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ABSTRACT. Beginning with the ordered field of real numbers, these lecture
notes examine the theory of real functions with applications to differential
equations and fractals. The main thread begins with the least upper bound
property of the real numbers, and follows through to compactness and com-
pleteness in Euclidean spaces. Standard results on continuity, differentiation
and integration are established, culminating in two applications of the Con-
traction Lemma: fractals are characterized using the completeness of the met-
ric space of compact subsets of Euclidean space; existence and uniqueness
of solutions to first order nonlinear initial value problems are proved using
completeness of the space of real continuous functions on a closed bounded
interval.
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Preface

These notes grew out of lectures given three times a week in a third year under-
graduate course in real analysis at McMaster University September to December
2009. The topics include the real and complex number systems and their function
theory; continuity, differentiability, and compactness. Applications include exis-
tence of solutions to differential equations, and constuction of fractals such as the
Cantor set, the von Koch snowflake and Peano’s space-filling curve. Sources in-
clude books by Rudin [3] and [4], books by Stein and Shakarchi [5] and [6], and
the history book by Boyer [2].






Part 1

Differentiation



We begin Part 1 with a chapter discussing the field of real numbers R, in
particular its status as the unique ordered field with the least upper bound property.
We show that the field of real numbers R can be constructed either from Dedekind
cuts of rational numbers Q, or from Weierstrass’ Cauchy sequences of rational
numbers. Finally, we comment briefly on the arithmetic properties of R that can
be derived from its definition, and also point out a false start in the construction
of R.

Then in the short Chapter 2 we introduce Cantor’s cardinal numbers and show
that the rational numbers are countable and that the real numbers are uncountable.

Chapter 3 follows Rudin [3] in part and introduces the concept of a metric space
with a ‘distance function’ that is sufficient for developing a rich theory of limits,
yet general enough to include the real and complex numbers, Euclidean spaces and
the various function spaces we use later. We also construct our first fractal set,
the famous Cantor middle thirds set, which provides an example of a perfect set
that is large in cardinality (uncountable) yet small in ‘length’ (measure zero). We
end by following Stein and Sharkarchi [6] to establish a one-to-one correspondence
between finite collections of contractive similarities and fractal sets, thus illustrating
Mandelbrot’s observation that much of the apparent chaotic form in nature has an
extremely simple underlying structure.

Chapter 4 develops the standard theory of sequences and series in a met-
ric space, including convergence tests, Cauchy sequences and the completeness of
Euclidean spaces. We also introduce the useful contraction lemma as a unifying
approach to fractals and later, to solutions to differential equations.

Chapter 5 introduces the concepts of continuity and differentiability including
uniform continuity and four mean value theorems of increasing generality.



CHAPTER 1

The fields of analysis

If one is not careful in defining the concepts used in analysis, confusion can
result. In particular, we need a clear definition of

(1) function,
(2) the set of real numbers, and
(3) convergence of series of real numbers and functions.

In the 18" century each of these concepts suffered shortcomings. Early formu-
lations of the notion of function involved the idea of a specific formula. Later in
1837, Lejeune Dirichlet suggested a broader definition of function, still falling short
of the modern notion:

e If a variable y is so related to a variable x that whenever a numerical value
is assigned to x, there is a rule according to which a unique value of y is
determined, then y is said to be a function of the independent variable x.

Real numbers were thought of as points on a line, but the identification of
their crucial properties, such as the absence of gaps as reflected in the least upper
bound property, had to await Dedekind’s construction of the real numbers from the
rational numbers.

In 1725 Varignon, one of the first French scholars to appreciate the calculus,
warned that infinite series were not to be used without investigation of the remain-
der term. It was not until 1872 however before Heine, influenced by Weierstrass’
lectures, defined the limit of the function f at xy in virtually modern terms as
follows:

o If, given any e, there is an n, such that for 0 < n < 7, the difference
f (o £ 1) — L is less in absolute value than ¢, then L is the limit of f ()
for x = x.

Historically, the following example was pivotal in the development of the rig-
orous analysis that addressed the above shortcomings, and also in the foundations
of set theory. We are referring here to a simple mathematical model of the motion
of a string vibrating in the plane.

1. A model of a vibrating string

Consider a vibrating string stretched along that portion of the z-axis in the
plane that joins the points (0,0) and (1,0), and suppose the string is wiggling up
and down (not very violently) in the y-direction. Suppose that at time ¢ and just
above (or below) the point (z,0) on the z-axis, the y-coordinate of the string is
given by y (z,t). This defines a ‘function’ mapping the infinite strip [0, 1] x R into
the real numbers R, i.e. y(z,t) is defined for

0<z<1landteR,

3



4 1. THE FIELDS OF ANALYSIS

and we are to think of the real number y (z,t) as measuring the displacement from
the z-axis of the vibrating string at position  and time ¢. We assume the endpoints
of the string are attached to the points (0,0) and (1,0) for all time and so we have
the boundary conditions

(1.1) y(0,¢) =0 and y (1,¢) =0 for all t € R.

Moreover, we can suppose that at time ¢ = 0 the shape of the string is specified by
the graph of a given function f that maps [0,1] to R;

(1.2) y(x,0)=f(z) for 0 <z < 1.

Finally, we can suppose that at time ¢ = 0 the vertical velocity of the string is
specified by a given function g that maps [0, 1] to R;

(1.3) y(x,0) =g (z) for 0 <z < 1.

0
ot
Now provided the displacements are not too violent, it can be shown (and we

are not interested here in exactly how this is done) that the function y (x, t) satisfies
a partial differential equation of the form

o2, 02

wy:c@y, 0<zxz<landteR,

where c is a positive constant determined by the physical properties of the string,
and is interpreted as the speed of propagation. This is the so-called wave equation,
and together with the boundary conditions (1.1) and the initial conditions (1.2)
and (1.3), it constitutes the initial boundary value problem for the vibrating string:

(1.4) (3:2 2;;) (z,t)

y(0.t) = y(LH=0, teR,
{atzﬁx;s%)} - M((i))] 0<z<l.

On the one hand, Daniel Bernoulli noted around the middle of the 18" century
that for each positive integer n € N the function

0, 0<zx<landteR,

Yn (2,t) = (sinnwzx) (cosnent) ,
is a solution to (1.4) with initial conditions

f(z) = sinnnz, 0<z<1,
gz) = 0, 0<z<L

EXAMPLE 1. y(z,t) = (sin37wz) (cos 37t)
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Since the equations involved are linear we then have that
N
y(z,t) = Z ay, (sinnmx) (cosnemt)

n=1

is a solution to (1.4) with initial conditions

f(x)

glx) = 0, 0<z<1.

N
Zansinmr:c, 0<x <1,
n=1

Presuming that we can take infinite sums, we finally obtain that the solution y (x, t)
to the initial boundary value problem (1.4) with initial conditions

oo
flx) = Zansinnﬂx, 0<z<1,
n=1
glx) = 0, 0<z<1,
is given by the infinite series of functions
o0
(1.5) y(z,t) = Z an (sinnmx) (cosnernt) .
n=1

REMARK 1. The Bernoulli decomposition is motivated for example by plucking
a guitar string. The fundamental note heard is that corresponding to n = 1, the
standing sine wave having one node that oscillates with frequency 5 and amplitude
a1. Corresponding to higher values of n are the harmonics having n nodes with
frequency % and amplitude a,,. See Example 1 above where the standing wave
having 3 nodes has graph sin 3wz with frequency % and amplitude 1.

On the other hand, a much simpler solution to (1.4) with initial condition
g(x) =0for 0 <z <1 was given by Jean Le Rond d’Alembert in 1747, namely
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the travelling wave solution ,

flx+ct)+ f(z—ct
(16  ylap=TEEOEIEZD
where we define f outside the interval [0,1] by requiring that it be odd on the
interval [—1, 1] and periodic with period 2 on the real line.

0<z<1landteR,

1 4+ 1 1
1+(z+t)? ' 2 14(z—t)*’

EXAMPLE 2. y (z,t) = § —00 < < 00,t>0

N
LIRSS
NN
NS

EXERCISE 1. Verify that the function y (z,t) in (1.6) satisfies (1.4) with g = 0.

REMARK 2. The travelling wave solution is motivated for example by snapping
a skipping rope that is lying in a line on the ground. A ‘hump’ is produced that
travels like a wave along the rope with speed c. See Example 2 above where two
‘humps’ move off in opposite directions with speed 1.

Based on physical experience, such as plucking a guitar string and snapping a
skipping rope, we expect that

(1) every solution to the initial boundary value problem (1.4) has the Fourier
harmonic form (1.5), and

(2) every solution to the initial boundary value problem (1.4) has the d’Alembert
travelling wave form (1.6), and

(3) the solution to the initial boundary value problem (1.4) is uniquely deter-
mined by the boundary conditions (1.1) and the initial conditions (1.2)
and (1.3).

From these expectations it follows that for any function f (x) we have
[ee]
(1.7) f@)=y(z,0) = Zansinnwx, 0<z<1,
n=1

for a suitable choice of constants a,, n > 1. The precise meaning to be attached to
such a formula (1.7) involves many difficulties! In particular,
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when does the series on the right converge?

and for what values of x?

or more generally in what sense?

and when does the sum equal f (z) in some sense?

We will introduce concepts and develop tools to answer such questions. In
particular we note that it was Joseph Fourier in 1824 who first proved that (1.7)
holds under certain conditions, and this is the reason that the name of Fourier, and
not Bernoulli, is associated with such a decomposition of a function f (z) into a
series of trigonometric functions sin nrzx.

One question that springs to mind immediately is whether or not the ordered
field of rational numbers

Q:{%:meZandneN}

can suffice as the domain for z in answering these questions. As it happens, the
rational numbers suffer a fatal deficiency that we show can morph into different
forms in the next section, rendering the rationals unsuitable for this purpose. It is
convenient at this point to introduce the concept of an order < on a set S.

DEFINITION 1. An order < on a set S is a relation (among ordered pairs (x,y)
of elements x,y € S) satisfying the following three properties:
(1) (monreflexive) If x € S, then it is not true that x < x.
(2) (antisymmetric) If z,y € S and x # y, then one and only one of the
following two possibilities holds:

x <y, y <z
(3) (transitive) If z,y,z € S, and x <y and y < z, then = < z.

For example, the usual order on either Z or Q satisfies Definition 1.

2. Deficiencies of the rational numbers

The rational numbers Q form an ordered field, but there are difficulties assoc-
itated with

(1) nonsolvability of algebraic equations,
(2) gaps in the order,
(3) and nonexistence of solutions to simple differential equations.

Because of these problems with the rational numbers, we will be led to construct
the set of real numbers R which form an ordered field with the least upper bound
property. This last property reflects the absence of gaps in the order of the real
numbers and accounts for the privileged position of R in analysis.

2.1. Nonsolvability of algebraic equations. The polynomial equation
2 —-2=0

has no solution z € Q. Indeed, if it did then we would have (%)2 = 2 where m and
n are integers with no factors in common. Then
m? = 2n? is even,
hence so is m, say m = 2k for an integer k,
hence n? = 2k? is even,
and hence n is even.
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This contradicts our assumption that m and n have no factors in common, and
completes the proof that /2 is not rational.

Alternatively, one can avoid divisibility and argue with inequalities to derive a
contradiction as Fermat did:

° \@:%whereo<n<m<2n,
e 1=2-1=(V2-1)(V2+1)=(2-1) (vV2+1),

— 1 {_2n=m_m —m—
o V2= g —1 =220 = M where ng =m —n < n.

33

Thus we have shown that if /2 can be represented as a quotient of positive
integers 7, then it can also be represented as a quotient of positive integers ’Z;”—ll
with nq strictly smaller than n. This can be repeated as often as we wish, leading
to the contradiction that there are infinitely many integers between 1 and n. This

technique is known as Fermat’s method of infinite descent.

REMARK 3. The equation z2 42 = 0 has no solution in Q either, in fact it has
no solution in the real numbers R. This prompts introduction of the set of complex
numbers C, which turns out to be an algebraically closed field containing the reals,
i.e. every polynomial with real (even complex) coefficients has a root in C. On the
other hand, C is not an ordered field, which explains why so much of analysis begins
with the real field R.

2.2. Gaps in the order. The rational numbers can be decomposed into two
disjoint sets A and B with the properties that A has no largest element and B has
no smallest element, thus leaving a gap in the order. By this we mean that we
could insert a new element labelled X, @ or even V2 into Q and extend the order
on Q to the larger set Q U {X} by declaring p < X < ¢ for all p € A and q € B.
Because this extended order on QU { X} satisfies Definition 1, we say that the sets
A and B create a gap in the order of Q.

For example we can set

(2.1) A = {pGQ:eitherpﬁOorp2<2},
B = {qEQ:q>0andq2>2}.

To see that A has no largest element, pick p € A. We may assume that p > 0, and

since every p in A is less than 2 we have 0 < p < 2. Set § = % so that 0 < § < %.

Then
(p+0)° = p>+2p5+4°
1
p+40 + 0

N

2 1 2 i 2
Pt 2-p) 455 2-p)

p2+(2—p2):2.

A

Thus p+§ > p and p € A. The proof that B has no smallest element is similar.

2.3. Nonexistence of solutions to differential equations. The differen-
tial equation

y + 2y =0
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has no solution on any open interval of rational numbers. Indeed, we can solve the
equation in the real line by separating variables;

1./1 dy 1., .,
1
ny = $2+C,
1

Vo= V2 +C°
No matter what choice of integration constant C' is made, and what choice of interval
(a,b) with rational numbers a < b, there are lots of rational numbers z € (a,b) for

which y = \/95217 is mot rational.

3. The real field

In regards to the problem of describing what is meant by the ‘continuity of a line
segment’, J. W. R. Dedekind published his famous construction of the real numbers
using Dedekind cuts in 1872. Some years earlier he had described his seminal idea
in the following way "By this commonplace remark the secret of continuity is to be
revealed", the idea in question being

e In any division of the points of the segment into two parts such that each
point belongs to one and only one class, and such that every point of the
one class is to the left of every point in the other, there is one and only
one point that brings about the division.

We present here a modification of this idea due to Bertand Russell (born 1872,
the year of Dedekind’s publication). Heuristically, following Russell, a Dedekind
cut  C Q is a "left infinite interval open on the right" of rational numbers that
is associated with the "real number" on the number line that marks its right hand
endpoint. More precisely, a cut « is a subset of Q satisfying (here p and ¢ denote
rational numbers)

(3.1) a # (and a#Q,
p € «and g < pimplies q € «,
p € « implies there is ¢ € a with p < q.

One can define an ordered field structure on the set of cuts, which we identify
as the field R of real numbers, and prove that this ordered field has the famous
Least Upper Bound Property defined below. It is this property that evolves into
the critical Heine-Borel property of Euclidean space, namely that every closed and
bounded subset is compact, and this property in turn ultimately permits the familiar
existence theorems for ordinary and partial differential equations. We remark that
a copy of the rational number field Q can be identified inside the real field R of
Dedekind cuts by associating to each r € Q the cut

a=(—oc0,r)={peQ:p<r}.

Alternatively, one can define an ordered field structure on the set of equivalence
classes of Cauchy sequences in Q, and this produces an ordered field isomorphic to
R. We will construct the real numbers using Dedekind cuts at the end of this
chapter, and leave the construction with Cauchy sequences to a later chapter. But
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first we study some of the consequences of an ordered field with the least upper
bound property. For this we introduce precise definitions of these concepts.

DEFINITION 2. A field F is a set with two binary operations, called addition
and multiplication, that satisfy the following three sets of axioms. We often write
F for the underlying set, x +1y for the operation of addition applied to x,y € F, and
juxtaposition xy for the operation of multiplication applied to x,y € F.

(1) Addition Azioms
(a) (closure) z+y €T for all z,y € F,
(b) (commutativity) x +y =y + x for all z,y € F,
(¢) (associativity) (z +y)+z=x+ (y+ 2) for all z,y,z € F,
(d) (additive identity) There is an element 0 € F such that
0+z=u=x forallz eF,
(e) (inverses) For each x € T there is an element —x € F such that
z+ (—z) =0.
(2) Multiplication Axioms
(a) (closure) xy € F for all x,y € F,
(b) (commutativity) vy = yx for all z,y € F,
(¢) (associativity) (xzy) z = x (yz) for all x,y,z € I,
(d) (multiplicative identity) There is an element 1 € F such that
le =x for all x € F,

(e) (inverses) For each x € F\ {0} there is an element + € F such that
1
T <> =1.
x

x(y+2z)=ay+zz

(3) Distributive Law

for all x,y,z € F.

EXAMPLE 3. The set of rational numbers Q is a field with the usual operations
of addition and multiplication. Another example is given by the finite set of integers

F,={0,1,2,...,p—1},

with addition and multiplication defined modulo p. This turns out to be a field if
and only if p is a prime number. Details are left to the reader.

All of the familiar algebraic identities that hold for the rational numbers, hold
also in any field. We state the most common such algebraic identities below leaving
for the reader some of the routine proofs.

PRrROPOSITION 1. Let IF be a set on which there are defined binary operations of
addition and multiplication.
(1) The addition azioms imply
(a) z+y=z+z=y=z,
(b)) z+y=2z=y=0,
(c) r+y=0=y=—u,
(d) —(-z)==.

(2) The multiplication azioms imply
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a) x £0 andxy =2 = y = 2,
b)) x40 andzy=oc = y=1,
(c)z#0anday=1=y=1,

(d) 2 #0= + =u=.

