄ ∼ N(0, 1)

3.

(n− 1)s2 =
n∑

i=1

(
Xi − X̄

)2 ∼ χ2
(n−1)

The rest of this handout gives a proof of this statement using a matrix or linear algebra approach.
This is different from the method used in the Rice text, chapter 6. However this method is more
useful in other settings such as regression and other linear models.

First we review some linear algebra results needed. Let x and y be column vectors of length n.
For an n× n matrix A consider

y = Ax (1)

Suppose that the i-th row of A is ai, which is a row vector of length n. The transpose of a vector or
matrix is denoted by a superscript t, for example at is the transpose of a vector a. Recall that the
inner product of these vectors is given by

⟨ai,ak⟩ = atiak =
n∑

j=1

ai,j , ak,j

where
ai = (ai,1, a1,2, . . . , ai,n)

that is ai,j is the j-th component of the vector.
The matrix A is said to be orthogonal if the rows are orthogonal, that is

⟨ai,ak⟩ = 0 for i ̸= k

1
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The matrix is said to orthonormal if it is orthogonal and each row has length 1, that is

⟨ai,ai⟩ = 1 .

Aside : Sometimes orthogonal matrices is the terminology of what is called orthonormal matrices.
This is not universal. In general vectors can be orthogonal but not have length 1. Non square matrices
can also be orthogonal matrices.

A property of a a square matrix A (that is n× n) that is also an orthonormal matrix is that

AtA = AAt = In

where In is the n × n identity matrix. This follows from the uniqueness of the inverse for a square
matrix and the fact that At is a right inverse of A.

In (1), suppose that A is orthonormal. Then

yty = xtAtAx = xtx . (2)

Proposition 1 Suppose that X1, . . . , Xn are i.i.d. N(0, 1) r.v.’s. Let X be the column vector such
that Xt = (X1, . . . , Xn), that is X is the column vector with i-th component Xi. Consider the trans-
formation

Y = AX

where A is orthonormal. Then Y = (Y1, . . . , Yn) has the distribution such that the r.v.’s are i.i.d.
N(0, 1).

Proof
The pdf of Y is

fY(y) = fX(Aty)|det(At)| =
(

1√
2π

)n

exp

{
−1

2
yty

}
=

(
1√
2π

)n

exp

{
−1

2

(
y21 + . . . y2n

)}
.

From this we see that the joint pdf factors into the product of n standard normal pdf’s. From this
we can then calculate the marginal pdf of Yi, which we find is the standard normal pdf. Thus we find
Yi, i = 1, . . . , n are iid N(0, 1). This completes the proof of Proposition 1

We next construct an orthonormal matrixA that will be a preliminary step in the proof of Theorem
1. Consider row vectors (of length n)

α1 = (1, 1, . . . , 1)

α2 = (−1, 1, 0, . . . , 0)

α3 =

(
−1

2
,−1

2
, 1, 0, . . . , 0

)
...

αi =

− 1

i− 1
, . . . ,− 1

i− 1︸ ︷︷ ︸
i−1 terms

, 1, 0 . . . , 0︸ ︷︷ ︸
n−i terms


...

αn =

− 1

n− 1
, . . . ,− 1

n− 1︸ ︷︷ ︸
n−1 terms

, 1
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These vectors αi are orthogonal. We find they have length

⟨α1, α1⟩ = n

⟨αi, αi⟩ =
i

i− 1
for 2 ≤ i ≤ n .

Define the row vector
ai =

αi√
⟨αi, αi⟩

.

The first few of these are

a1 =
1√
n
(1, 1, . . . , 1)

a2 =

√
1

2
(−1, 1, 0, . . . , 0)

a3 =

√
2

3

(
−1

2
,−1

2
, 1, 0, . . . , 0

)

ai =

− 1√
i(i− 1)

, . . . ,− 1√
i(i− 1)︸ ︷︷ ︸

i−1 terms

,

√
i− 1

i
, 0 . . . , 0︸ ︷︷ ︸
n−i terms


Construct the matrix A to have i-th row ai. This matrix is orthonormal.

For this matrix, and y = Ax the following properties hold.

1. y1 =
√
nx̄

2. from (2)

y22 + . . . y2n =

n∑
i=1

x2
i − (

√
nx̄)2 =

n∑
i=1

(xi − x̄)
2

Proof of Theorem 1
For the transformation Y = AX, we have Yi are i.i.d. N(0, 1) by Proposition 1. Thus X̄ =

Y1/
√
n ∼ N(0, 1/n) and Y 2

2 + . . . Y 2
n ∼ χ2

(n−1) are independent. From the second property above we
thus have

n∑
i=1

(
Xi − X̄

)2 ∼ χ2
(n−1)

and that it is independent of X̄. This concludes the proof of the Theorem.

