
Statistics 3657 : Discrete Pmf and Cdf

Some basic properties are discussed in Section 2.1

Here X denotes a generic random variable (rv). It is real valued. Note that since the integers

are a subset of the real numbers this notion also includes integer valued rv’s and many other discrete

random variables.

If we have a sample space with a probability measure on it, then we can determine the probability

distribution of a r.v. X. Notice that it does not matter which sample space we use; consider two of

our coin tossing examples with different sample spaces for the game.

In general if we are only interested in calculating probabilities of events associated with a random

variable then we do not need to use the sample space, but only some function needed to calculate the

probabilities of these events. This notion is referred to as the distribution of a random variable, and

in the next chapter the joint distribution of random variables.

For discrete random variables we use the CDF (cumulative distribution function) and PMF (prob-

ability mass function). For continuous random variables we will use the CDF and PDF (probability

density function).

The distribution of a r.v. X lets us calculate values such as

P (X ∈ (a, b]) = P (a < X ≤ b)

for intervals (a, b] with a < b. It also allows us to calculate

P (X ∈ B)

for intervals B = [a, b], B = (a, b) or B = [a, b) or for unions of these intervals, that is the probability

that X belongs to some set. One special case, useful for discrete r.v.s, is B = {a} = [a, a].

Definition 1 For a (real valued) random variable X, there is a corresponding cumulative distribution

function (cdf), denoted F , that is related to probabilities by

F (x) = P (X ≤ x) = P (X ∈ (−∞, x])

for all possible real numbers x.
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Thus when we give a cdf we need to specify it as a function with domain as the real numbers, that

is we need to specify the rule or function for all possible x ∈ (−∞,∞).

Some properties of a cdf F are given below with an explanation or justification using the Axioms

of Probability. To help with this we sometimes write an event using { and } to emphasize that we are

referring to an event, which is a subset of a sample space Ω, even though we may not explicitly write

out define carefully the sample space.

1. For any x, the set {X ≤ x} is an event and hence 0 ≤ F (x) ≤ 1.

2. For real numbers x < y notice that (−∞, x] ⊂ (−∞, y] and hence we have for events

{X ≤ x} ⊆ {X ≤ y}

and hence F (x) ≤ F (y). That is F is a monotone increasing function.

3. The events {X ≤ x} ↓ ∅ as x ↓ −∞ and hence

lim
x→−∞

F (x) = P (∅) = 0 .

The events {X ≤ x} ↑ Ω, the sample space, as x ↑ ∞ and hence

lim
x→∞

F (x) = P (Ω) = 1 .

Suppose X is a rv with cdf F . Then for any a < b, and using properties derived from the Axioms

of Probability,

F (b) = P (X ≤ b)

= P ({X ≤ a} ∪ {X ∈ (a, b])

= F (a) + P (a < X ≤ b)

For the last line we are using properties of disjoint events. The student should think about where this

is used.

Thus we have for any interval (a, b]

P (a < X ≤ b) = F (b)− F (a) .

Thus the cdf F gives the distribution of X. For any relevant sets we can calculate all probabilities

needed for X. Therefore in this case we need not even worry about the sample space in any explicit

sense. See the Binomial(1 , 1/2) example below.

There are two main types of rv’s of interest in this course, continuous random variables and discrete

random variables. There are also random variables that are neither in the sense that they are partly
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continuous and partly discrete. Later in the course we will consider some special types of these with

some special mathematical tools.

Discrete random variables are ones that can take on, with probability 1, only values in a finite or

countable set.

For example one may consider

1. the number of heads in n independent coin tosses

2. the number that comes up on a single die roll, which must be an integer number from 1 to 6

3. the sum for two die rolls, which is an integer number between 2 and 12

4. the number of independent coin tosses to obtain the first head. This one is interesting in the

outcome can then be any integer from 1 onwards, that is a countable number of possible values.