(3) The field azioms imply

(a) 0z =0,

(b) x#0 andy #0 = zy # 0,

(©) (-2)y = —(zy) = = (-y),

(d) (=) (=y) = zy.

By way of illustration we prove the final equality (—z) (—y) = xy by a method
that also establishes (1) (a) (¢) (d) and (3) (a) (¢) along the way (much shorter proofs
also exist). For this we begin with the additive cancellation property (1) (a): if
r+y=x+ z then

y = O+y=(z+a)+ty=-z+(r+y
—x+ (r+2) Dby assumption
(—z+2z)+2=0+2==z

Taking z = —x this gives (1) (¢) (uniqueness of additive inverses), and since (—x) +
x =0, (1) (c) then gives x = — (—x), which is (1) (d). Next we note that
(3.2) (=2)y +ay=(-z+a)y=0y=0,

where the final equality follows from applying additive cancellation (1) (a) to
Oy +0y=(0+0)y =0y =0y +0.
By applying (1) (¢) to (3.2) we obtain

(3.3) zy = —((-2)y).
If we interchange z and y in (3.3) and use multiplicative commutativity, we also
obtain

(3.4) ay=yr=—((-y)z) = —(z(-y)).
Finally, with = replaced by —z and y replaced by —y in (3.3) we have

(=2) (=y) = = (= (=2)) (=y)) = = (@ (=v)),

which when combined with (3.4) yields (—x) (—y) = zy as required.

Now we combine the field and order properties. By z > y we mean y < z.

DEFINITION 3. An ordered field is a field F together with an order < on the set
F where the field and order structures are connected by the following two additional
azrioms:
) z+y<z+zife,y,z€F andy < z,
(2) zy >0 if z,y € F and both x > 0 and y > 0.

EXAMPLE 4. The field of rational numbers Q is an ordered field with the usual

order, but for p a prime, there is no order on the field I, that satisfies Definition
3.

All of the customary rules for manipulating inequalities in the rational numbers
hold also in any ordered field. We state the most common such properties below,
without giving the routine proofs.
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PROPOSITION 2. The following hold in any ordered field.
(1) = >0 if and only if —x <0,

2) zy<zzifz>0andy < z,
) zy >zzifx <0 andy < z,

) 22 >0 ifx #0,

) 1>0,

) 0<%<%if0<:z:<y.

(
(3
(4
(5
(6

Now we come to the most important property an ordered field can have, one
that is essential for the success of analysis, but is not satisfied in the ordered field
of rational numbers Q.

DEFINITION 4. Let < be an order on a set S.
(1) We say that x € S is an upper bound for a subset E of S if

y<ux forally e FE.

(2) We say that a subset E is bounded above if it has at least one upper
bound.

(3) We say that x € S is the least upper bound for a subset E of S if x is an
upper bound for E and if z is any other upper bound for E, then x < z.
In this case we write

x =sup E.

Clearly the least upper bound of a subset F, if it exists, is unique. Consider
the ordered set of rational numbers Q. Then 3 is an upper bound for the interval
E=[0,3]={x €Q:0<2z <3}, and so are 7, 4 and 2!°0. In fact it is easy to see
that 3 is the least upper bound for [0,3]. An example of a subset that has no least
upper bound is the semiinfinite interval [0,00) = {z € Q: 0 < z < oo}, since it has
no upper bounds at alll A more substantial example of a bounded set that has no
least upper bound is the set A defined in (2.1).

There are corresponding definitions of lower bound, bounded below, greatest
lower bound and inf E/, whose formulations we leave to the reader.

DEFINITION 5. An ordered set S has the Least Upper Bound Property if every
subset E of S that is bounded above has a least upper bound.

The ordered set of rational numbers Q fails to have this crucial property, as
evidenced by the existence of the set A in (2.1). An example of a nontrivial ordered
set with the Least Upper Bound Property is the set of all ordinal numbers equal to
or less than the first uncountable ordinal.

REMARK 4. If S has the Least Upper Bound Property, it also has the Greatest
Lower Bound Property: every subset E of S that is bounded below has a greatest
lower bound. To see this, suppose E is bounded below and let L be the nonempty set
of lower bounds. Then L is bounded above by every element of E and in particular
a =sup L exists. Now a = inf E follows from the following two facts:

(1) @ € L since if v < «, then v cannot be an upper bound of L, hence v ¢ E
since every element of E is an upper bound of L. Thus a < x for every
x € FE and soa € L.

(2) B¢ L if B>« since a is an upper bound of L.
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It turns out that the only ordered field that has the Least Upper Bound Prop-
erty is (up to isomorphism) the ordered field of real numbers R, which we have not
yet constructed. Before embarking on the construction of the real numbers using
Dedekind cuts, it will be useful to derive some consequences of the Least Upper
Bound Property in an ordered field. Just so we can be certain we are not working
in a vaccuum, we state the basic existence theorem whose proof is deferred to the
end of this chapter.

THEOREM 1. There exists an ordered field R having the Least Upper Bound
Property. Moreover, such a field is uniquely determined up to isomorphism (of or-
dered fields) and contains (an isomorphic copy of ) the rational field Q as a subfield.

Assuming this existence theorem for the moment we derive some properties of
ordered fields with the Least Upper Bound Property. We note that we could also
prove these properties by appealing to the explicit construction of the real numbers
by Dedekind cuts below, but the approach used here is more streamlined in that
it avoids the complexities inherent in the construction of the reals. We begin with
two familiar properties shared by the field of rational numbers.

ProrosiTioN 3. Let z,y € R.

(1) (Archimedian property) If x > 0, then there is a positive integer n such
that nx > y.
(2) (density of rationals) If x < y then there is p € Q such that x < p < y.

Proof: To prove assertion (1) by contradiction, let E = {nz : n € N}. If (1)
were false, then y would be an upper bound for F and consequently o« = sup F
would exist. Since x > 0, we would have o — z < « and thus that o — z could not
be an upper bound for E. But then there would be some nz greater than o — x
and this gives

a = (a—z)+zx
< nr+x
= (n+1l)z€E,
which contradicts the assumption that « is an upper bound for E.
To prove assertion (2), use assertion (1) to choose n € N such that n (y — z) > 1.

Use assertion (1) twice more to obtain integers m; and my satisfying m; > nz and
mo > —nx. Thus we have both

n(y—x)>1and —ms < nz < my.

Because my — (—mz) > nx + (—nz) =0, i.e. my — (—mg) > 1, it follows that there
is an integer m lying between —mso and m; such that

m—1<nxr<m.
Combining inequalities yields
nr <m < 1+ nx <ny,
and since n > 0 we obtain

m
< — <uy.
n
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Similar reasoning can be used to obtain the existence of positive n‘" roots of
positive numbers in an ordered field with the least upper bound property. This
property is not shared by the field of rational numbers.

PROPOSITION 4. (existence of n'" roots) If x is a positive real number and n
is a positive integer, then there exists a unique positive real number y satisfying
y’VL = .

Sketch of the proof: Let £ = {z€R:0< zand 2" < z}. One can show
that F is nonempty and bounded above, hence y = sup E exists. Using an argument
similar to that following (2.1) one can now show that each of the inequalities y™ < x
and y™ > x leads to a contradiction, leaving only the possibility that y™ = z. For
details of these arguments see page 10 of [3].

Note that sup A = v/2 where A is the set in (2.1).

COROLLARY 1. Ifx andy are positive real numbers and n is a positive integer,
1
then zwyw = (zy)™ .
Proof: By the commutativity of multiplication we have
1 1\"™ 11
) = ()
1 1 1 1 1
() (%) - (a%) x (o) (%) - (o)
1\" 1\"
- ) ()

1
By the uniqueness assertion of Proposition 4 we then conclude that T y% = (zy)™.

4. The complex field

Property (4) of Proposition 2 on ordered fields shows that there is no real
number z satisfying the equation z2 = —1. To remedy this situation, we define
the complex field C to be the field obtained from the real field R by adjoining an
abstract symbol i that is declared to satisfy the equation
(4.1) i?=—1.

Thus C consists of all expressions of the form
z=z+1y, z,y€R,

which can be identified with the "points in the plane" by associating z = x+1iy € C
with (z,y) € R x R in the plane. The field structure on C uses the multiplication
rule derived from (4.1) by
(4.2) 2w = (x+1y) (u+iv)

= (zu+i®yv) +i(zv + yu)

= (zu—yv)+i(zv+yu),
where z = x + iy and w = u + iv. For the most part, straightforward calculations

show that this multiplication and the usual addition derived from vectors in the
plane R x R,

(z +iy) + (u+ i) = (z+u) +i(y+v),
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satisfy the addition axioms, the multiplication axioms and the distributive law of
a field. Only the existence of a multiplicative inverse needs some elaboration. For
this we define

DEFINITION 6. Suppose z = x+1iy € C. The complex conjugate Z ofz is defined
to be

zZ=x—1y.
Now
2% = (z+iy) (x —iy) = 22 — (iy)” +i{yz — ay} = * + 7,
and by Proposition 4, the nonnegative real number \/aﬁy2 exists and is unique.

By Pythagoras’ theorem,
VrZ+y2=+vzz

is the distance between the complex numbers 0 and z when they are viewed as the
points (0,0) and (z,y) in the plane. We define

|z| =vzzZ, 2z€C,

called the absolute value of z, and note that for z € C\ {0}, the multiplicative

inverse of z is given by 27! = % since

|z

We now make three observations.

(1) An immediate consequence of property (4) of Proposition 2 is that there is
no order on C that makes it into an ordered field with this field structure.

(2) It is a fundamental theorem in algebra, in fact it is called the fundamental
theorem of algebra, that we do not need to adjoin any further solutions
of polynomial equations: every polynomial equation

a2V Mt aiz+ap=0

has a solution z in the complex field C. Here the coefficients ag, a1, ..., @, _1
are complex numbers.

(3) If we associate z = x + iy to the matrix [ Zj _xy } , then this multiplica-

tion corresponds to matrix multiplication:

(1.3 SICEE I |

Yy voou

B Tu—yv —zv—yu |
o {yu—i—xv —yv+wu]_[zw]'

Since the matrix
e . cosf —sinf
y oz | sinf cos6
is dilation by the nonnegative number r = /22 4+ y2 = |z| and rotation

by the angle § = tan~! 2 in the counterclockwise direction, we see that if
z has polar coordinates (r,0) and w has polar coordinates (s, ¢), then zw
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has polar coordinates (rs,0 + ¢). Finally we note that the inverse of the

matrix M = { v
Y

_ 1 ¢ 1 Ty =¥ 2l
M= coM]" = — =| @ty SRR
dot a1 M xzﬂﬂ{—y 3«“] [—xﬁyz e
which agrees with 271 = % = ;7 — izt (M is the matrix repre-
sentation of the real linear map induced on R? by the map of complex
multiplication on C = R? by z = = + iy).

-y | . .
. } is given by

Finally we give some simple properties of the complex conjugate and absolute
value functions. If z = x + iy we write Rez =z and Imz = y.

PROPOSITION 5. Let Z and |z| denote the complex conjugate and absolute value
of z.
(1) Suppose z,w € C. Then
) 2+ w =2+, (2w) = (2) (W) and z +Z = 2Re 2,
|0 =0 and |z] > 0 unless z =0,

(a
(b)
(c) [2] = l2],
(d) [ew] = [2]|w],
(e) [Rez| < [z,
(f) |z +w| <[z + |w].
(2) (Cauchy-Schwarz inequality) Suppose z1,...,z, € C and wy,...,w, € C.

Then
2

n n n
Y ozwi| = a4zl < D) (D
j=1 j=1 j=1

Proof: Assertions (1) (a) (b) (¢) (e) are easy. If z =z + iy and w = u+ v then
from (4.2),
2w = [(zu— yo) + i (zv+ yu)|*
= (ou— o)’ + (w0 + yu)’
= 2%u® — 2zuyv + y*0? + 220? 4 2zvyu + y2u®
2 12
= (22 +9°) (® +0°) = |2]” |w]
and now the uniqueness assertion of Proposition 4 proves (1) (d).
Next we compute

|2+ wl?

9

(z4+w)(z+w)=(z+w) (Z+w)
2Z + 2w + wz + ww

= |2 + 2Re (zw) 4 |w|?

|12|* + 2| 210] + |w|?

|27 + 22| [w] + [w]* = (2] + |w])?,

IN

and the uniqueness assertion of Proposition 4 now proves (1) (f).
Finally, to obtain (2), set

n n n
Z = Z \zj|2 and W = Z |wj\2 and D = szUTj,
j=1 j=1 j=1
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so that we must prove
(4.4) |D|> < ZW.
If W = 0 then both sides of (4.4) vanish. Otherwise, we have

Y Wz —Duy* = Y (Wz — Dwy) (Wz; — D)
i=1 P

= W2 |5lP -WDY zw; — DW Y w;z +|DI* ) |uyl’
j=1 j=1 j=1 j=1
= W?Z-WDD-DWD — |D?*W
= W2Z-WI|D? =W (WZ - \D\2> :
and since W > 0 we obtain

1 n

WZ—|Df? = Wz \Wz; — Dw;|* > 0.
j=1

4.1. Euclidean spaces. For x = (z1,29,...,2,) € RXxR x ... x R =R", we
define

Il = \/a3 +a3 + ..+ a2,
and interpret ||x|| as the distance from the point x to the origin 0 = (0,0, ...,0),
which is reasonable since it agrees with Pythagoras’ theorem. We call R™ the

Euclidean space of dimension n. For z, w € R", we define the dot product of z and
w by

n
Z W = 21W1 + 20W2 + ... + 2wy, = Z ZjW;.
j=1
The Cauchy-Schwarz inequality, when restricted to real numbers, says that

2wl <|z][lw], zwecR"

REMARK 5. The proof of the Cauchy-Schwarz inequality given above is moti-
vated by the fact that in a Euclidean space, the point on the line through 0 and w
that is closest to z is the projection Pz of z onto the line through 0 and w given by

w w Z-W
Pz = (z . ) = SW.
[wll/ lwll  |w]|

n

lz—Pal® = 3|5

i Wi
=1 ]

- 5 2
= i 2 19z~ W)y
j=1

Then

1< 2
7j=1
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5. Dedekind’s construction of the real numbers
Recall that a Dedekind cut « is a subset of Q satisfying (3.1),

a # (and a#Q,
p € «and g < pimplies q € «,
p € « implies there is ¢ € a with p < q.

We set
R={a:«aisacut},

and define an order < and two binary operations, addition + and multiplication -,
on the set R and then demonstrate that R satisfies the axioms for an ordered field
with the Least Upper Bound Property. We proceed in six steps, giving proofs only
when there is some trick involved, or the result is especially important. The letters
p,q,7,s,t always denote rational numbers and the Greek letters «, 3,,60 always
denote cuts. See pages 17-21 of [3] for the details.

Step 1: Define a < 8 if o is a proper subset of 5. Then (R, <) is an ordered
set.

Step 2: (R, <) has the Least Upper Bound Property.

Proof: To see this, suppose that F is a nonempty subset of R that is bounded
above by 8 € R. Define

v = U a.

One can now show that v is a cut (v # ) since there exists a (# () € E and then
a C ;v # Qsince v C B and 5 # Q; if p € 7, then there is @ € F with p € «, and
it follows that every ¢ less than p is in a C =y and there is r in o C 7y that is larger
than p), and clearly v is then an upper bound for F since a C v for all « € E.
Moreover, v is the least upper bound, written v = sup F, since any upper bound
must contain at least each set a« € E. Note how easily we obtained the Least Upper
Bound Property by this construction!
Step 3: If o, B € R, define

a+pB={p+q:p€aandqcfj}.

Also set

0={peQ:p<0}.
Then o + 8 and 6 are cuts and using 6 as the additive identity 0, the Addition
Axioms for a field hold. In fact more is true: if « is a cut and § is any nonempty
set that is bounded above, then a 4+ § is a cut.

Proof: f p=r+sc€a+pfand g < p, theng=(g—p+r)+s€a+p
since ¢ —p+r < r and « is a cut. Furthermore, there is t € a with ¢ > r and so
t+sea+pwitht+s>r+s=p. Obviously 6 is a cut. Next, a +6 C a and
if p € o, then thereis r € a withr > pandsop=r+(p—7r) € a+ 0, and this
shows that a4+ 6 = « for all @ € R. It requires only a bit more effort to show that
the inverse of a € R is given by the set

—a = {p € Q: there exists r > 0 such that —p—7 ¢ a}.

Indeed, it is not too hard to show that —a is a cut. To see the more delicate fact
that

(5.1) a+(—a) =106,
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we first note that o + (—a) C 6 since if ¢ € o and r € —a, then —r ¢ «, hence

q < —r, hence ¢ + 7 < 0. Conversely, pick s € § and set t = —3 > 0. By the

Archimedian property of the rational numbers Q, there is n € N such that
nt €abut (n+1)t ¢ a.
Set p=—(n+2)t.
REMARK 6. It is helpful at this point to suppose that o corresponds to a point

on the line to the right of 0, and to draw the players in the proof from left to right
on the line:

p<—-—(n+D)t<—a<-nt<—t<0<t<nt<a<(n+1l)t<-—p.
Now p € —a since —p —t = (n+ 1)t ¢ a. Since nt € o we thus have
s==2t=nt+p€a+(—a).

This proves that § C a + (—«) and completes the proof of (5.1).