Theorem 1 has some very useful and immediate corollaries.
However it does not say that X1 is independent of Y2, . . . , Yn. In particular X1 and

∑n
i=1(Xi−X̄)2

are dependent.
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The Rice text obtains these results in a different manner, by using moment generating functions.
This method is very special, while the method above is useful provided one can construct appropriate
orthonormal matrices, such as in linear regression. We now consider the method in Rice Chapter 6.
For this we need some preliminary results.

R.v.s (X,Y ) have joint moment generating function

MX,Y (s, t) = E(esX+tY )

provided this expectation exists for all (s, t) in an open neighbourhood of (0, 0). This means there
is a δ > 0 such that MX,Y (s, t) is finite for all ||(s, t)|| =

√
s2 + t2 < δ. ||(s, t)|| is the Euclidean

norm or length for the vector (s, t). This will imply that MX,Y will have a power series with radius
of convergence r which is at least as big as δ. The marginal mgf of X is then easily obtained as

MX(s) = E
(
esX

)
= E

(
esX+0Y

)
= MX,Y (s, 0) .

The moment generating function generalizes to (joint) mgf of n r.v.s (X1, . . . , Xn) by

MX1,...,Xn(s1, . . . , sn) = E
(
es1X1+...+snXn

)
provided this expectation is finite for all (s1, . . . , sn) in an open neighbourhood of 0 ∈ Rn. Marginal
moment generating functions can be obtained by setting appropriate arguments of MX1,...,Xn to 0,
just as in the bivariate mgf case above.

A r.v. X1 is independent of r.v.’s X2, . . . , Xn if the joint mgf factors into the product of the
marginal mgf’s. That is if

MX1,...,Xn(t1, . . . , tn) = MX1(t1)MX2,...,Xn(t2, . . . , tn) (3)

then X1 is independent of X2, . . . , Xn. It is this property that Rice uses in the proof of Theorem 6.3A.
Before proceeding with the proof let us look more closely at Theorem A. It deals with a transforma-

tion that maps n r.v.s X1, . . . , Xn into n+1 r.v.s X̄,X1−X̄,X2−X̄, . . . , Xn−X̄. This transformation
or mapping is from Rn 7→ Rn+1 and cannot be a 1 to 1 mapping and so our direct method of change
of variables and Jacobians will not apply.

Theorem 2 (Rice Theorem 6.3A) Suppose X1, . . . , Xn are iid N(µ, σ2). Then the X̄ is indepen-
dent of the random vector (X1 − X̄, . . . ,Xn − X̄).

Proof : Let M be the mgf of the n+ 1 random variables X̄,X1 − X̄,X2 − X̄, . . . , Xn − X̄, that is

M(s, t1, . . . , tn) = E
(
exp

{
sX̄ + t1(X1 − X̄) + t2(X2 − X̄) + . . .+ tn(Xn − X̄)

})
With some careful algebra

sX̄ + t1(X1 − X̄) + t2(X2 − X̄) + . . .+ tn(Xn − X̄)

=

n∑
i=1

[ s
n
+ ti − t̄

]
Xi

=
n∑

i=1

aiXi

where
ai =

s

n
+ ti − t̄ .

Then
n∑

i=1

ai = s
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and

n∑
i=1

a2i =
s2

n
+

n∑
i=1

(ti − t̄)2 .

Therefore

M(s, t1, . . . , tn) =

n∏
i=1

E
(
eaiXi

)
= exp

{
n∑

i=1

aiµ+
1

2

n∑
i=1

a2iσ
2

}

= exp

{
sµ+

σ2

2n
s2
}
exp

{
σ2

2

n∑
i=1

(ti − t̄)2

}

This is the product of two functions, but are they both mgfs? Recall M(s, 0, . . . , 0) is the mgf of

X̄, and is exp
{
sµ+ σ2

2ns
2
}
. The other term is therefore M(0, t1, . . . , tn) which therefore the mgf of

(X1 − X̄,X2 − X̄, . . . ,Xn − X̄). Thus by the property (3) we conclude that Rice Theorem 6.3A is
proved.

End of Proof

From the proof we might not easily recognize what is the distribution of (X1−X̄,X2−X̄, . . . , Xn−
X̄). We can however conclude that X̄ and S2 are independent. Rice Theorem 6.3B is an indirect way
of finding the distribution of S2. The student should read this Rice. Here we examine the properties
that he is using.

Note that
n∑

i=1

(xi − µ)2 =
n∑

i=1

(xi − x̄)2 + n(x̄− µ)2

Then

1

σ2

n∑
i=1

(Xi − µ)2 =
1

σ2

n∑
i=1

(Xi − X̄)2 +

(
(X̄ − µ)

σ√
n

)2

The LHS is a χ2
(n) r.v..

The RHS is the sum of two independent r.v.s (say U , V ) and its mgf is thus the product of these
two mgfs. The distribution of V is χ2

(1). Thus(
1

1− 2t

)n
2

= MU (t)

(
1

1− 2t

) 1
2

.

We can solve for MU giving

MU (t) = (1− 2t)
−n−1

2

and hence U ∼ χ2
(n−1).


