
Bivariate and Multivariate Normal

1 Bivariate Normal

The bivariate normal pdf is given by

f(x, y) = 1

2πσXσY

√
1−ρ2

exp

{
− 1

2(1−ρ2)

[(
x−µX

σX

)2

+
(

y−µY

σY

)2

−2ρ
(

x−µX

σX

)(
y−µY

σY

)]} (1)

It has 5 parameters µX , µY , σ
2
X , σ2

Y , ρ.

There is another nice way of expressing this pdf. Let

Q =

 σ2
X ρσXσY

ρσXσY σ2
Y


Then

f(x, y) =
1

2π
√

det(Q)
exp

{
−1

2
(x− µX , y − µY )Q

−1 (x− µX , y − µY )
T

}
(2)

(in the above expression the superscript T means the transpose of the row vector.) In this formulation

(equation 2) the matrix Q is a symmetric positive definite 2 by 2 matrix.

This bivariate pdf can be generalized to a multivariate normal pdf. Let x and µ be k dimensional

row vectors. x will be the argument of a function and µ will be a (vector) parameter. Let Q be a

k × k positive definite matrix. Then the function f : Rk 7→R given by

f(x) =
1

(2π)k/2
√
det(Q)

e−
1
2 (x−µ)Q−1(x−µ)T

is called the k dimensional multivariate normal probability density function. Equation (2) is of this

form with k = 2.
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Marginal distribution of a bivariate normal.

Suppose X,Y has the bivariate distribution given above.

fX(x) =

∫ ∞

−∞
f(x, y)dy

=

∫ ∞

−∞

1

2πσXσY

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[(
x− µX

σX

)2

+

(
y − µY

σY

)2

−2ρ

(
x− µX

σX

)(
y − µY

σY

)]}
dy

=
1

2πσXσY

√
1− ρ2

exp

{
− 1

2(1− ρ2)

(
x− µX

σX

)2
}

×
∫ ∞

−∞
exp

{
− 1

2(1− ρ2)

[
−2ρ

(
x− µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2
]}

dy

Change variables u = y−µY

σY
in this last integral gives∫ ∞

−∞
exp

{
− 1

2(1− ρ2)

[
−2ρ

(
x− µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2
]}

dy

= σY

∫ ∞

−∞
exp

{
− 1

2(1− ρ2)

[
−2ρ

(
x− µX

σX

)
u+ u2

]}
du

(next complete the square in u)

= σY

∫ ∞

−∞
exp

{
− 1

2(1− ρ2)

[
u−

(
x− µX

σX

)]2}
du× exp

{
ρ2

2(1− ρ2)

(
x− µX

σX

)2
}

= σY

√
2π(1− ρ2) exp

{
ρ2

2(1− ρ2)

(
x− µX

σX

)2
}

Thus

fX(x) =
1

2πσXσY

√
1− ρ2

exp

{
− 1

2(1− ρ2)

(
x− µX

σX

)2
}

×σY

√
2π(1− ρ2) exp

{
ρ2

2(1− ρ2)

(
x− µX

σX

)2
}

=
1√

2πσX

exp

{
− 1− ρ2

2(1− ρ2)

(
x− µX

σX

)2
}

=
1√

2πσX

exp

{
−1

2

(
x− µX

σX

)2
}

which is the N(µX , σ2
X) density function.

By a symmetric argument we find

fY (y) =

∫ ∞

−∞
f(x, y)dx
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=
1√

2πσY

exp

{
−1

2

(
y − µY

σY

)2
}

which is the N(µY , σ
2
Y ) density function.

Note that in general f(x, y) ̸= fX(x)fY (y), so that X and Y are dependent.

Next consider the case ρ = 0. In this case we have f(x, y) = fX(x)fY (y), so that X and Y are

independent. Thus in the normal case we X and Y are independent if and only if ρ = 0.

Later in the course we will see

ρσXσY = Cov(X,Y ) = E ((X − µX)(Y − µY ))

Next the correlation of X with Y is

Corr(X,Y ) =
Cov(X,Y )

σXσY
= ρ

so that ρ is the correlation of X with Y .
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Conditional distributions of a bivariate normal.

The conditional probability density function of Y given X = x is defined for all x ∈R since the

marginal distribution of X has supportR. It is given by

fY |X=x(y) =
f(x, y)

fX(x)

=

√
2πσX

2πσXσY

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[(
x− µX

σX

)2

+

(
y − µY

σY

)2

−2ρ

(
x− µX

σX

)(
y − µY

σY

)]
+

1

2

(
x− µX

σX

)2
}

=
1

σY

√
2π(1− ρ2)

exp

{
− 1

2(1− ρ2)

[(
y − µY

σY

)2

+ ρ2
(
x− µX

σX

)2

−2ρ

(
x− µX

σX

)(
y − µY

σY

)]}
(now complete the square in y)

=
1

σY

√
2π(1− ρ2)

exp

{
− 1

2(1− ρ2)

[(
y − µY

σY

)
− ρ

(
x− µX

σX

)]2}

=
1

σY

√
2π(1− ρ2)

exp

{
− 1

2σ2
Y (1− ρ2)

[
y − µY − ρ

σY

σX
(x− µX)

]2}

which is the normal density with mean given by µY +ρ σY

σX
(x− µX) and variance given by (1−ρ2)σ2

Y .

In particular notice that the conditional mean of Y given X is a linear function of X.