Let X this random variable. A variation on this game is to count the number of tails before the

first head. Of course X = Y + 1.

Note that both of these random variables are said to have a geometric distribution, but their

distributions are different. In using the geometric distribution one should always check which of

these two formulae are appropriate.
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Toss 4 fair coins, and consider the two r.v.’s:

• X = number of H’s (successes) in the first 3 coin tosses

• Y = number of H’s (successes) in the last 2 coin tosses

It is simplest for us to obtain the joint distribution of these two discrete r.v.’s from the sample

space description of this game.

elementary outcome X Y

0000 0 0

0001 0 1

0010 1 1

0011 1 2

0100 1 0

0101 1 1

0110 2 1

0111 2 2

1000 1 0

1001 1 1

1010 2 1

1011 2 2

1100 2 0

1101 2 1

1110 3 1

1111 3 2

In this example there are two discrete r.v.s (X,Y ).

For now we just find their marginal distribution (this term will be discussed further in Chapter

3).

x P (X = x)

0 1
8

1 3
8

2 3
8

3 1
8
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What is the cdf of X?

F (x) =



0 if x < 0

1
8 if 0 ≤ x < 1

4
8 if 1 ≤ x < 2

7
8 if 2 ≤ x < 3

1 if x ≥ 3
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There are other standard discrete distributions, the hypergeometric and the Poisson amongst other.

In all these discrete rv cases the cdf is not continuous, and hence not differentiable everywhere. In

particular it is not differentiable at each jump point. See the example below and plots Figures 2 and

4

For discrete rv’s X we have a second equivalent way of writing the distribution, namely the

probability mass function. It is a function, say p : R 7→ [0, 1] with the property that for every

x ∈ R = set of real numbers then p(x) = P (X = x). For a discrete r.v. p(x) = 0 for most values

of x, and p(x) > 0 for only finitely or countably many values of x.

The support of a function f is

{x : f(x) ̸= 0}

so that in the case of a pmf (or later in the case of a pdf) the support is

support(f) = {x : f(x) > 0} .

Example : X is the number of heads in a game consisting of tossing two independent coins, where

each coin has probability of θ of coming up heads. Then

p(x) =



(1− θ)2 if x = 0

2(1− θ)θ if x = 1

θ2 if x = 2

0 otherwise

If it were a game with fair coins then θ = 1
2 and

p(y) =


1
4 if y = 0 or 2

1
2 if y = 1

0 otherwise

Aside :

1. The variable or argument in the function is just a symbol to represent a real number, so it does

not matter if we use x or y or any other sensible symbol as this argument.

2. For each parameter value θ, there is a different binomial distribution, which we write as Binom(2,

θ). Of course these only give a valid distribution if θ ∈ [0, 1]. The values θ equal to 0 or 1 are

usually not interesting.

3. θ is a parameter and is not the argument of the function. It only determines which particular

binomial distribution we are considering.
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Properties of a Probability Mass Function

The following also shows how these are consequences of the Axioms of Probability. Since we are

dealing with a function, we will use below the symbol f as this function, that is f is the pmf.

1. for any x, 0 ≤ f(x) ≤ 1

This follows since {X = x} is an event, and hence 0 ≤ f(x) = P ({X = x}) ≤ 1.

2. ∑
x

f(x) = 1

This may also be written more carefully as∑
x:f(x)>0

f(x) = 1

This follows since

1 = P (Ω)

= P ({X ∈ (−∞,∞)})

= P (∪x:f(x)>0{X = x}) , note this is a countable union

=
∑

x:f(x)>0

P ({X = x})

=
∑

x:f(x)>0

f(x)

There is a 1 to 1 relation between the CDF and PMF so either can be used to give the distribution

of a rv X.

If we have the pmf f , then for any x we have

F (x) = P (X ∈ (−∞, x])

= P (∪{k:f(k)>0 and k≤x}{X = k})

=
∑

k:k≤x

f(k)

Thus the pmf allows us to calculate the CDF.