Step 4: If o, 8,y € Rand f <, then a+ 3 < o + 7.

Proof: This is easy to prove using the cancellation law for addition in Propo-
sition 1 (1) (a). Indeed, when cuts are considered as subsets of rational numbers,
we clearly have a+ 5 C a+~. If we had equality a+ 3 = a+y, then Proposition 1
(1) (a) shows that 8 = ~, a contradiction. Note that Proposition 1 (1) applies here
since we have shown in Step 3 that the addition axioms hold.

Step 5: If a, 8 > 0, define

a-f = {peQ:p<qgr for some choice of
g € a with ¢ > 0 and r € 8 with r > 0}.
For general «, 8 € R, define «- 8 appropriately. Then (R, <, +,-) is an ordered field
with the Least Upper Bound Property.

Proof: The proof of the multiplication axioms is somewhat bothersome due
to the different definitions of product « - 8 according to the signs of o and 8. We
omit the remaining tedious details in the proof of Step 5.

Step 6: To each g € Q we associate the set

I'(e)={peQ:p<q}.
Then T (¢) is a cut and
F(r+s) = T'(r)+T(s),
L(rs) = T(r)-I'(s),
I'ir)y < T(s)<=r<s.
Thus the map I' : Q — R is an ordered field isomorphism from the rational numbers

Q into the real numbers R, and this is the sense in which we mean that the real
numbers R contain a copy of the rational numbers Q.

REMARK 7. One might reasonably ask why in the definition of cut (3.1) we had
to include the third condition requiring the cut to have no largest element:

p € o tmplies there is ¢ € o with p < q.

However, without this condition, there are additional cuts, namely those with a
largest rational element:

r"={peQ:p<r}, forr e Q.
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We refer to these additional cuts as closed cuts, and to the original cuts as open
cuts. A cut that is either closed or open is said to be a generalized cut. Suppose we
extend the definition of addition to generalized cuts in the standard way by taking
all possible sums of pairs, one element from each cut. The key property to observe
then is that a+ B is an open cut provided at least one of a and (8 is open (see Step
3 above). Thus the usual zero element 0 can no longer serve as the additive identity
for the set of generalized cuts. It is not hard to see however that the closed cut

0"={peQ:p=<0}
has the required additive identity property 0* +a = « for all generalized cuts o - in
fact 0% is the only generalized cut with this property. Now comes the problem. An

open cut o cannot have an additive inverse since the result of adding any generalized
cut to a must also be open - and in particular cannot equal the closed cut 0.



CHAPTER 2

Cardinality of sets

Dedekind was the first to define an infinite set as one to which the paradoxes
of Galileo and Bolzano applied (there are as many perfect squares as there are
integers; there are as many even integers as there are integers; and there are as
many points in the interval [0,1] as there are in [0, 2]):

e A system S is said to be infinite if it is similar to a proper part of itself;
in the contrary case S is said to be a finite system.

In other words, a set S was defined to be infinite by Dedekind if there existed
a one-to-one correspondence between S and a proper subset of itself. However,
Dedekind’s definition gave no hint that there might be different ‘sizes’ of infinity,
and the creation of this revolutionary concept had to await the imagination of Georg
Cantor.

DEFINITION 7. Two sets A and B are said to have the same cardinality or are
said to be equivalent, written A ~ B, if there is a one-to-one onto map ¢ : A — B.
Letn € N. A set E is said to have cardinality n if it is equivalent to the set

J.=41,2,3,....,n—1,n},

i which case it is said to be finite. A set E is said to be countable if it is equivalent
to the set of natural numbers N. If a set is neither finite nor countable, it is said
to be uncountable.

The relation ~ of having the same cardinality is an equivalence relation, mean-
ing that it satisfies

(1) (reflexivity) A ~ A,
(2) (symmetry) A~ B = B~ A,
(3) (transitiviy) A~ Band B~C = A~ C.

These equivalence classes are called cardinal numbers since they measure the
size of sets up to bijections. Cantor showed at least two surprising results regarding
cardinality: first, that the set of rational numbers is countable and second, that
the set of real numbers is uncountable. Both demonstrations involved a notion of
diagonalization.

21



22 2. CARDINALITY OF SETS

To show that the rational numbers Q are countable, Cantor arranged the pos-
oy . . . . . oo
itive rational numbers Q4 in an infinite matrix [T—,]m 1}

r1 1 1 1o
1 2 3 4

/! /! /! /
2 2 2 2 .
1 2 3 4

/ /! /!
3 3 3 3 ;
1 2 3 4

/ /
4 4 4 4
1 2 3 4
L/ |

and then defined a map s : N — Q4 by following the upward sloping diagonals in
succession, taking only those fractions that have not yet appeared:

1
s(l) = T
5@ = T s®) =y
s(4) = %; 5(5):% (;:s(l) was skipped);
s6) = 3 s=3 s® =2 sO=1
s(10) = %; 5(11):% (%28(2),228(1),228(3) were all skipped);

Clearly the map s is one-to-one and onto, thus demonstrating that N ~ Q. It
is now a simple matter to use s to construct a one-to-one onto map t : N — Q
(exercise: do this!) that shows N ~ Q.

To show that the real numbers are uncountable, we begin with a famous paradox
of Russell. Define a set S by the rule

aceS<aéa,

i.e. S consists of all sets a that are not members of themselves. Then we have the
following paradox:

e If S € S, then by the very definition of S it must be the case that S ¢ S,
a contradiction.

e On the other hand if S ¢ S, then by the very definition of S it must be
the case that S € S, again a contradiction.

One way out of this paradox is to note that we have never seen a set a that is a
member of itself. Thus we expect that S is actually the collection of all sets. If we
simply disallow the collection of all sets as a set, Russell’s paradox dissolves. This
type of thinking eventually led to the Zermelo-Frankel set theory in use today.

Russell’s paradox suggests the following proof that the power set

P(N)={FE:ECN}

of the natural numbers, i.e. the set of all subsets of N, is uncountable. Indeed,
assume in order to derive a contradiction, that P (N) is countable. Then we can
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list all the elements of P (N) = {E™} ~_, in a vertical column:
El
E2
E3

Now each subset E™ is uniquely determined by its characteristic function, i.e. the
sequence {s7'} 7 | = {s7*, s5", 85", ...} of 0’s and 1’s defined by
m_ [0 if n¢k,

1 if nek,

Replace each subset E™ in the vertical column by the infinite row of 0’s and 1’s
determined by {s”"} 7, to get an infinite matrix of 0’s and 1’s:

1 1 1
RGN
%
51 S S3

Now consider the anti-diagonal or Russell sequence {r, } -, given by

(0.2) rn=1—s.
This is a sequence of 0’s and 1’s that is not included in the list
1 oo
(1),
2
{Sn}g,ozl

{Si}nZI ’

since for each m, the sequences {s7} 2, and {r,} -, differ in the m'* entry:
s = ry, by (0.2). Thus the set E = {n : r, = 1} whose characteristic function is
the sequence {r,} -, satisfies

neEernp=15s"=0&n¢kE,,

and hence is the set of n such that n is not @ member of E,, (reminiscent of Russell’s
paradox). It follows that E is not included in the list { E™},°_,. This contradiction
shows that the power set P (N) is uncountable. Equivalently, this shows that the
set of all sequences consisting of 0’s and 1’s is uncountable.

To see from this that the real numbers are uncountable, express each real
number s in the interval (0, 1] as a binary fraction

s = %1 + ;% + ...+ ;—Z +...=0.5182...5p...

where the sequence {s, } ., does not end in an infinite string of 0’s. Since the set
of such fractions is uncountable (in fact its equivalence with P (N) follows from the
argument above with just a little extra work), we conclude that the interval (0, 1]
is uncountable, and then so is R. We will return to this argument later.

We now turn to the task of making the previous arguments more rigorous. We
begin with a careful definition of ‘sequence’.
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DEFINITION 8. A sequence is a function f defined on the natural numbers N.
If f(n) = s, for alln € N, the values s,, are called the terms of the sequence, and
we often denote the sequence f by {sn},—, or even {s1,s2,83,...}.

Thus we may regard a countable set as the range of a sequence of distinct
terms, and in fact we used this point of view when we assumed above that P (N)
was countable and then listed the elements of P (N) in a vertical column. The next
lemma proves the intuitive fact that ‘countable is the smallest infinity’.

LEMMA 1. Every infinite subset of a countable set is countable.

Proof: Suppose A is countable and F is an infinite subset of A. Represent
A as the range of a sequence {a"}ff:l of distinct terms, and define a sequence of
integers {ny},., as follows:

ny = min{n€N:a, € E},
ny = min{n>n;:a, € E},
ny = min{n>nsy:a, € E},
ng = min{n>ng_1:a, € £}, k>4,

Since E is infinite, ny, is defined for all k € N. It is now clear that E = {an, } 5o,
and so E is countable.

COROLLARY 2. A subset of a countable set is at most countable, i.e. it is either
countable or finite.

The next two theorems generalize the countability of the rational numbers and
the uncountability of the real numbers respectively. They are proved by the same
diagonalization procedures used above, and their proofs are left to the reader.

THEOREM 2. Let {E,} ~, be a sequence of countable sets. Then S =J;—, E,
is countable.

The above theorem says that a countable union of countable sets is countable.
Note that the sets E, may overlap, but not so much as to make the union finite,
since their union S contains F1, and hence S is not finite. As an immediate corollary
we may replace ‘countable’ with ‘at most countable’.

COROLLARY 3. An at most countable union of at most countable sets is at most
countable.

THEOREM 3. Let A be the set of all sequences whose terms are either O or 1.
Then A is uncountable.

Here is one more result on countable sets that is easily proved by induction.

PROPOSITION 6. Let A be countable and consider the n-fold product set A™ =
AX Ax..xA defined by

A" = {(a1,a9,...,an) :a; € A for 1 <i<n}.

Then A™ is countable.
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Proof: Clearly A! ~ A is countable. We now proceed by induction on n and
assume that A" ! is countable. Assuming that n > 1 we have

A" ={(b,c):be A" " and ce A}.
Now for each fized c € A, the set of pairs {(b, c):be A"‘l} is equivalent to A™~!

which is countable by our induction assumption. Since A is countable, we thus see
that A™ is a countable union of countable sets, hence countable by Theorem 2.






CHAPTER 3

Metric spaces

There is a notion of distance between numbers in both the rational field Q and
in the real field R given by the absolute value of the difference of the numbers:

dist(p,q) = |p—gql, pqaeQ,
dist(z,y) = lz—yl, =zyeR

Motivated by Pythagoras’ theorem, this can be extended to complex numbers C by

dist (z,w) = |z—w\:\/(x—u)2+(y—v)2,
forz = z+4iyand w=u+ivin C,

and even to points or vectors in Euclidean space:

n

dist(x,y) = |x=yl =Y (@ —w)%
k=1
forx = (21,...,2,) and y = (y1,...,Yyn) in R".

It will eventually be important to define a notion of distance between functions, for
example if f and g are continuous functions on the unit interval [0, 1], then we will

define
dist (f,9) = sup {| (z) — g (2)| : 0 <& < 1}.

Of course at this point we don’t even know if this supremum is finite, i.e. if the
set in braces is bounded above, or if it is, whether or not this definition satisfies
properties that we would expect of a ‘distance function’. Thus we begin by setting
down in as abstract a setting as possible the properties we expect of a distance
function.

DEFINITION 9. A set X together with a function d : X x X — [0,00) is said to
be a metric space, and d is called a metric or distance function on X, provided:

(1) d(z,z) =0,

(2) d(z,y) >0 ifz #y,

(3) d(x,y) =d(y,x) for allz,y € X,

(4) (triangle inequality) d (x,z) < d(x,y) + d(y,z) for all z,y,z € X.

To be precise we often write a metric space as a pair (X, d). Examples of metric
spaces include R, C and R™ with the distance functions given above. The triangle
inequality holds in C by Proposition 5 (1) (f). To prove that the triangle inequality
holds in R™ we can use the Cauchy-Schwarz inequality just as we did in the proof

27
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of Proposition 5 (1) (d):

n n
dist (v,2)* = ||9C—ZH2:Z o — 21) Z @k =y +uk — 2)°
k=1 k=1
n n n
= Z(wk—yk)2+22($k—yk Yk — 2k +Z (ke — 2)°
k=1 k=1 k=1

lz = yll* + 2|z =yl lly — 2] + ly — =II”

(lz = yll + lly = 2I)* = (dist (x,y) + dist (y,2))* .
Taking square roots we obtain
(0.3) dist (z,2) = |lz — z|| < lz =yl + lly — 2| = dist (z,y) + dist (y, 2) .
We can also consider different metrics on R™ such as tazicab distance:

dtazi (T,y) = max{|zg —yx| : 1 <k <n}.

This is the shortest distance a taxi must travel to get from x to y if the taxi is
restricted to proceed only vertically or horizontally, as is the case in most cities
built around a rectangular grid of streets. It is not too hard an exercise to prove
that (R™, dtqzi) is a metric space, i.e. that di,.; satisfies the axioms in Definition 9
on the set R™.

An important method of constructing new metric spaces from known metric
spaces is to consider subsets. Indeed, if (X, d) is a metric space and Y is any subset
of X, then (Y, d) is also a metric space, as is immediately verified by restricting the
points ,y, z in Definition 9 to lie in the subset Y. For example the open unit disk

D = {zeC:dist(0,2) <1}
= {@yer?: Va2 <1}

is a metric space with the metric d (z,w) = |z — w|. Note that the open unit disk
in the complex plane C coincides with the open unit disk in the Euclidean plane
R2,

The concept of a ball in a metric space is central to the further development of
the theory of metric spaces.

DEFINITION 10. Let (X,d) be a metric space and suppose v € X and r > 0.
The ball B (z,r) with center x and radius v is defined to be the set of all points
y € X at a distance less than r from x:

B(z,r)={ye X :d(z,y) <r}.

One can easily verify that the collection of balls {B (z,r)} o in a metric

zeX,r>
space (X, d) satisfies the following six properties for all z,y € X:

) Moo B (2.7 = {a},
2) Ur>0B(x7T) =X,

) If 0 <7 < s, then B(z,7) C B(z,s)

) If y € B(z,r), then x € B (y,r),

) The set {r > 0:y € B(x,r)} has no least element,
)

(1
(
(
E
(6) If B(z,7)N B (y,s) # 0, then y € B(z,r+s).

3
4
5
6
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While we will not need to know this, the six properties above characterize a
metric space in the following sense. Suppose that {B (z,7)},cx ¢ is a collection
of subsets of a set X that satisfy the six properties listed above. Define

d(z,y)=inf{r >0:y€ B(z,r)}, forallzyecX.
Then it is not too hard to show that d maps X x X into [0,00) and satisfies the
four properties in Definition 9, i.e. d defines a metric or distance function on X.
Moreover, one can prove that B (z,7) = {y € X : d(x,y) <r} for all z € X and
r > 0, so that the initial collection of subsets {B (x,r)} o are precisely the
collection of balls corresponding to the metric d.

zeX,r>

1. Topology of metric spaces
The notion of an open set is at the center of the subject of topology.

DEFINITION 11. Let (X,d) be a metric space and suppose G is a subset of X.
Then G is open if for every point x in G there is a positive radius r such that the
ball B (x,r) is contained in G:

B (z,r) C G.

We see that the empty set () is open by default (there is nothing to check). The
set X is open since
B(z,1)c X, forallzeX.

Any positive number would do in place of 1 as the radius above. One suspects that
balls themselves are open sets, but this needs a proof which relies heavily on the
triangle inequality.

LEMMA 2. Let B be a ball in a metric space (X,d). Then B is open.

Proof: Suppose that B = B (y, s) and that 2 € B. Then by Definition 10 we
have d (y,z) < s. Set

r=s—d(z,y) > 0.

We claim that the ball B (z,r) with center z and radius r is contained in B (y, ).
Draw a picture before proceeding! Indeed, if z € B (x,r) then by Definition 10

we have d (z,z) < r. Now we use the fact that the metric d satisfies the triangle
inequality in Definition 9 to compute that

d(y,z) <d(y,x) +d(z,2) <d(z,y) +r=s
This shows that z € B (y, s) for every z € B (z,r), i.e.
B (z,r) C B(y,s).

Thus we have verified the condition that for every point x in B (y,s) there is a
positive radius r = r, (depending on the point « we chose in B (y, s)) such that the
ball B (z,r,) is contained in B (y,s). This proves that B (y, s) is an open set.

EXERCISE 2. Consider the Euclidean space R2.
(1) Show that the inside of the ellipse,

G = {(m,y) eR?:42® + 9% < 1},
is open. Hint: If P = (x,y) € G, then the ball B (P,r) is contained in G

f
Z r=g(1- Va2t 2).
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Indeed, if Q = (u,v) € B(P,r), then (0.3) yields
\/(2u —2)° + (v—y)* + \/(2x)2 + 2
2/ (=) + (w—y)? +/(20) +

< 2+ (20 +9y2 =1

(2u)” + v2

IN

IN

(2) On the other hand, show that the corresponding set
F={(z,y) €R?:da® +y* <1},

defined with < in place of <, is not an open set. Hint: The point P =
(0,1) € F but for everyr > 0 the ball B (P,r) contains the point (0,1 + %)
which is not in F.