A second thing to notice is that in the case ρ = 0 this conditional density is the N(µY , σ
2
Y ) density,

the same as the marginal pdf of Y . Thus in the case that ρ = 0, we have independence of Y and X.
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Correlation for bivariate normal

Consider the bivariate normal distribution (1) with parameters (0, 0, 1, 1, ρ). Suppose that (X,Y )

has this bivariate normal distribution. Then X and Y both have the standard normal distribution as

their marginal distributions. In class we calculated the mean and variance of a N(µ, σ2) distribution.

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xy

1

2π
√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
x2 − 2ρxy + y2

]}
dydx

We can evaluate the inner integral

A =

∫ ∞

−∞
y

1

2π
√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
x2 − 2ρxy + y2

]}
dy

=

∫ ∞

−∞
y

1

2π
√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
y2 − 2ρxy + ρ2x2

]}
dy e

− x2(1−ρ2)

2(1−ρ2)

=
1√
2π

∫ ∞

−∞
y

1√
2π(1− ρ2)

exp

{
− 1

2(1− ρ2)

[
(y − ρx)

2
]}

dy e−
1
2x

2

=
1√
2π

ρxe−
1
2x

2

since the integral is the mean of a N(ρx, (1− ρ2)) distribution.

Substituting this into the double (or iterated) integral we obtain

E(XY ) =

∫ ∞

−∞

1√
2π

xρxe−
1
2x

2

dx

= ρ

∫ ∞

−∞

1√
2π

x2e−
1
2x

2

dx

= ρVar(X)

= ρ

since marginally X ∼ N(0, 1).

Now suppose that (X,Y ) has the bivariate normal distribution (1) of the general form. Consider

the transform

X1 =
X − µX

σX

Y1 =
Y − µY

σY

Then (X1, Y1) has the bivariate normal distribution with parameters (0, 0, 1, 1, ρ). Thus E(X1Y1) = ρ.

Also

E(X1Y1) = E

[(
X − µX

σX

)(
Y − µY

σY

)]
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From the linearity property of expectation we then obtain

Cov(X,Y ) = E [(X − µX) (Y − µY )]

= E(X1Y1)σXσY

= ρσXσY

Finally we then obtain

Corr(X,Y ) =
Cov(X,Y )

σXσY

= ρ
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2 Linear Transformations

There is a nice way of studying linear transformations of multivariate normal r.v.s using linear algebra.

Recall we can write the bivariate normal pdf as

f(x, y) =
1

(2π)k/2
√
det(Q)

e−
1
2 (x−µX ,y−µY )Q−1(x−µX ,y−µY )T

where

Q =

 σ2
X ρσXσY

ρσXσY σ2
Y


Consider the transformation  U

V

 = A

 X

Y

+B (3)

where

A =

 a1,1 a1,2

a2,1 a2,2

 and B =

 b1

b2

 .

and that A is invertible. In this case

A−1 =
1

det(A)

 a2,2 −a2,1

−a1,2 a1,1

 .

The student should finish this example at home, that is find the joint pdf of U, V . The answer is

that this joint distribution will be bivariate normal, but what are the parameters for this bivariate

normal.
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3 Sums of Normals : Bivariate normal case

In this section consider using the convolution formula to find the distribution of the sum of two r.v.s

that have a bivariate normal distribution.

Suppose X,Y are bivariate normal(0,0,1,1,ρ), so they have density

f(x, y) =
1

2π
√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
x2 − 2ρxy + y2

]}
Let T = X + Y . Then T has pdf fT given by

fT (t) =
1

2π
√

1− ρ2

∫ ∞

∞
exp

{
− 1

2(1− ρ2)

[
x2 − 2ρx(t− x) + (t− x)2

]}
dx

How can we calculate this integral? First simplify the exponent.

x2 − 2ρx(t− x) + (t− x)2

= x2 + 2x(t− x) + (t− x)2 − 2(1 + ρ)x(t− x)

= (x+ (t− x))2 + 2(1 + ρ)x(x− t)

= t2 + 2(1 + ρ)

(
x2 − 2x

t

2
+

t2

4
− t2

4

)
= t2 + 2(1 + ρ)

(
x− t

2

)2

− 2(1 + ρ)
t2

4

= t2
1− ρ

2
+ 2(1 + ρ)

(
x− t

2

)2

Therefore

fT (t) =
1

2π
√
1− ρ2

∫ ∞

∞
exp

{
− 1

2(1− ρ2)

[
t2
1− ρ

2
+ 2(1 + ρ)

(
x− t

2

)2
]}

dx

=
1

2π
√
1− ρ2

exp

{
−

t2 1−ρ
2

2(1− ρ)(1 + ρ)

}

×
∫ ∞

∞
exp

{
− 1

2(1− ρ)(1 + ρ))

[
1

2
(1 + ρ)

(
x− t

2

)2
]}

dx

=
1

2π
√
1− ρ2

exp

{
− t2

4(1 + ρ)

}

×
∫ ∞

∞
exp

{
− 1

2 (1−ρ)
2

[(
x− t

2

)2
]}

dx

=
1

2π
√
1− ρ2

exp

{
− t2

4(1 + ρ)

}
×

√
2π

√
(1− ρ)

2

=
1√

2π(2(1 + ρ))
exp

{
− t2

4(1 + ρ)

}
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Thus we see that T has the normal distribution parameters 0 and 2(1 + ρ).

What happens for a more general bivariate normal, instead of this special case?