On the other hand if we have the CDF, say F , then for a x

F (x) = P (X ∈ (−∞, x])
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= P ({X ∈ (−∞, x)} ∪ {X = x})

= P ({X ∈ (−∞, x)}) + P ({X = x})

= lim
y↑x

F (y) + f(x)

= F (x−) + f(x)

Thus the pmf evaluated x is given by

f(x) = F (x)− lim
y↑x

F (y) = F (x)− F (x−) .

In terms of the graph of the cdf, this is the size of the jump at x. For a discrete rv the cdf is a step wise

constant function with jumps are precisely the places where there are probability masses or possible

positive probability values for the rv X.

Either the cdf or pmf can be used to give the distribution of X.

For most discrete distributions, the probability mass function (pmf) is the most common form of

specifying the distribution.
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Example of graphs of some 1 dimensional probability mass functions (pmf’s) and cumulative

distribution functions (cdf’s).

Poisson Distribution

A Poisson distribution has a parameter λ > 0. This means that every λ > 0 gives rise to a different

Poisson distribution. This idea of parameters is discussed more next term for statistical inference.

A Poisson distribution with parameter λ is one with pmf

f(k) =

 cλ
k

k! k = 0, 1, 2, . . .

0 otherwise

What is the constant c?

1 = c
∞∑
k=0

λk

k!
= ceλ .

Thus c = e−λ and the Poisson parameter λ pmf is

f(k) =

 λke−λ

k! k = 0, 1, 2, . . .

0 otherwise

Figures 1 and 2 shows a Poisson λ = 4 example.

The formula above is valid even if λ < 0. We then have

f(k) =

 λke−λ

k! k = 0, 1, 2, . . .

0 otherwise

is a function with support non-negative integers and sums to 1. However f(1) < 0 and f(2) > 0. In

particular we see f does not satisfy f(x) ≥ 0 for all x and hence is not a probability mass function.
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Figure 1: Poisson PMF

A Second Example

A second example is a random variable X with distribution P (X = x) = p(x) where

p(x) =

 c(x+ 6) if x = −5,−4, . . . , 5

0 otherwise

Using the condition that
∑

x p(x) = 1 we find that c = 1
66 . Next check that for integers x satisfying

−5 ≤ x ≤ 5 we also have p(x) ≥ 0. Thus we have a probability mass function. Figure 3 shows the

pmf and cdf. Figure 4 shows the cdf in a larger scale.

Is

p(x) =

 c(x+ 4) if x = −5,−4, . . . , 5

0 otherwise

a pmf? Using the condition that
∑

x p(x) = 1 we find that c = 1
44 . However using this value of c we

do not have the condition p(x) ≥ 0 satisfied. Actually we do not even need to calculate c. Notice

(x+ 4)|x=−5 = −1 < 0 and (x+ 4)|x=2 = 6 > 0. Thus there cannot be a constant c < 0 or c > 0 that

makes all these terms non-negative. If we take c = 0 then the sum to 1 condition is violated. Hence

there is no possible value of c to make this function a probability mass function.
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Figure 2: Poisson CDF
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Figure 3: Example 2 PMF
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Figure 4: Discrete CDF
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Binomial(2, 1/2)

One could start with a sample space

Ω = {00, 01, 10, 11}

and a probability function defined to satisfy

P ({ω}) = 1

4
, for all ω ∈ Ω .

For every possible subset A of Ω define

P (A) =
∑
ω∈A

P ({ω})

Unless we need to remind ourselves that we are dealing with sets we often write P (ω) in place of the

notation P ({ω}).

Consider the rv

X(ω) = X((ω1, ω2)) = ω1 + ω2

It simply adds up the 1’s for each elementary outcome. We can then easily calculate the pmf and then

the cdf. Notice that once we have either the cdf of pmf then as far as probability calculations about

X are concerned we never need to use the sample space.