We declare a subset F' of a metric space X to be closed if the complement
Fe =X\ F of Fis an open set. For example, the set F' in Exercise 2 (2) is closed,
but the set G in Exercise 2 (1) is not closed.
Caution: A set may be neither open nor closed, such as the subset [0, 1) of
R. Moreover, a set may be simultaneously open and closed, such as both
the empty set () and the entire set X in any metric space X.

PROPOSITION 7. Let X be a metric space.

1) If {G, s a collection of open subsets, then G, is open,

( acA acA

2) If {F, 18 a collection of closed subsets, then F, is closed,

( a€A acA

3) If {GLr}?._, is a finite collection of open subsets, then (. _, G is open,

( k=1 k=1

4) If {F.}Y,_, is a finite collection of closed subsets, then | J;_, F} is closed.
k=1 k=1

Proof: Suppose that G, is open for each a and let € (J,c4 Ga- Then
x € G for some 3 and since G is open, there is a ball B (z,7) C Gg C J,cq Gas
which shows that | J,c 4 Go is open. Next suppose that Fy, is closed for each o and
note that if G, = (F,)“, then G, is open for each a and so Uaca Ga is open by
part (1). Thus from de Morgan’s laws we have that

(N#) -Uwr-ye.

acA acA acA

is open, so [,c 4 Fa is closed by definition.
Now suppose that Gy, is open for 1 < k < n and that z € UZ:1 G}.. Then there
is ri > 0 such that B (z,r;) C G for 1 < k < n. It follows that if we set

r=min{ry},_,,
then r > 0 (this is where we use that the collection {G}};_, is finite) and
B(z,r) C B(x,ry) CGr, 1<k<n.

Thus B (z,7) C ()p—,; Gr and this shows that (,_, Gi is open. Finally, if F} is
closed for 1 < k < n, then Gy, = (F})“ is open and so

(U Fk-) = () (F) =) Gx
k=1 k=1 k=1

is open by part (3). Thus (J,_, F) is closed by definition.



1. TOPOLOGY OF METRIC SPACES 31

1.1. Subspaces. Recall that if Y is a subset of a metric space X, then we
may view Y as a metric space in its own right, with metric given by that of X
restricted to Y x Y. The metric space (Y,d) is then called a subspace of (X,d),
even though there is no linear structure on X. Note that if y € Y and r > 0, then
the ball By (y,r) in the metric space Y satisfies

(1.1) By (y,r)={2€Y :d(y,2) <r}=Bx (y,r)NY,

where Bx (y, ) is the ball centered at y with radius r in the metric space X. Thus
if F is a subset of Y, it can be considered as a subset of either the metric space Y
or the metric space X. Clearly the notions of E being open or closed depend on
which space is considered the ambient space. For example, if

E= {(:c,y) € R? : dist ((0;) ,(x,y)) < ;} \{(1,0)}

is the ball center (0, %) with radius % together with its "boundary" except for the
point (1,0), then we have
EcDcR.

Now one can show that FE is a closed subset relative to the metric space I, but it is
neither open nor closed as a subset relative to the metric space R?. Exercise: prove
this!

On the other hand, (1.1) provides the following simple connection between the
open subsets relative to X and the open subsets relative Y.

THEOREM 4. Let Y be a subset of a metric space X. Then a subset E of Y is
open relative to Y if and only if there exists a set G open relative to X such that

E=GnY.

Proof: Suppose that E is open relative to Y. Then for each p € E there is a
positive radius r, such that By (p,7p) C E. Now set

G = U BX (y77np)7
peE

where we note that we are using balls Bx relative to X. Clearly G is open relative
to X by Lemma 2 and Proposition 7 (1). From (1.1) we obtain

GnY = |J{Bx () nY} =] By (p,p),
PEE peEE

and the final set is equal to E since p € By (p,7p) C E for each p € E.
Conversely, suppose G is open relative to X and E = GNY. Then given p € E,
there is 7, > 0 such that Bx (p,7,) C G. From (1.1) we thus obtain

By (p,7p) = Bx (y,rp) NY CGNY =E,
which shows that E is open relative to Y.
1.2. Limit points. In order to define the notion of limit of a function later

on, we will need the idea of a limit point of a set. A deleted ball B’ (p,r) in a metric
space is the ball B (p,r) minus its center p, i.e. B’ (p,7) = B (p,7) \ {p}-



32 3. METRIC SPACES

DEFINITION 12. Suppose (X, d) is a metric space and that E is a subset of X.
We say that p € X is a limit point of E if every deleted ball centered at p contains
a point of E:

B (p,r)NE#0  forallr>0.

Note the following immediate consequence of this definition:

e if p is a limit point of F then every deleted ball B’ (p,r) contains infinitely
many points of F,

and so in particular £ must be infinite in order to have any limits points at all.
Indeed, if B’ (p,r) N E = {x;} _, contains only n points, let s = min {d (p, ;)}_,.
Then s > 0 and B (p, s) doesn’t contain any of the points {z; }?:1. Thus we have
the contradiction B’ (p,s) N E = (.

Limit points are closely related to the notion of a closed set.

PROPOSITION 8. A set F is closed in a metric space if and only if it contains
all of its limit points.

Proof: Suppose first that x is a limit point of F'. Then in particular, B (z,r)NF
is nonempty for all r > 0, and so no ball B (z,r) centered at x is contained in F°.
If F is closed, then F© is open and it then follows that z ¢ F°. Thus x € F and
we have shown that a closed set F' contains all of its limit points.

Conversely, suppose that F' contains all of its limit points. Pick x € F°. Since
x is not a limit point of F, there is a deleted ball B’ (x,r) that does not intersect
F. But z ¢ F as well so that B (z,r) does not intersect F. Hence B (z,r) C F*
and this shows that F'¢ is open, and thus that F' is closed.

DEFINITION 13. If E is a subset of a metric space X, we define E' (the derived
set of E) to be the set of all limit points of E, and we define E (the closure of E)
to be EUE', the union of E and all of its limit points.

As a corollary to Proposition 8 we obtain the following basic theorem for the
metric space R.

THEOREM 5. Suppose thal E is a nonempty subset of the real numbers R that
is bounded above, and let sup E be the least upper bound of E. Then sup F is in E,
and sup E € E if E is closed.

Proof: Since the real numbers R have the Least Upper Bound Property, z =
sup F exists and satisfies the property that if y < z, then y is not an upper bound
of E, hence there exists z € E with y < z < 2. It follows that B (z,7) N E # () for
all 7 > 0 upon taking y = z — r in the previous argument. Thus either z € E C E
or if not, then

B’ (z,7) N E # () for all r > 0,

in which case z is a limit point of E, hence z € E’ C E. Finally, Proposition 8
shows that z € E if E is closed.

One might wonder if the set E contains limit points not in E, or roughly
speaking, if taking limit points of limit points yields new points. The answer is no,
and in fact not only is F closed, it is the smallest closed set containing E.
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ProroSITION 9. If E is a subset of a metric space X, then
(1.2) E:ﬂ{FCX:Fis closed and E C F},

and E is the smallest closed set containing E.

Proof: Denote the right hand side of (1.2) by £. Then £ is a closed set by
Proposition 7 (2). Thus by its very definition, it is the smallest closed set containing
E, i.e. every other closed set F containing F contains £. Now E C & since by
Proposition 8, every closed set F' containing F also contains all the limit points E’
of F.

On the other hand, if x ¢ E, then there exists some 7 > 0 such that

B(z,r)NE =1.
Now B (z,r)° is closed since B (z,r) is open by Lemma 2. Moreover B (x,7)°
contains F and so is a candidate for the intersection defining £. This shows that

€ C B(z,r)" and in particular that ¢ £. This proves that £ C F and completes
the proof of Proposition 9.

LEMMA 3. E’ is closed.

Proof: Suppose that z € (E')" and r > 0. Then there is y € B’ (z,7) N E'.
Let s =min{d(z,y),r —d(z,y)}. Then s > 0 and there is € B’ (y,s) N E. Now
x # z since otherwise s < d(z,y) = d (z,y) < s, a contradiction. Also,

d(z,z) <d(zy)+d(y,z) <d(zy) +s<r
us r € z,r) N E and this shows that z € as required.
Th B’ FE and this sh h E’ ired

2. Compact sets

Now we come to the single most important property that a subset of a metric
space can have, namely compactness. In a sense, compact subsets share the most
important topological properties enjoyed by finite sets. It turns out that the most
basic of these properties is rather abstract looking at first sight, but arises so of-
ten in applications and subsequent theory that we will use it as the definition of
compactness. But first we introduce some needed terminology.

Let £ be a subset of a metric space X. A collection G = {G4}, 4 of subsets
G, of X is said to be an open cover of E if

each G, is open and FE C U Gqa.
acA

A finite subcover (relative to the open cover G of E) is a finite collection {Gq, }1_,
of the open sets G, that still covers E:

k=1
~ _ (L 1\1%® : .
For example, the collection G = {(w 1+ n)}n:1 of open intervals in R form an

open cover of the interval F = (%72), and {(%, 1+ %)}izl is a finite subcover.

Draw a picture! However, G is also an open cover of the interval £ = (0,2) for

which there is no finite subcover since % ¢ (%, 14 %) forall 1 <n <m.

DEFINITION 14. A subset E of a metric space X is compact if every open cover
of E has a finite subcover.
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ExaMmPLE 5. Clearly every finite set is compact. On the other hand, the interval
(0,2) is not compact since G = {(1 14+ l) }Oo_ is an open cover of (0,2) that does
n=

no n 1
not have a finite subcover.

The above example makes it clear that all we need is one ‘bad’ cover as witness
to the failure of a set to be compact. On the other hand, in order to show that
an infinite set is compact, we must often work much harder, namely we must show
that given any open cover, there is always a finite subcover. It will obviously be of
great advantage if we can find simpler criteria for a set to be compact, and this will
be carried out below in various situations, see e.g. Remark 8 below. For now we
will content ourselves with giving one simple example of an infinite compact subset
of the real numbers (even of the rational numbers).

EXAMPLE 6. The set K = {O}U{%}iozl 1s compact in R or Q. Indeed, suppose
that G = {Ga} e is an open cover of K. Then at least one of the open sets in G
contains 0, say Go,. Since Gy, s open, there is r > 0 such that

B(0,7) C Gq,-

Now comes the crux of the argument: there are only finitely many points % that lie
outside B (0,7), i.e. + & B(0,7) if and only if k < [1] = n. Now choose Gq, to
contain % for each k between 1 and n inclusive (with possible repetitions). Then the
finite collection of open sets {Gay, Gayy Gagy -y Ga,, } (after removing repetitions)
constitute a finite subcover relative to the open cover G of K. Thus we have shown
that every open cover of K has a finite subcover.

It is instructive to observe that K = E where E = {%}211 is mot compact
(since the pairwise disjoint balls B (%, ﬁ) = (% — ﬁ, % + ﬁ) cover E one point
at a time). Thus the addition of the single limit point 0 to the set E resulted in
making the union compact. The argument given as proof in the above example
serves to illustrate the sense in which the set K is topologically ‘almost’ a finite set.

As a final example to illustrate the concept of compactness, we show that any
unbounded set in a metric space fails to be compact. We say that a subset F of a
metric space X is bounded if there is some ball B (x,r) in X that contains E. So
now suppose that E is unbounded. Fix a point € X and consider the open cover
{B(z,n)};—, of E (this is actually an open cover of the entire metric space X).
Now if there were a finite subcover, say {B (z, nk)}fj:l where n1 < ng < ... < ny,
then because the balls are increasing,

N
EC U B (z,nt) = B(z,nn),
k=1
which contradicts the assumption that E is unbounded. We record this fact in the
following lemma.

LEMMA 4. A compact subset of a metric space is bounded.

REMARK 8. We can now preview one of the major themes in our development
of analysis. The Least Upper Bound Property of the real numbers will lead directly
to the following beautiful characterization of compactness in the metric space R of
real numbers, the Heine-Borel theorem: a subset K of R is compact if and only if
K is closed and bounded.
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Before proceeding to develop further properties of compact subsets, and their
relationship to open and closed subsets, we establish a truly surprising aspect of
the definition, namely that compactness is an intrinsic property of a set K. By
this we mean:

LEMMA 5. If K C Y C X where X is a metric space, then K is compact
relative to the metric space X if and only if it is a compact subset relative to the
subspace Y.

In particular, we can take Y = K here and obtain that

e K is a compact subset of a metric space X if and only if it is compact
when considered as a metric space in its own right, i.e. if and only if every
cover of K by subsets of K that are open in K has a finite subcover.

This means that it makes sense to talk of a compact set K without reference to
a larger metric space in which it is a proper subset, compare Example 6 above. Note
how this contrasts with the property of a set G being open or closed, which depends
heavily on the ambient metric space, see Subsection 1.1 on subspaces above.

Proof (of Lemma 5): Suppose that K is compact relative to X. We now show
K is compact relative to Y. So let £ = {E,},c4 be an open cover of K in the
metric space Y. By Theorem 4 there are open sets G, in X so that

E,=G,NY.

Then G = {Ga},c4 is an open cover of K relative to X, and since K is compact
relative to X, there is a finite subcover {Ga, }1_;,

k=1
But K C Y so that

KcKnYc|J(Ga,nY)=]JEa,,
k=1 k=1

which shows that {E,, },_; is a finite subcover of the open cover £ = {Eq} ¢ 4
Conversely, suppose that K is compact relative to Y. We now show that K is
compact relative to X. So let G = {Ga},c4 be an open cover of K relative to X.
If B, = GoNY, then &€ = {E,},c4 is an open cover of K in the metric space Y.
Since K is compact relative to X, there is a finite subcover {E,, };_,. But then

n n
K C | Ea, € | Gars
k=1 k=1
and so {Gq, },_, is a finite subcover of the open cover G.

2.1. Properties of compact sets. We now prove a number of properties
that hold for general compact sets. In the next subsection we will restrict attention
to compact subsets of the real numbers and Euclidean spaces.

LemMA 6. If K is a compact subset of a metric space X, then K is a closed
subset of X.
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Proof: We show that K¢ is open. So fix a point x € K€ For each point
y € K, consider the ball B (y,r,) with

1
(2.1) Ty = id(x,y) .
Since {B (y,7y)}, ¢ is an open cover of the compact set K, there is a finite subcover

{B (yk, 7y, )} ey with of course y, € K for 1 < k < n. Now by the triangle
inequality and (2.1) it follows that

(2.2) B (z,1y,) N B (yg,1y,) =0, 1<k<n.

Indeed, if the intersection on the left side of (2.2) contained a point z then we would
have the contradiction

d(z,yp) < d(z,2) +d(z,y0) <ry + 1y = d(2,40) .-
Now we simply take 7 = min {ry, },_, > 0 and note that B (z,r) C B (z,ry,) so
that

B(z,r)NK C B(z,r)N <0 B(?ﬂcﬂ"w))

k=1

I
C=

{B ({,1977’) nB (ylmryk)}

=
Il
_

C

C=

{B (l'vryk) n B(yk‘?ryk)} = U D=0,
k=1

£
Il
-

by (2.2). This shows that B (z,7) C K¢ and completes the proof that K¢ is open.
Draw a picture of this proof!

LEMMA 7. If F C K C X where F is closed in the metric space X and K is
compact, then F' is compact.

Proof: Let G = {Ga},c4 be an open cover (relative to X) of F. We must
construct a finite subcover S of F. Now G* = {F°} UG is an open cover of K.
By compactness of K there is a finite subcover S* of G* that consists of sets from
G and possibly the set F’°. However, if we drop the set F¢ from the subcover S*
the resulting finite collection of sets S from G is still a cover of F' (although not
neccessarily of K), and provides the required finite subcover of F'.

COROLLARY 4. If F is closed and K is compact, then F N K is compact.

Proof: We have that K is closed by Lemma 6, and then F'N K is closed by
Proposition 7 (2). Now F N K C K and so Lemma 7 now shows that FF N K is
compact.

REMARK 9. With respect to unions, compact sets behave like finite sets, namely
the union of finitely many compact sets is compact. Indeed, suppose K and L are
compact subsets of a metric space, and let {Gu},c, be an open cover of K U L.
Then there is a finite subcover {Ga},c; of K and also a (usually different) finite
subcover {Ga},cy of L (here I and J are finite subsets of A). But then the union
of these covers {Ga}ocruy = {Gatacr U{Gatacy @5 a finite subcover of K U L,
which shows that K U L is compact.
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Now we come to one of the most useful consequences of compactness in appli-
cations. A family of sets {E,} 4 is said to have the finite intersection property
if

(] Ea #0

aEF
for every finite subset F' of the index set A. For example the family of open intervals
{(0 1 ) }oo_l has the finite intersection property despite the fact that the sets have

‘n/) In=
o

no element in common: ﬂ (O7 %) = (. The useful consequence of compactness

n=1
referrred to above is that this cannot happen for compact subsets!

THEOREM 6. Suppose that {Ka} ¢ 4 is a family of compact sets with the finite
intersection property. Then

() Ko #0.

a€cA

Proof: Fix a member K,, of the family {K,}, . Assume in order to de-
rive a contradiction that no point of K,, belongs to every K,. Then the open
sets {Kg}aeA\{aU} form an open cover of K,,. By compactness, there is a finite
subcover {K¢} ¢y (apy With F finite, so that

Ko, |J K&
aeF\{ao}
i.e.
Koo () Ka=0,
acF\{ao}

which contradicts our assumption that the finite intersection property holds.

COROLLARY 5. If {K,},2, is a nonincreasing sequence of nonempty compact
sets. i.e. K11 C Ky, for allm > 1, then

Ak so
n=1

THEOREM 7. If E is an infinite subset of a compact set K, then E has a limit
point in K.

Proof: Suppose, in order to derive a contradiction, that no point of K is a
limit point of E. Then for each z € K, there is a ball B(z,7,) that contains at
most one point of E (namely z if z is in F). Thus it is not possible for a finite
number of these balls B (z,7.) to cover the infinite set £. Thus {B (z,7.)},.x is
an open cover of K that has no finite subcover (since a finite subcover cannot cover
even the subset E of K). This contradicts the assumption that K is compact.

There is a converse to this theorem that leads to the following characterization
of compactness in a general metric space.

THEOREM 8. A metric space (X, d) is compact if and only if every infinite
subset of X has a limit point in X .
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Proof: The ‘only if’ statement is Theorem 7. The proof of the ‘if’ statement is
a bit delicate, and we content ourselves with a mere sketch here. First we note that
X has a countable dense subset E, i.e. every open subset G contains a point of F.
Indeed, for each n € N there exists a finite set of balls {B K (xz, %) },]:;1 that cover
X. To see this we inductively define z7 so that d (z},z}) > % forall 1 <i < k, and
note that the process must terminate since otherwise {27'};~, would be an infinite
subset of X with no limit point, a contradiction. The set E = |J; {a} 2\21 is
then countable and dense in K. Second we use this to construct a countable base
for X, i.e. a countable collection of open sets B = {B,},_, such that for every
open set G and z € G there is n > 1 such that z € B, C G. Indeed, if F is a
countable dense subset, then B = {B (z,r):xz € E,r € QN (0,1)} is a countable
base.

Now suppose that {G},c 4 is an open cover of X. For each x € X there is an
index o € A and a ball B, € B such that

(2.3) r € B, C G,.

Note that the axiom of choice is not needed here since B is countable, hence well-
ordered. If we can show that the open cover B = {B, : € X} has a finite subcover,
then (2.3) shows that {G4},c 4 has a finite subcover as well. So it remains to show

that B has a finite subcover. Relabel the open cover B as B = {B,}°°,. Assume,

e n=1"
in order to derive a contradiction, that B has no finite subcover. Then the sets

N
Fy =X\ (U Bn>
k=1
are nonempty closed sets that are decreasing, i.e. Fy+1 C Fi, and that have empty
intersection. Thus if we choose zx € Fy for each N, the set E = |Jy_; {zn} must
be an infinite set, and so has a limit point x € X. But then the fact that the Fy
are closed and decreasing implies that x € Fy for all N, the desired contradiction.

2.2. Compact subsets of Euclidean space. The Least Upper Bound Prop-
erty of the real numbers plays a crucial role in the proof that closed bounded in-
tervals are compact.

THEOREM 9. The closed interval [a,b] is compact (with the usual metric) for
all a < b.

We give two proofs of this basic theorem. The second proof will be generalized
to prove that closed bounded rectangles in R™ are compact.

Proof #1: Assume for convenience that the interval is the closed unit interval
[0, 1], and suppose that {Ga},c4 is an open cover of [0,1]. Now 1 € G for some
p € A and thus there is 7 > 0 such that (1 —7,147) C Gg. Witha=1+5 > 1
it follows that {G},c 4 is an open cover of [0,a]. Now define

E = {z €[0,a] : the interval [0,z] has a finite subcover} .

We have E is nonempty (0 € E) and bounded above (by a). Thus A = sup E exists.
We claim that A > 1. Suppose for the moment that this has been proved. Then 1
cannot be an upper bound of E and so there is some o € E satisfying

<o <A



2. COMPACT SETS 39

Thus by the definition of the set E it follows that [0, c] has a finite subcover, and
hence so does [0, 1], which completes the proof of the theorem.

Now suppose, in order to derive a contradiction, that A < 1. Then there is
some open set G, with v € A and also some s > 0 such that

A—=s,A+5s) CG,.

Now by the definition of least upper bound, there is some x € E satisfying A — s <
x < A, and by taking s less than a — 1 we can also arrange to have

A+ s<l+s<a.

Thus there is a finite subcover {G,, },_, of [0,z], and if we include the set G, with

this subcover we get a finite subcover of [0, A+ %] This shows that A + 5 € E,
which contradicts our assumption that A is an upper bound of F, and completes
the proof of the theorem.

Proof #2: Suppose, in order to derive a contradiction, that there is an open
cover {Ga},ca Of [a,b] that has no finite subcover. Then at least one of the two
intervals [a, “7*"] and [“7*’7,6} fails to have a finite subcover. Label it [a1,b;] so
that

a<a; <b <b,
1
b1 — a1 = 55,
where 6 = b— a. Next we note that at least one of the two intervals [al, ‘“TH“] and
[%, bﬂ fails to have a finite subcover. Label it [as, bs] so that

a<ar <ax<by<b <b,

1
b2 — ag = 15
Continuing in this way we obtain for each n > 2 an interval [a,, b,] such that
(2.4) a<a; <.ap_1<ap<b, <bp_1..<b <0,
1
bn — ap = 27(5

Now let B = {a,, : n > 1} and set = sup F. From (2.4) we obtain that each
b, is an upper bound for F, hence x < b,, and we have

a<a,<zx<b,<b foralln>1,

i.e. x € [ap,by] for all n > 1. Now z € [a,b] and so there is 3 € A and r > 0 such
that
(x —rxz+7r)C Gg.
By the Archimedian property of R we can choose n € N so large that % <n<2"
(it is easy to prove n < 2™ for all n € N by induction), and hence
[ana bn] C (517 -T2+ T) C GB'
But this contradicts our construction that [a,, b,] has no finite subcover, and com-

pletes the proof of the theorem.

COROLLARY 6. A subset K of the real numbers R is compact if and only if K
is closed and bounded.
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Proof: Suppose that K is compact. Then K is bounded by Lemma 4 and is
closed by Lemma 6. Conversely if K is bounded, then K C [—a,a] for some a > 0.
Now [—a,a] is compact by Theorem 9, and if K is closed, then Lemma 7 shows
that K is compact.

Proof #2 of Theorem 9 is easily adapted to prove that closed rectangles
R =[] lar, be] = [a1,b1] X .. X [an, bn]
k=1

in R™ are compact.

THEOREM 10. The closed rectangle R = [[,_, [ax,bx] is compact (with the
usual metric) for all a < b, 1 <k <n.

Proof: Here is a brief sketch of the proof. Suppose, in order to derive a
contradiction, that there is an open cover {G4}, ., of R that has no finite sub-
cover. It is convenient to write R as a product of closed intervals with super-
scripts instead of subscripts: R = HZ:l [ak , bk]. Now divide R into 2" congruent
closed rectangles. At least one of them fails to have a finite subcover. Label it

R, = szl [a’f,b}f], and repeat the process to obtain a sequence of decreasing
rectangles R,,, = [[,_, [ak,,b%,] with
a¥ <af <..aF,_ <aF, <bF <bF_ <B <
1
k k k
by — iy, = Qim(s )

where 6% = bF — a¥, 1 < k < n. Then if we sct zF = sup {afj1 Tm > 1} we obtain
that © = (:Cl, ,x") € R,, C R for all m. Thus thereis 5 € A, r >0and m > 1
such that

R, C B(z,r) C Gg,
contradicting our construction that R,, has no finite subcover.

THEOREM 11. Let K be a subset of Euclidean space R™. Then the following
three conditions are equivalent:

(1) K is closed and bounded;
(2) K is compact;
(3) every infinite subset of K has a limit point in K.

Proof: We prove that (1) implies (2) implies (3) implies (1). If K is closed
and bounded, then it is contained in a closed rectangle R, and is thus compact by
Theorem 10 and Lemma 7. If K is compact, then every infinite subset of K has a
limit point in K by Theorem 7. Finally suppose that every infinite subset of K has
a limit point in K. Of course Theorem 8 implies that K is compact, hence closed
and bounded by Lemmas 6 and 4, but in Euclidean space there is a much simpler
proof that avoids the use of Theorem 8.

Suppose first, in order to derive a contradiction, that K is not bounded. Then
there is a sequence {z} -, of points in K with |zy| > k for all k. Clearly the set of
points in {xx},-; is an infinite subset E of K but has no limit point in R™, hence
not in K either. Suppose next, in order to derive a contradiction, that K is not
closed. Then there is a limit point x of K that is not in K. Thus each deleted ball
B’ (x, %) contains some point zp from K. Again it is clear that the set of points
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in the sequence {z},- is an infinite subset of K but contains no limit point in K
since its only limit point is  and this is not in K.

COROLLARY 7. FEvery bounded infinite subset of R™ has a limit point in R™.

3. Fractal sets

We say that a subset E of a Euclidean space R” is a fractal set if it replicates
under dilation and translation/rotation in the following way: there are positive
integers k£ and m such that

(3.1) kE=FE,UEyU..UE,,
where kF is a dilation of E by factor k,
kE ={kx:x € E},

each F; is a translation and rotation of E' by some vector a; and rotation matrix
M;
E; ={M;(x+a;):z € E},

and finally where the sets E; are pairwise disjoint (sometimes we will relax this
condition somewhat to require some notion of ‘essentially’ pairwise disjoint). We
will refer to the number o = 11’;—’2 as the fractal dimension of E. This terminology
is explained below.

The simplest example of a fractal is the unit half open half closed cube I,, in

R™:

I, = [0,1),
I, = [0,1)x[0,1),
I, = [0,1)”:ﬁ[0,1).

With F =1,, k =2 and m = 2™ we have,
kE = 2I,=10,2)"
= U ([0, 1) + (b1, ..., £n))

(£1,...,0n)€{0,1}"

U @ +ae) = E)
i=1

Jj=1

where {a; }j:l is an enumeration of the 2" sequences ({1, ..., £,,) of 0’s and 1’s having
length n. Note that if we let k denote an integer larger than 2, then we would have

kE = LmJ E;
j=1

with m = k™. Thus the quantity which remains invariant in these calculations is
the exponent n satisfying m = k™ or

Inm
Ink’

n =log,m =
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Note that the compact set I,, = [0, 1]" also satisfies (3.1) with the same translations,
but where the E; overlap on edges. As n is the dimension of the cube I,,, we will
more generally refer to the quantity

Inm
Ink

associated to a fractal set E as the fractal dimension of E. It can be shown
that if E satisfies two different pairwise disjoint replications k1 E = U;nzll E; and

a =log,m =

koE = U;’Zl Ej, then a = logk1 my; = logk2 ms is independent of the replication

and depends only on E.

3.1. The Cantor set. We now construct our first nontrivial fractal, the Can-
tor middle thirds set (1883). It turns out to have fractional dimension. We start

with the closed unit interval I = I° = [0,1]. Now remove the open middle third
(3,2) of length 1 and denote the two remaining closed intervals of length & by
I{ = [0,%] and I3 = [£,1]. Then remove the open middle third (§,2) of length
5z from [ 1= [0, %] and denote the two remaining closed intervals of length 3% by
I? and I3. Do the same for I3 and denote the two remaining closed intervals by 12
and I3.

k
Continuing in this way, we obtain at the k*" generation, a collection {I]’?}jzl

—

k
of 2% pairwise disjoint closed intervals of length 3% Let Kj, = U?: I Jk and set

00 2k

-Am-N(Us
k=1

k=1 \j=1

Now by Proposition 7 each set Kj is closed, and hence so is the intersection FE.
Then E is compact by Corollary 6. It also follows from Corollary 5 that E is
nonempty. Next we observe that by its very construction, F is a fractal satisfying
the replication identity

Thus the fractal dimension « of the Cantor set E is ﬁ% Moreover, F has the
property of being perfect.

DEFINITION 15. A subset E of a metric space X is perfect if E is closed and
every point in E is a limit point of E.

To see that the Cantor set is perfect, pick x € E. For each k > 1 the point =
lies in exactly one of the closed intervals I Jk for some j between 1 and 2*. Since the
length of ]j’? is positive, in fact 3% > 0, it is possible to choose a point x3 € ]j’? \{z}.
Now the set of points in the sequence {z},-, is an infinite subset of E and clearly
has x as a limit point. This completes the proof that the Cantor set E is perfect.

By summing the lengths of the removed open middle thirds, we obtain

‘length’ ([0,1] \ E) :1+3+2f2+... =1

’ 3 32 33 ’
and it follows that E is nonempty, compact and has ‘length’ 1 — 1 = 0. Another
way to exhibit the same phenomenon is to note that for each k& > 1 the Cantor
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set F is a subset of the closed set K} which is a union of 2* intervals each having

length 3% Thus the ‘length’ of K}, is 2’“3% = (%)k, and the ‘length’ of E is at most

e (2) oz} -0

In contrast to this phenomenon that the ‘length’ of E is quite small, the car-
dinality of E is quite large, namely E is uncountable, as is every nonempty perfect
subset of a metric space with the Heine-Borel property: every closed and bounded
subset is compact. We will need the following easily proved fact:

e In any metric space X, the closure B (z, ) of the ball B (z,r) satisfies

B(z,r)C{ye X :d(z,y) <r}.
THEOREM 12. Suppose X is a metric space in which every closed and bounded
subset is compact. Then every nonempty perfect subset of X is uncountable.

Proof: Suppose that P is a nonempty perfect subset of X. Since P has a limit
point it must be infinite. Now assume, in order to derive a contradiction, that P is
countable, say P = {z,} —,. Start with any point y; € P that is not ; and the

ball By = B (y1,71) where 71 = %. We have

BiNP#0and z1 ¢ B.
Then there is a point y» € By N P that is not 25 and so we can choose a ball By
such that
By NP # () and z3 ¢ By and By C By.
min{d(z2,y2),m1—d(y1,y2
2

Indeed, we can take By = B (y2,72) where ro = ) Continuing

in this way we obtain balls By satisfying
Br NP # () and x5, ¢ By and By C By_1, k> 2.

Now we use the hypothesis that every closed and bounded set in X is compact.
It follows that each closed set BN P is nonempty and compact, and so by Corollary
5 we have

oo o0
ﬂ(EﬂP)#@, sayxE(ﬂ&)ﬁP.
k=1 k=1

However, by construction we have z,, ¢ B,, for all n and since the sets B,, are
decreasing, we see that z,, ¢ (,—, Bx for all n; hence x # w, for all n. This
contradicts P = {z,},., and completes the proof of the theorem.

3.2. The Sierpinski triangle, Cantor dust and von Koch snowflake.
The Sierpinski triangle is a plane version of the Cantor set. Begin with the unit solid

equilateral triangle T = T° = A ((0,0) ,(1,0), (1 ﬁ)) whose edges of length

27 2

1 join the three points (0,0),(1,0), (%, @) in the plane. Divide T° into four

congruent equilateral triangles with edgelength % by joining the midpoints of the
three edges of T°. Remover the center (upside down) open equilateral triangle
to leave three closed equilateral triangles T1, T3, T3 of edgelength 1. Repeat this

A
construction to obtain at the k' generation, a collection {T f}j: ) of 3% pairwise
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k
disjoint closed solid equilateral triangles of edgelength 2% Let Ky, = U?Zl Tjk and
set

Then the Sierpinski triangle S is a nonempty compact perfect subset of R? that
has ‘area’ equal to 0. Moreover S is a fractal satisfying the replication identity

28 =SU(S+(1,0)U (S+ (1,V3)) = S1US USs,

and so has fractal dimension E—g

The Cantor dust is another plane version of the Cantor set, this time with
fractal dimension 1. From the unit closed square [0,1]” remove everything but the
four closed squares of side lenth i at the corners of [0, 1}2, i. e. the squares [0, i] 2,

[%, l] X [07 i], [%, 1]2 and [0, ﬂ X [%, 1]. Then repeat this procedure with these
four smaller squares and continue ad infinitum. The ‘dust’ D that remains is a

nonempty perfect compact subset of the plane satisfying the replication formula

D= %DUi(Dﬁ—(3,0))Ui(D+(0,3))U%(D+(3,3)).

Thus D has fractal dimension ﬁ = 1. The set D is in stark contrast to the segment
{(az, 0)eR?2:0<z< 1} in the plane that also has fractal dimension 1.

Finally, the von Koch snowflake (1904) is a bit harder to construct rigorously at
this stage, although we will return to it later on after we have studied the concept
of uniform convergence. For now we simply describe the snowflake-shaped curve
informally. Begin with the line segment L° joining the points (0,0) and (1,0) along
the x -axis. It is a segment of length 1 that looks like = . Now divide the

segment L° into three congruent closed line segments of length % that each look
like , and denote the first and last of these by Li and L} respectively. Now

replace the middle segment with the two segments L3 joining (%, O) to (é, ﬁ)

and L} joining (%, %) to (2,0). Thus the middle third segment _ has been
replaced with a ‘hat’ that looks like A, which together with the removed middle
third makes an equilateral triangle of side length % The four segments {L}}j: L

form a connected polygonal path that looks like = A  where each of the four
segments has length % Now we continue by replacing each of the four segments
L} of length % by the polygonal path of four segments of length 3% obtained by
removing the middle third of le» and replacing it by two equal length segments as
above. Repeat this construction to obtain at the k*" generation, a polygonal path
k

consisting of 4% closed segments{L?}j: , of length 3% each. Denote this polygonal
‘snowflake-shaped’ path by Pg.

We now define the von Koch snowflake K to be the ‘limit’ of the polygonal
paths P, as k — 0co. A more precise definition is this:

e K consists of all (z,y) € R? such that for every e > 0 there is N satisfying
B((z,y),e)N Py #0, forall k> N.

In other words, K is the set of points in the plane such that every ball centered
at the point intersects all of the polygonal paths from some index on. One can
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show that K is a compact subset of the plane that satisfies the replication identity
3K = Ky UKy UK3U Ky,

where each Kj is a translation and rotation of K'; moreover two different K; inter-

sect in at most one point. It follows that K has fractal dimension %. Later we
will show that K is the image of a continuous curve with no tangent at any point,

and infinite length between any two distinct points on it.

Here is a table of some of the fractals we constructed above. The matrices My
and M3 are plane rotations through angles of 7 and —7 respectively.

Fractal Set ' Replication formula Dimension

E F=3FU3(F+2) n2 0.63093

[0, 1] F=3FU3(F+1) 1 1

_1pyl

D Fl_ iF U3 (F +1(3,0)) 1 1
Ug (F+(0,3))U 5 (F+(3,3))

F=1rul(MyF +(1,0))

K V(oo (s VAN ot 1.2619
Us (M3F+ (57 7)) Us(F+(20) W
F=1FuUl(F+(1,0)

S NG 3 1.5850
U (F+ (3:4))

_1pyl
0.1 F=1FUl(F+(1,0) ) )

UL (F+(0,1) Ul (F+(1,1))

3.3. Similarities: A fixed point theorem. Each of the fractals F' consid-
ered in the previous subsection satisfies a replication formula of the form

(3.2) F =8 (F)USs(F)U...USy, (F),

where m > 2 and each S; is a similarity transformation in R", i.e. a composition
of a translation, rotation and a dilation with ratio 0 < r; < 1. Moreover, in all
of our examples each S; is a dilation with the same ratio 0 < r < 1. Our next
theorem shows that no matter what similarities we consider with positive dilation
ratios less than 1, there is always a nonempty compact set F' that satisfies (3.2),
and furthermore F is uniquely determined by (3.2). Note that we are not requiring
that the sets S;F be pairwise disjoint here. We call a nonempty set F' satisfying
(3.2) a self-similar set. If all the dilations have the same ratio, we say that F' is a
fractal set. The sets listed in the table above are all compact fractal sets.

In order to prove uniqueness in our theorem on self-similarity we will use a
special metric space whose elements are the nonempty compact subsets of R". For
n € N let

X" ={K C R": K is nonempty and compact} .
Given a pair of compact sets K, L in X" we define a distance between them by

(3.3) d(K,L)=inf{§ >0: K C Ls and L C K5},
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where K5 = {z € R" : dist (x, K) < 0} and dist (z, K) = inf ek |z — y| is the usual
distance between a point x and a set K. It is a straightforward exercise to prove
that d : X™ x X™ — [0, 00) satisfies the properties of a metric as in Definition 9.

EXERCISE 3. Prove that d is a metric on X™. Why can’t we allow ) € X™?
Hint: To see that d(K,L) > 0 if K # L, we may suppose that x € K \ L.

Then the open cover {B (y, @)} . of the compact set L has a finite subcover
ye

N
{B (yj, %)}j:r If r = miny<j<n %, thenr >0 and B (z,r)NL=10. It

follows that d (K, L) > d(x,L) > r > 0. To see why we can’t allow ) € X", show
that d (0,{z}) = oo for any z € X.

The space X™ can also be viewed as an extension of R™ via the map that takes
2 in R™ to the compact set {z} in X™. This map is actually an isometry, meaning
that it preserves distances:

distgn (2,y) = v —y| = d ({2} . {y}).

We will construct a solution to (3.2) using the finite intersection property of
compact sets, and then prove uniqueness using a fixed point argument in the metric
space (X™,d). To see the connection with a fixed point, define for any set F,

(3.4) SF) =S8, F)

to be the right hand side of (3.2). Note that S; takes balls to balls, hence bounded
sets to bounded sets and open sets to open sets, hence also closed sets to closed
sets. By Theorem 11 it follows that S; takes compact sets to compact sets, and
hence so does S. Thus S maps the metric space X™ into itself, and moreover, a set
F € X™ is self-similar if and ounly if F' is a fized point of S, ie. S(F)=F.

Here is the theorem on existence of self-similar sets, which exhibits a simple
classification, in terms of similarity transformations, of these very complex looking
sets. It was B. Mandelbrot (1977) who brought the world’s attention to the fact
that much of the seeming complexity in nature is closely related to self-similarity -
plants, trees, shells, rivers, coastlines, mountain ranges, clouds, lightning, etc.

THEOREM 13. For 1 < j < m suppose that S; is a similarity transformation
on R™ with dilation ratio 0 < r; < 1. Then there is a unique nonempty compact
subset F' of R™ satisfying (3.2).

Proof: We begin by choosing a closed ball B = B = {x € R" : |z| < R} so
large that

(3.5) S; (B) C B, 1<j<m.
Since

1S; (@) < 15) (x) = S (0)] + 155 (0)] < 7y |z] +[S; (0)]
it suffices to take

R = DaXi<i<m |5i (0)]

9
1-— maxi<i<mTi
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so that if x € By, then

1<i< 1<i<m

= ( max ri> R+ (1 — max ri> R=R.
1<i<m 1<i<m

A trivial property of the set mapping S is monotonicity:

[S; (z)] < <max m)R—F max |S; (0)]

(3.6) S(E)c S(F)if ECF.

A less obvious property, which will be used to prove the uniqueness assertion in
Theorem 13, is a contractive inequality relative to the distance d introduced above
for the metric space X™:

(3.7) d (§ (A),§(B)) <rd(A,B), ABeX",
where r = maxi<;<m, ;. To see (3.7), it suffices by symmetry to show that

(3.8) S(A) for all € > 0.

(g(B))r(d(A,B)Jrs) ’

So pick ¢ € S (A), i.e. ¢ = Sj(xz) € S; (A) for some z € A and 1 < j < m. Now
for any ¢ > 0 we know that © € A C Bja,p)+- so that there is y € B satisfying
|z —y| < d(A,B) +e. Then

n=58;(y) €58;(B)CS(B),

and since S; is a similarity with dilation ratio r;, we have L; = S; — S;(0) is a
rotation and dilation of ratio r; and thus

[C=nl =155 () =S (W) = |L; (z—y)| <rjle -yl <r(d(A B)+e),

which shows that ¢ € (§ (B)) i.e. (3.8) holds. This completes the proof

r(d(A,B)+e)
of the contractive inequality (3.7).

Now let B = Bp be the closed ball as above. The closed ball B is compact by
Theorem 11. Set

Fl = g(B)v

F, = S(R)=S5B),
Fy = S(F)=5%(B),
F, = S(Fp_1)=25"B),

and note that each F} is a nonempty compact subset of the closed ball B. Indeed,
since a similarity maps closed balls to closed balls, each F}, is actually a finite union
of closed balls, hence closed by Proposition 7 (4). Moreover, by (3.5), (3.6) and
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induction we have

F, = S(B)CB,

F, = S(F)CS(B)=F,

F3 = S(Fy)CS(F)=F,

Fr, = §(Fk_1)C§(Fk_2):Fk_l,

and so the sequence of nonempty compact sets { Fj, },-_, is nonincreasing. By Corol-
lary 5 we conclude that

oo
F=()F
k=1
is nonempty and compact. Applying S to F we claim that
(3.9) SF)Y=(SE)=(Fesr=[)Fe=F
k=1 k=1 k=2

which proves the existence of a self-similar set satisfying (3.2). The only equality
requiring proof in (3.9) is the first. If ¢ € S (F) then there is some j and z € F
such that ¢ = S (z). Since F' C Fj, we get ¢ € S; (Fy) C S (Fy) for all k > 1,
which shows that S (F) C Niey S (Fy). Conversely, suppose that ¢ € Niey S (Fy).
Then for each k there is some j; and x, € Fj such that { = S}, (). Now
there is some j that occurs infinitely often among the j,. With such a j fixed
let A= {keN:j,=j} Then ¢ = S;(xy) for all Kk € A and since S; is one-
to-one we conclude that z = Sj_lg satisfies v = x), € F) for all £k € A. Since
A is infinite and {F},;, is nonincreasing, we see that x € (-, Fy = F. Thus
¢ =58, (x) €S, (F)C S (F), which proves (1,2, S (Fy) C S (F).

Finally, we use the contractive inequality (3.7) to prove uniqueness. Indeed,
suppose that G is another nonempty compact set satisfying S (G) = G. Then from
(3.7) we have

0<d(F,G) :d(g(F)ﬁ(G)) <rd(F,Q),

which implies d (F,G) = 0 since 0 < r < 1. It follows that F' = G since d is a
metric.

3.4. A paradoxical set. A similarity S with dilation ratio r = 1 is said to
be a rigid motion, i.e. S is a rigid motion if it is a composition of a translation and
a rotation. (Note that the very first step in the proof of Theorem 13 breaks down
for a rigid motion.) A subset E of Euclidean space R™ is said to be paradoxical if
there are subsets A;, B; of £, 1 <14 </, 1 <j <m, and rigid motions S;,T; such
that

(3.10) E

N . sem
(UizlAi> U (UL, B;),
E = US4 =U" T;B,.

The notation U asserts that the indicated union is pairwise disjoint. The paradox
here is that (3.10) says that E can be decomposed into finitely many pairwise
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disjoint pieces, which can then be rearranged by rigid motions into two copies of
E.

A famous paradox of Banach and Tarski asserts that the unit ball B = B (0,1)
in R? is paradoxical, and moreover needs only 5 pieces to witness the paradox:
there is a decomposition

B = B1UBsUB3UB4UBs,
of B into five pairwise disjoint sets, and there are rigid motions Sy, ..., S5 such that
B = S1(B;)USs (B?)
= S3(B3)USy (B4)USs5(Bs).

In other words we can break the ball B into five pieces and then using rigid motions,
we can rearrange the first two pieces into B itself and rearrange the other three
pieces into a separate copy of B. This creates two distinct balls of radius one out
of a single ball of radius one using only a decomposition into five pieces and rigid
motions. In fact the paradox can be extended to show that if A and B are any
two bounded subsets of R3, each containing some ball, then A can be broken into
finitely many pieces that can be rearranged to form B. However, the Banach-Tarski
paradox requires the axiom of choice. See e.g. [7] for details.

It is somewhat surprising that there exists a paradoxical subset F of the plane
R? = C that does not require the axiom of choice for its construction, namely the
Sierpinski-Mazurkiewicz Paradox: let €’ be a transcendental complex number and
define sets of complex numbers by

E = {x = Z zne™ € C:x, € Zy and x, = 0 for all but finitely many n} ,
n=0

E, = {ze€E:zy=0},

Ey = {z€FE:zy>0}.

Then E = E1UEy, = e "E, = E5 — 1. Thus E satisfies the replication formula
(3.1) using only rigid motions with k =1 and m = 2,
E=(’E)U(E+1),

Inm _ In2 _ 1In2

and so is paradoxical. The set E has fractal dimension T-7* = - = %~ = o0,

while on the other hand, F is a countable subset of the complex plane.







CHAPTER 4

Sequences and Series

Our main focus in this chapter will be on sequences {s,}, ., whose terms s,
are numbers, either rational, real or complex, i.e. on functions from the natural
numbers N to either Q, R or C. A key definition is that of limit of such a sequence.

DEFINITION 16. A complex number L is the limit of a complex-valued sequence
{sn}o—, provided that for every e > 0 there is N € N (depending on ¢) such that

(0.11) lsn, — L| < g, for allmn > N.

In this case we write

lim s, = L.
n—oo

Of course this definition applies equally well to the subsets Q and R of C. It
turns out that the Least Upper Bound Property of the real numbers R plays a
crucial role in the theory of limits, both in R and in the complex numbers C. For
example, if {s,},—, is a nondecreasing sequence of real numbers, i.e.

Snt1 > Sp for all n € N,
that is bounded above, i.e. there is a real number M such that
Sp < M for all n € N,
then the limit of the sequence {s,},, exists, and is given by

lim s, =sup{s,:n>1},

n—oo

where in taking the supremum we are viewing {s,, : n > 1} as a set of real numbers,
rather than as the real-valued function on the natural numbers N that is denoted
by {sn}n_;-

To see this, let F = {s, :n>1} and o = sup E. Given ¢ > 0, the number
« — € is not an upper bound for E and it follows that there is a term sy such that

a—¢e < SN.
Since the sequence {s,},-  is nondecreasing and bounded above by «, we have
a—e<sy<s, <«

for all n > N. But this implies that (0.11) holds with L = o. We have thus proved
the following lemma.

LEMMA 8. If {s,},—, is a nondecreasing sequence of real numbers that is
bounded above, then lim, .o s, = sup{s,}or,. Similarly, if {sp}or, is a non-
increasing sequence of real mumbers that is bounded below, then lim,_ . s, =

inf {s,, },~ ;.

51
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However, later applications of analysis to existence of fractals and solutions to
differential equations, will require the notion of sequences of functions in certain
metric spaces. Thus we will now develop the critical concepts of limit, subsequence
and Cauchy sequence in the broader context of a general metric space.

1. Sequences in a metric space

Recall from Definition 8 that a sequence {s,} -, is a function f defined on
the natural numbers N with f (n) = s, for all n € N. We begin with the general
definition of limit.

DEFINITION 17. Let (X, d) be a metric space. An element L in X is the limit
of an X -valued sequence {s,},._, provided that for every e > 0 there is N € N
(depending on €) such that

(1.1) d(sn,L) < e, for alln > N.

In this case we write

lim s, =L,
n—oo

and say that the sequence {s,},., converges to L; otherwise we say {sn}, ., di-
verges.

Note that limits, if they exist, are unique! Indeed, if both L and L’ in X satisfy
(1.1), then given € > 0, there is N so that (1.1) holds for both L and L’. Thus the
triangle inequality yields

0<d(L,L')<d(L,sy)+d(sn,L') <e+e=2e.

Since € can be made arbitrarily small, it follows that d (L, L") = 0, hence L = L.
Here are three more properties of limits that follow easily from Definition 17.

PROPOSITION 10. Let {s,},-, be a sequence in a metric space (X,d).

(1) limy—oo 8, = L € X if and only if every ball B(L,r), r > 0, contains all
of the terms s, except for finitely many n € N.

(2) lim, o0 8, = L € X implies that the set {s,},- | is bounded.

(3) If E C X and if p € X is a limit point of E, then there is a sequence
{sn}o—y in E such that p = lim,, oo Sp.

Proof: (1) Suppose that lim, . s, = L € X and that > 0. Then there is N
such that (1.1) holds with e = r. Thus s, € B(L,r) for all n > N, and so the only
terms s, not contained in B (L,r) are among the finitely many terms si,...,Sx—_1.
Conversely, suppose that every ball B (L,r), r > 0, contains all of the terms s,
except for finitely many n € N. Let £ > 0 be given. Then B (L, ) contains all but
finitely many of the terms s,,. Let M be the largest subscript among these finitely
many terms s,. Then with N = M + 1 we have s,, € B(L,¢) for all n > N, which
s (1.1). Note: Uniqueness of limits follows from (1) as well. Why?

(2) There is N such (1.1) holds with ¢ = 1. Now set

r=max{l,d(L,s1),d(L,82),....d(L,sn)}.

Then d (L, s,) <7 <r+1forall n €N and it follows {s,},., C B(L,r+ 1), i.e.
{sn}.o, is bounded in X.
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(3) For each n € N choose s, € B’ (p, 1) N E. We claim that lim, o s, = p.
Indeed, given € > 0, choose N > % Then for n > N we have

1 1

d n) < — < — <g,

as required.

1.1. Subsequences. A key construct associated with a sequence s = {s,, },-;
is that of a subsequence. A subsequence is defined by viewing s as a map defined
on the natural numbers N and composing it with a strictly increasing map k — ny,
from N to N, to get a map

k — ng — sp,
defined on N. In other words we consider a sequence {ny},., of strictly increas-
. o . ¢ oy ; 0
ing positive integers and define the ‘composition of sequences’ {s,, },_; to be a

subsequence of {s,} —,. For example let {s,} -, be the sequence

(5, {\/ﬁl}‘” _ 0\/§f1 V3-12-1+5-1
Sn n=1 " \/ﬁ‘i‘l - ?\/§+1ﬂ\/§+172+13\/5+17 .

If we take {ng}yo, = {kQ}Zil to be the increasing sequence of square numbers,
the corresponding subsequence{s,, },~ _; of {s,},_, is given by

R I iks T (k=11 [, 2-13-1
Sny npg=1 " W+1 _1— /f—i—l n:1— ,72+1,73+1,... .

n

n=1

00
N

Note that the terms Z—;} in {sn,}

%i of {sn}ro;.

EXERCISE 4. A sequence s = {s,} ., converges to L if and only if every
subsequence { sy, }f:;:1 of s converges to L. This is an easy consequence of definition
chasing.

_, appear in increasing order among the terms

THEOREM 14. Suppose that s = {s,},-, is a sequence in a metric space (X, d).
(1) If X 14s compact, then some subsequence of s converges to a point in X.
(2) If X is Fuclidean space R™ and s is bounded, then some subsequence of

s converges to a point in R™.

We often abbreviate the expression "then some subsequence of s converges to
a point in X" to simply "s has a convergent subsequence in X".

Proof: (1) Let E be the set of points {s,, : n € N}. If F is finite, then one of
its members, say p, occurs infinitely often in the sequence s = {sy, s, 83, ...}. Thus
there is a strictly increasing sequence of positive integers

ny <ng <ng<..<ng<..
such that

D= Sn, = Sny = Sng = e = Spy, = -
for all & > 1. The subsequence {sy, }r-; = {p,p,p, ...} clearly converges to p € X.

On the other hand, if F is infinite, then since X is compact, Theorem 7 shows
that E has a limit point p € X.

REMARK 10. Proposition 10 (3) shows there is a sequence {t,},- | in E that

converges to p, but this sequence need not be a subsequence of {sn}zozl,
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So instead of using Proposition 10 (3), we construct a subsequence of s converg-
ing to p as follows: pick n; such that d(p,s,,) < 1. Then since B’ (p,1) contains
infinitely many points from FE, there is ny > nq such that d (p, s,,) < % Continuing
in this way we obtain for every k > 1 a positive integer ny such that

np <ng < ...<nip <nNgyp < ...

and d (p, sp,) < 7 for all k > 1. Thus the subsequence {s,, },-, converges to p.
(2) Since E = {s,, : n € N} is bounded, its closure E is closed and bounded in

R" (bounded since if E C B (x, R) then E C B (z,R) C B (x, R+ 1)). By Theorem

11 it follows that E is compact. Now we can apply part (1) of the theorem, which

we just finished proving, with X = E. This completes the proof of part (2).

In Lemma 3 we proved that the derived set E’ of a set E is always closed.
We have the following variant for sequences s = {s,} -, in a metric space X. A
point p € X is said to be a subsequential limit of s if limy_, . Sy, = p for some
subsequence {sp, }ro, of s.

THEOREM 15. The subsequential limits of a sequence s = {s,},—, in a metric
space X form a closed subset of X.

Proof: Let E* be the set of subsequential limits of s, i.e. all limits of subse-
quences of s. Suppose that z € (E*)". We must show that z € E*. Now there is
1y € B’ (z, %) N E* and also ny such that d(y1, sp,) < % Thus we have

1 1
d(z78n1) Sd(zayl)—i_d(ylasnl) < §+§ =1

In similar fashion we can choose ng > ny such that d(z, sn,) < % Continuing we
can choose n1 < ny < nz < ... so that
1
d(z,snk)<g, k>1.
This shows that the subsequence {s,, },;“;1 of s converges to z, and hence z € E*
as required.

1.2. Cauchy sequences. Sequences {s,}, ., of rational numbers Q can di-
verge for two qualitatively quite different reasons:

(1) The sequences {n} >, and {(—1)"} —, fail to converge because the terms
sm and s, don’t even get close to each other, much less close to a limiting
value L, as m and n get large.

(2) The sequence {s,} -, = {1.4,1.41,1.414,1.4142, ...} of decimal approx-
imations to the real number v/2 has no limit in Q because the rational
numbers have a ‘gap’ where v/2 ought to be - this despite the fact that

1

|Sm — 8n| < 15w for all m < n, which shows that the terms s, and s, get

rapidly close to each other as m and n get large.

The first type of divergence above occurs for natural reasons, but the second
type of divergence occurs only because of a defect in the metric space Q. The real
numbers R do not share this defect, and Cantor’s construction of the real numbers
using cuts keyed on the fact that the defect in Q was a gap in the order. We
now wish to investigate to what extent this defect can be realized in the metric
space structure associated with Q and R, rather than in the order structure. As
a byproduct of this investigation, we will be led to Weierstrass’ construction of



1. SEQUENCES IN A METRIC SPACE 55

the real numbers using Cauchy sequences of rational numbers. Our first definition
captures the notion of a sequence {sn}zozl of the second type above in which the
terms s,, and s, get close to each other as m and n get large, and so ‘ought’ to
have a limit in a ‘nondefective’ metric space.

DEFINITION 18. Let (X, d) be a metric space. A sequence {s,},., in X is a
Cauchy sequence if for every € > 0 there is N € N such that

(1.2) d(Smysn) <e,  forallm,n > N.
LEMMA 9. Convergent sequences in a metric space are Cauchy sequences.

Proof: Suppose {sn};"lo:1 is a convergent sequence in a metric space (X, d), i.e.
lim,oo S5, = L for some L € X. Let € > 0 be given. Choose N as in Definition 17 so
that d(s,, L) < § for all n > N. Then if m,n > N, the triangle inequality yields

A (smy5n) < d(smy L) +d(Lysy) < 5+ 2 =<,

There is a partial converse to this lemma.

LEMMA 10. Let s = {sn}zo:1 be a Cauchy sequence in a metric space X. Then
s converges if and only if it has a convergent subsequence in X.

Proof: If {s,},. ; converges in a metric space X to a limit L, then every sub-
sequence converges to L as well. Conversely suppose that s = {s, },.; is a Cauchy
sequence in X and that limj_. s, = L € X for some subsequence {sy, }re -
Given € > 0 the Cauchy criterion (1.2) yields N so that

d(smasn)<g, m,nZN,

and then the definition of limit yields K satisfying
d(sn,, L) < % k> K.
We may also take K so large that ng > N. Then for n > N we have

d(5p, L) < d(5ns 5ny) +d (5nycs L) <§+§=5,

which shows that lim,,_, - s, = L.

Now comes our definition of a ‘nondefective’ metric space, which we call com-
plete.

DEFINITION 19. A metric space X is complete if every Cauchy sequence in X
converges to a point in X.

Roughly speaking, a complete metric space X has the property that any se-
quence which ought to converge, i.e. one that satisfies the Cauchy criterion, actually
does converge in X. In a complete metric space, the condition that for every € > 0
there is N € N satisfying (1.2), is often called the Cauchy criterion for convergence
of the sequence {sy} .

The crucial difference between the rational and real numbers can now be ex-
pressed in metric terms: the space Q is not complete whereas the space R is com-
plete. In order to prove our theorem on completeness it is convenient to introduce
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the concept of diameter of a set. If A is a subset of real numbers, we extend the
definition of sup A to sets that are not bounded above by defining

sup A = oo, if A is not bounded above.

DEFINITION 20. If E is a subset of a metric space (X, d), we define the diameter
of E to be
diam (E) = sup{d(z,y) : z,y € E}.

The connection with Cauchy sequences is this. Suppose s = {s,} -, is a
sequence in a metric space (X, d). Let Ty = {s, : n > N} be the set of points in
the tail of the sequence from N on. Then s is a Cauchy sequence if and only if

(1.3) diam (Ty) — 0 as N — co.
The reader can easily verify this by chasing definitions.
LEMMA 11. diam (E) = diam (E) .
Proof: Clearly diam (E) < diam (E) holds since E C E. Conversely pick

€

e > 0 and two points p,q in E. There are points x,y € E such that d (p,z) < 5
and d(q,y) < 5. Thus we have

A(p.q) < d(p,2) +d(@,y) +d(y,q) < 5 +diam (E) + 5 = diam (E) + e,

even in the case that diam (E) = co. Now take the infimum over ¢ > 0 to obtain
d(p,q) < diam (E) for all p,q € E, and then take the supremum over all such p, ¢
to obtain diam (E) < diam (E) as required.

THEOREM 16. Let X be a metric space.

(1) If X is compact, then X is complete.
(2) Euclidean space R™ is complete.

Proof: (1) Suppose that {s,} -, is a Cauchy sequence in a compact metric
space X. Let Ty = {s, : n > N} be the set of points in the tail of the sequence
from N on. By (1.3) the Cauchy criterion says that diam (Ty) — 0 as N — .
Lemma 11 then gives

(1.4) diam (Ty) — 0 as N — .

Now T is nonempty and compact for each N, and clearly Tny1 C Ty for all N.
Corollary 5 thus shows that

o0
K= )Ty #0.
N=1
Since K C T, (1.4) gives diam (K) = 0, from which we conclude that K consists
of ezxactly one point, say L € X.

We now claim that lim,, .. s, = L. Indeed, given £ > 0, choose N so large
that diam (ﬁ) < €. Then for all n > N we have that both s, and L belong to
Tn, and so

d(sn, L) < diam (ﬁ) <eg,
as required.

(2) Suppose that s = {s, }.-, is a Cauchy sequence in R". There is N so large
that the tail Ty has diameter at most 1. Since there are only finitely many points
sy, outside the tail T, it follows that the set of points {s,, : n > 1} in the sequence
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is bounded. The closure of this set is also bounded, and thus s is contained in a
closed and bounded subset X of R™. By Theorem 11 the set X is compact and we
can now apply part (1) of the theorem proved above.

1.3. Weierstrass’ construction of the real numbers. Recall that the gap
in the rational numbers where the irrational number /2 lives, can be detected
either by one of Dedekind’s cuts (the cut A in (2.1) of Chapter 1), or by the Cauchy
sequence of decimal approximations {1.4,1.41,1.414,...}. While Dedekind used cuts
to construct the real numbers, Weierstrass instead used such Cauchy sequences in
Q to construct the real numbers by filling in these gaps in the rationals as follows.

Denote by C the set of all Cauchy sequences s = {s,} —; in Q. Define an
equivalence relation on C by s ~ t if the intertwined sequence

{slat1a527t27837t3,'“}
is also a Cauchy sequence (intuitively this says that the limits that s and ¢ ought to
have should coincide). Once we have proved this relation is indeed an equivalence
relation, then we can define the equivalence class [s] of a Cauchy sequence s in C,
and we can define the real numbers R to be the set of equivalence classes:

R={[s]:s€C}.
At this point the construction becomes as tedious as that of Dedekind, and we omit
the details, only mentioning that one defines the sum of two classes [s] and [t] where
s,t € C, by proving that the sequence s +t = {s, +tn}f=1 is Cauchy, and then
defining

[s] +[t] = [s +¢].
It is a long process to define the remaining relations and verify that R satisfies the
axioms of an ordered field with the least upper bound property.

This method of Weierstrass for constructing the real numbers has an advantage
the method of Dedekind lacks. Namely it can be used to construct an extension
of an arbitrary metric space X to a (usually larger) space X that is complete, and
called the completion of X. More precisely, but without much detail, define X to
be the set of equivalence classes [s] in the set C of Cauchy sequences s in X, where
s ~tif {s1,t1, $2,1t2,...} is Cauchy in X. Define a function don X x X by

d([s],[t]) = lim d(sp,tn).
After showing that the limit above exists, and that ()A( , c/i\) satisfies the axioms for a

metric space, one can prove that the space ()? , E) is complete. We can view X as a

subspace of X via the map that sends x in X to the equivalence class containing the
constant Cauchy sequence {z, z, z,...}. One can verify that this map is an isometry,
and moreover that under this identification of X with a subspace of X , the set X is
dense in X. This shows that X is, up to an isometry, the smallest complete space
containing X, and this is the reason that X is called the completion of X.

On the other hand, the idea of a Dedekind cut can only be used to construct
an extension of a linearly ordered set to one with the least upper bound property,
a concept that has not been nearly so useful in applications of analysis as is the
concept of a complete metric space. For example, the next subsection describes
one of the most useful results in the theory of abstract metric spaces, one that can
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be used to simplify the ideas behind the proof of Theorem 13, and to prove many
existence theorems for differential equations, as we illustrate in a later chapter.

1.4. A contraction lemma. It is possible to recast the proof of Theorem
13 on the existence and uniqueness of nonempty compact fractals, entirely within
the context of the metric space X™ of compact subsets of R that was introduced
above. This is achieved by using the fact that the map S : X" — X" defined in
(3.4) is a strict contraction, i.e. satisfies (3.7) for some 0 < r < 1, defined on the
complete metric space X".

Of course we haven’t yet shown that X™ is complete, and we defer the proof
of this to the end of this subsection. The main idea is to use the finite intersection
property of compact sets much as we did in the proof of Theorem 13.

Once we know that X" is complete, the following Contraction Lemma imme-
diately proves Theorem 13 on the existence and uniqueness of fractals.

LEMMA 12. Suppose that (X, d) is a complete metric space and that p : X — X
s a strict contraction on X, i.e. there is 0 < r < 1 such that

d(p(z),(y) <rd(x,y), foralzyecX.

Then ¢ has a unique fized point z in X, i.e. there is z € X such that ¢ (z) = z,
and if w € X is another point satisfying ¢ (w) = w, then z = w.

Proof: The uniqueness assertion is immediate from
0<d(z,w) =d(p(2),¢(w) <rd(zw),

since 0 < r < 1. To establish the existence assertion, pick any point sg € X.
Consider the sequence of iterates {s,} ., given by

S1 = @(30)7

s2 = @(s1) =@ (@(s0) = (s0),

s3 = ¢(s2) =0 (9> (s0)) = ¢ (s0),
sno= @(sn-1) =@ (©" " (s0)) = ¢" (s0),

We claim that the sequence {s,},- ; is Cauchy. To see this first note that

d(sk,s641) = d(p(sk-1), ¢ (s1) < rd(sk-1,58), k=>1,
and then use induction to prove that

d(sp,5001) < 7d(s0-1,50) < 1r2d (80-92,80-1) < ... <r'd(s0,51).
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Now for m < n, the triangle inequality yields

d(Sm,Sn) < d(8m7sm+1) +d(8m+17sm+2) ++d(sn717sn)

= Y d(smissSmejr1)
=0

S Z Tm+jd(80, 51)
=0
rm

< d (s0,¢ (s0)) -

1—r
rN

Thus given € > 0, if we choose N so large that 7—d (s, (s0)) < €, then we have
d (Sm,8y) < € for all m,n > N, which proves that {s,} -, is Cauchy.

Now we use the important hypothesis that X is complete. Thus {s,}.., is
convergent and there is a limit

z= lim s, € X.
n—oo

The triangle inequality gives
d(p(2),2) d(p(2),¢(sn)) +d (@ (sn), sns1) + d(Snt1,2)
rd(z,sn) +0+d(z,8p4+1)
d(z,sn) +d(z,8n41),
which tends to 0 as n — co. It follows that d (¢ (2),z) = 0 and hence ¢ (z) = z.

INIAIA

LEMMA 13. The metric space X" is complete.

Proof: Suppose that {K; }(;il is a Cauchy sequence in X™. For each £ > 1
there is by the definition (3.3) of the metric in X™ together with the Cauchy criterion
(1.2), a positive integer j; such that

K; C (sz)# and K;, C (K;)_, _, forall j > jg,
20+1

20+1
and moreover we can choose the j, to be strictly increasing, i.e. jy < jyy1 for all
¢ > 1. Using j = je+1 > je we then also have the following inequalities:
(ij)ﬁ S ((Kje)ﬁ)ﬁ C (Kjg);l ,  foralll>1.
2

Thus the sequence of closed bounded nonempty sets

{(sz)z%}ZI

is nonincreasing, and by Theorem 11 consists of compact sets. By Corollary 6 we
then conclude that

0 —
K= p (Kje)il
(=1

is a nonempty compact set, so K € X".
We now claim that
lim K; = K.

J—00

Since {K; };‘;1 is Cauchy it suffices by Lemma 10 to prove that
lim K;, = K.
£— 00
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Let § > 0 be given. We trivially have
(1'5) K C (Kje)i C (Kje) 1

2f 20—

1C( jz)

1
2t (=1

Kji)s
for ¢ so large that 21 > %. In the other direction {((Kﬂ) ) } is an open
L

—\C
cover of the compact set K; N K§, and if {((Kj )%> } is a finite subcover,
2 {=1
then

equivalently

which implies
(1.6) K, C (K; )%7 C (K)g, foralll>L.
2

Altogether (1.5) and (1.6) show that d (K, K;,) < ¢ for ¢ sufficiently large as re-
quired.

2. Numerical sequences and series

At the beginning of this chapter we proved in Lemma 8 that bounded monotonic
o0 . .
sequences s = {sy},_; of real numbers converge, and moreover we identified the
limit L as either the least upper bound or the greatest lower bound of the set of
terms F = {s,, :n > 1}:

supE if s is nondecreasing

lim s, =L=4¢ . . . . .
" inf £ if s is nonincreasing

Here are some examples of monotonic sequences for which we can further identify
the sup or inf as a specific real number:
) hmn_,oon%,:Oifp>0.
(2) limy oo ¢/p=1ifp>0.
(3) limy 0o ¥/n=1.
(4) limnﬂmﬁ:Oifp>0andaeR.
(5) limy, oo™ =01if -1 <z < 1.
To prove limit (1), let € > 0 be given and use the Archimedian property of the
real numbers to choose N > % Then 0 < % <eforalln> N.
The limit in (2) is trivial if p = 1. If p > 1 then {/p > 1 and the binomial
theorem for n > 1 yields

p o= (B =[+ (51"
1+n(¢/5—1)+@(w—1)2+...

> 1+”<W_1)a

so that

—1
0< {L/p?—1<pT, n>1,
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which shows that lim,,_ ({L/ﬁ— 1) = 0 by limit (1), hence lim, ., /p = 1.

Finally, if 0 < p < 1, apply the result just proved to the number % > 1 to get

lim,, 0 T\L/% = 1, which gives the desired result upon taking reciprocals.

To see limit (3) we argue as in the proof for (2), but keep the quadratic term
in the binomial expansion for n > 2 instead of the linear term:

o= ()" = [+ (-]
= 1+n({’/ﬁ—l)+w(%—l)2+...

n(nzf 1) (%7 1)2

0< ¥n—-1< /n(nl \/7 \[ n>2,

which shows that lim,, ., ({/n7 — 1) = 0 by limit (1), hence lim,, ., ¥/n = 1.
To see (4) let k be a positive mteger greater than o. Then for n > 2k we have

> 1+

so that

k

(1+p)" > < . )p’“ = n(nkti';(gmf+l)p’“ > (g)k%,

k k
& 2 k! 2
0<7(1:i )n <7’la (’]’L> ﬁzno‘_k (p) k', TL>2]€,
p

which shows that lim,,_, ﬁ = 0 since lim, oo n® % = 0 if @ — k < 0 by limit

(1).

Limit (5) is the special case o = 0 of limit (4).

so that

2.1. Series of complex numbers. Given a sequence {a,} ., of complex
numbers, we can use the field structure on C to define the corresponding sequence

of partial sums
N

SN =a1+ag+ ... +an :Zan
n=1
for all N > 1. Now if there were only finitely many nonzero terms a,, in the original
sequence, then the sequence of partial sums {sy }3_, would eventually be constant
and that constant would be the sum of the nonzero terms a,,. Thus in this case we

have
E a, = lim sy.
N—o0

n:an,#0
This motivates the definition of the infinite sum Zzo:l a, as the limit limy_ o SN
of the partial sums, provided that limit exists.

DEFINITION 21. Suppose that {a,}, , is a sequence of complex numbers. If the

. 00 N
sequence of partial sums {SN}_1, SN = Y 1 An, cOnverges to a complex number
L, we say that the (infinite) series Y . a, converges to L, and write

i a, = L.
n=1
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If the sequence of partial sums {sn}x_, diverges, we say that the series Y - | an
diverges.

Recall that as a metric space, the complex numbers C are isomorphic to R2,
and hence complete by Theorem 16. The Cauchy criterion thus takes the following
form for series:

e The series Y ,-; a; converges in C if and only if for every ¢ > 0 there is
N € N such that

n
Z ag| <
k=m

This is easily seen using the Cauchy criterion for the sequence of partial sums
{sn}x—;, together with the fact that s, — S;,—1 = Z..;:m ar. Note that this
provides a simple necessary condition for convergence )" | a,, namely

€, for all m,n > N.

(2.1) lan| — 0 as n — oo.

The reader is cautioned however, that (2.1) is not in general sufficient for conver-
gence of the series ZOO an. For example, if a,, = L then (2.1) holds but the

harmonic series Zn 1o L diverges since the partial sums of order N = 2% satisfy

k
_ 221 Do (o (L, r oy
NT nT 1T 371 576 7 8) T\

=1

() () (B ) (Bt
-1 2 8§ 8 8 8 2k T 2k
k

which is unbounded, and hence the sequence {sy}y_, cannot converge.
We also note the following sufficient condition for the convergence of > ;2 | ay:

(2.2) Z lax| converges.
k=1

Indeed, if >, |ak| converges, say to L > 0, then we have

n n
Zak < Z |ak|:tn_tm—17
k=m k=m

where tx = Y }_, |ak| is the N partial sum of the series Y =, |ag|. Now (2.2)
implies that {ty}y., satisfies the Cauchy criterion for sequences, and together
with (2.3), this proves the Cauchy criterion for the series Y .- a,. Thus the
series Y | a, converges. Note that the same argument proves the convergence of
oo 1 ap if |a,| < by, for all sufficiently large n where Y7 | b, converges. We have
just proved the first half of the versatile Comparison Test. The second half is a
trivial consequence of the first.

(2.3)

THEOREM 17. Suppose that {an}zo 1 15 a sequence of complex numbers.
(1) If |an| < by, for all sufficiently large n, and if > -
does >0 | an.
(2) If a, > by >0 for all sufficiently large n, and if > | b, diverges, then
so does Y0 | an,

1 bn converges, then so
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Probably the most used fact about series of complex numbers is the geometric
series formula.

LeMMA 14. If |z] < 1, then

= 1
gznzl—z'

If || > 1, then Y7 2™ diverges.

Proof: The partial sums are given by sy = Zi:;o o= 1220 g N > 1.

11—z
N+1| N+1

Now |z = |z| — 0as N — oo if |2] < 1 by limit (5) in the previous

subsection, and so

- 1 — N+t 1
"= 1 =1 = f 1.
ZZ Nl—r>nooSN Ngnoo 1—2z 1-2z’ o |Z‘<
n=0
If on the other hand, |z| > 1, then |2"| = |2|" does not tend to 0 as n — oo, and

hence the series Y 2™ can’t converge by (2.1).

sin(nf)
nn

EXAMPLE 7. The series -,

converges for every real 6 since Smn(iffe)) <
2% for all n > 2. Indeed, > °° | 5 converges by Lemma 14, and the comparison

n=1 2n
test Theorem 17 then shows that Y .-, smwffe)

CONvVeErges.

In order to take advantage of the comparison test as we did in the example
above, we must have available a large supply of series Ziozl b, with nonnegative
terms b,,, for which we already know whether or not Zzozl b, converges. So we now
turn to the investigation of series with nonnegative terms.

2.2. Series of nonnegative terms. Lemma 8 on the convergence of increas-
ing sequences has the following useful reformulation for series with nonnegative
terms.

LEMMA 15. Suppose that ZZO:I an 18 a series of nonnegative terms a,, and
let sy = ZT]:[:I a, be the N partial sum. Then the series Soo2  an converges if
and only if the sequence of partial sums {sn}x_, is bounded.

Proof: We simply chase the definitions with Lemma 8 as follows. The series
>0 | an converges if and only if the sequence {sy}3_, has a limit. But sy —
snN—1 = ay > 0 shows that the sequence {sy}x_; is nondecreasing. Thus Lemma
8 shows that {sny}y_, has a limit if and only if the sequence is bounded.

Our first main result in this subsection is the Cauchy condensation test that
applies to a series Y. 7 | a, of nonincreasing positive terms a, and says that the
series

a1 +ag +as+aqg +as+ ag +ay +ag + ag + ...
converges if and only if the condensed series
(2.4) ay + (a2 + a2) + (ag + a4 + a4 + aq4) + (ag + ag + ...ag) + ...
= a1+ 2as + 4ay + 8ag + ...
converges. Note that the definition of the condensed series is motivated by regroup-
ing the terms in Y -, a, as

(2.5) a1 + (ag + a3) + (a4 + a5 + ag + a7) + (as + ag + ... + a15) + ...
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THEOREM 18. Suppose that y .-, a, is a series of nonincreasing positive
terms a,,. Then the series Y -, a, converges if and only if its condensed series
Y reo 2Fage converges.

Proof: Let sy = 25:1 a, be the partial sums of the series 22021 a, and let
tg = Zf:o 2*aor be the partial sums of the condensed series Z;OZO 2%a5k in the
second line of (2.4). Suppose first that Y7, 2%ay. converges. We will use the
grouping of terms indicated in (2.5). For N = 25+1 — 1 we have

2K+l _q K [2kti g K f2kti K
(2.6) sy = E an = E E an | < E E ask | = E P agr = tg,
n=1 k=0 n=2k k=0 n=2%k k=0

where the inequality follows from the assumption that the terms a, are positive
and nonincreasing. The convergence of Y- 2% a4 shows that the partial sums
{tx}%_, are bounded, and (2.6) now shows that the subsequence of partial sums
{sox+1_1}7%_, is bounded. Since the full sequence of partial sums {sy}y_; is
nondecreasing, we conclude that it is bounded as well. Then Lemma 15 shows that
the series Y 7 | a,, converges.

Conversely we use an inequality opposite to (2.6) that is suggested by the
alternate grouping of terms in the series > ° | a, given by (compare with (2.5)),

a1 + (a2) + (as + aq) + (a5 + ag + a7 + ag) + ...

The inequality is that for N = 2X we have

2K K 2k K 2k
(2.7) sy = Zan:a1+z Z an Za1+z Z Qg
n=1 k=1 \n=2k-141 k=1 \n=2k—-141

K
1
= a1+ ZQk_lazk =3 (a1 + 1K),
k=1

where again the inequality follows from the assumption that the terms a,, are pos-
itive and nonincreasing. If > >° | a, converges, then the sequence of partial sums
{sn}x— is bounded, and (2.7) shows that the sequence of partial sums {tx}5_,
is bounded, hence >, 2¥agr converges by Lemma 3.4.

o0 1

COROLLARY 8. Let p € R. The p-series )~ -5 converges if and only if
p> 1.

Proof: For p < 0 the series diverges since nip does not go to zero as n — oo.
If p > 0 then the terms n—l,, are nonincreasing and so the Cauchy condensation test
shows that 3> . -1 converges if and only if its condensed series

n=1 np
[e'S) [eS) k
1 1
k —
> 255 =3 ()
k=0

k=0

converges. But the condensed series is a geometric series and Lemma 14 shows that
it converges if and only if 2,,%1 <l,ie. p>1.



2. NUMERICAL SEQUENCES AND SERIES 65

The series of reciprocals of factorials,

oo

1

;E = 0+1,+2,+3,+ +—+
= 14143 ! Tt33 L o ! +
B 3-2.1 77 "nn-1)..3-2-1 7

plays a very distinguished role in analysis. First we note that this series converges
by the comparison test and the geometric series formula. Indeed,

1 ! e L _ <1> 1
nl nn—1).3-21-22).2-2-1 \2
for all n > 2, and
SN S 1\ 2 > 1\
;(2> =2+<2) +...:n¥0<2> —1=2-1=1
by Lemma 14. Thus > % converges by Theorem 17 (1), and in fact
n—1

2<1+1+Z;:Z;,<1+1+Z<;> = 3.
n=2" n=0 " n=2

DEFINITION 22. e =Y (L.
The series for Euler’s number e converges so rapidly that it forces e to be

irrational. Indeed, if sy = Zg:o % is the N*" partial sum, then

oo

= Zl— SRR S
W T L W T NAD) T (N2l TN

B 1 ) 1 1
o (N+1)!{ +N+2+(N+3)(N+2)+“'}
1

PRI F I S 2+
(N +1)! N+2 \N+2) "7

1 1 1 N +2

(N+D)IT- 55 (N+DIN+1

by Lemma 14. Now suppose that e is rational, say e = % where p,q € N. Since n!
divides ¢! for n < ¢ we conclude that

q!
le — qg! |, —q! — z
g€ —q:5¢ = @ q: E n' (g—1)! E oy

is a positive integer satisfying
1 q + 2 q+2

a contradiction. Thus we have proved:

gle —qlsq < q'(

THEOREM 19. e s an irrational number lying strictly between 2 and 3.

To prove the next familiar theorem on Euler’s number e, it is convenient to

introduce the limit superior and limit inferior of a real-valued sequence {sn}n 1
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DEFINITION 23. Suppose that s = {s,}.-, is a real-valued sequence and let E*
be the set of subsequential limits of s. Define

lim sup s, =sup E* and lim inf s, =inf E*,

n—oo n—oo

called the limit superior and limit inferior of s respectively.

Since E* is closed we have either limsup,,_, ., S, = 00 or limsup,, . s, € E*.
In the latter case limsup,,_, ., sn is the largest subsequential limit of s. A similar
comment applies to liminf, _,, s,. Here are some easily verified properties of limit
superior and limit inferior:
(2.8) lim inf s, < lim sup sy,
n—oo

n—oo

lim s, = L ifand only if lim sup s, =lim inf s, =L,
n— oo N— 00 n— o0

lim sup t, < lim sup s, if t, < s, for all sufficiently large n,
n—oo n—oo

lim inf ¢, > lim inf s, if ¢, > s, for all sufficiently large n.
n—oo n—oo

THEOREM 20. limy, o (1 + %)n =e.

Proof: Let sn:ZZZO% and ¢, = (1—&—%)” for n > 1. By the binomial
theorem
" < nl 1\*
1+ — = S
( +n) Z(n—k)!lc! <n)
k=0
n(1\ nmn-1)/1\> nmn-1mn-2) /1" 1\"
T+ (=) (o) 22275 (2 4 (=
+1! (n)+ 2! <n> * 3! n * n
Iy R I AR T S U C ,
2! n 3! n n n! n n

andsot, <14+1+ % + % + % = $,,. Thus from the third line in (2.8) we have

2

lim sup t, <lim sup s, =e.
n—oo n—oo

Conversely, fix m > 1. For n > m we have

PR S N T I U Y IR IR S D St
2! n 3! n n n! n n

SO Ny SR I T I S D A N B G Pt
2! n 3! n n m! n n

Now the limit as n — oo of the last sum (remember that m is kept fixed) is
1 1 1

Thus from the fourth line in (2.8) we have

lim inf ¢, > s,

n—oo

for all m > 1. Now take the limit as m — oo to obtain liminf, . t, > e.
Altogether, using the first line in (2.8), we now have

e <lim inf ¢, <lim sup t, <e,
n—oo n—00
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which implies that liminf, o t, = limsup,,_ . t, = e. The second line in (2.8)
now yields that lim,, .. t, = e as required.

3. Power series

There is a very special class of series that turn out to define complex-valued
functions on balls in the complex plane. These are the so-called power series that

have the form
oo
Z

where {a,},  is a sequence in C Whose terms a,, are called coefficients, and where
z € C is called the wvariable. The first question of interest is: For what values of
z in the complex plane does the series Zzozo a, 2" converge? The second question
is: Of what use are these functions? The answer to the first question is initially
surprising - namely the set of convergence F is either {0}, C or there is a ball
B (0, R) centered at the origin 0 with positive radius R such that

B(0,R) C EC B(0,R).

The answer to the second question is that these power series functions have many
special properties, and moreover, every complex-valued function f defined on a ball
B (0,R) in C that has a derivative everywhere in B (0, R) (i.e. lim,_,, M
exists for all z € B(0,R)) turns out to be one of these power series functlons' In
other words

o0
:Zanzn, z€ B(0,R),
n=0
for some sequence of coefficients {a, },— ;. It turns out such f are infinitely differen-

()
tiable and the coefficients are given by a,, = u (0) . Many more magical properties

of these so-called analytic functions are usually 1nvest1gated in a course on complex
analysis.

We content ourselves here with answering just the first question. This will
require a new convergence test, the root test. We will also prove a close cousin, the
ratio test.

THEOREM 21. (Root Test) Let {a,},-, be a sequence of complex numbers and

set
L =lim sup /|an|.

g; gé < 1 tZen %Z::O an Zonverges,
> 1 then ), _,an diverges,
(3) If L =1 then there is no information.

Proof: (1) Pick L < R < 1. Then there are only finitely many n satisfying
Y/|an] > R (otherwise we would have limsup,, ., V/|an| > R), so there is N such
that

Ylan| < R, ie. |a,| < R, for all n > N.

Since ZZOZO R" = ﬁ converges by Lemma 14, the comparison test Theorem 17
(1) shows that Y.~ a, converges.
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(2) Since 1 < L, there are infinitely many n satisfying ¥/|a,| > 1 (otherwise
we would have limsup,,_, . V/|a,| < 1), so there is N such that

Ve > 1, ie. |a,| > 1, for all n > N.

Thus we cannot have |a,| — 0 as n — oo, and it follows that Y.~ a, diverges.
(3) The class of p-series shows that the root test gives no information on con-
vergence when L = 1. Indeed, if p > 0, then

lim sup §f = =1 ( ! ) |
im su — =lim su =

n4»£L> np nAAEL C/ﬁ
by limit (3) at the beginning of the previous section. Yet for p < 1 the series

o0 1 . . o0 1
> n—1 77 diverges and for p > 1 the series ) |~ - converges.

COROLLARY 9. Let {a,}, -, be a sequence in C and set L = limsup,, . {/|an|.
Let R = + (where R = 0 if L = 0o and R = oo if L = 0). Then the set of

convergence
o0
E=<2z€eC: 5 anz™ converges p ,
n=0

satisfies one of the following:
(1) E={0} if R=0,
(2) E=Cif R =00,
(3) BO,R)C EC B(0,R) if0< R < 0.
The extended real number R is called the radius of convergence of the power
series Y 0 an2".
Proof: Apply the root test to the series Y a,2" for z € C. We have
L =1lim sup y/|a,z"| = |z|lim sup V/|a,| = %'
Thus if z € B(0,R), then L < 1 and the series > °  a,2z" converges, i.e. z € E.

If = ¢ B(0,R), then L > 1 and the series Y. ja,z" diverges, i.e. z ¢ E. This
proves assertion (3), and the first two assertions are proved in similar fashion.

There is another test, the ratio test, that is often simpler to apply than the
root test, but fails to have as wide a scope as the root test.

THEOREM 22. (Ratio Test) Let {a,}.., be a sequence of complex numbers.
An41

(1) Iflimsup,_, |22
(2) If there is N such that

<1 then 07, an converges.

QAn 41
an

>1 for alln > N, then > 0" a, diverges.

REMARK 11. If L = lim, e
and Y0 o an diverges if L > 1.

An41
An

exists, then Y -, a, converges if L < 1,

An+41
An

Proof: (1) Pick limsup,,_, ., < R < 1. Then there are only finitely

An+1
An

many n satisfying > R (otherwise we would have limsup,,_, > R),

Ant1
An

so there is N such that

an+l
an

<R, ie. |apt1]| < Rlay|, foralln > N.
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By induction we obtain

lanix| < Rlanir—1] < R? lanir—2| < ... < RFlan|, k>0.
Now Y32y R¥ |an| = ‘f_”é by Lemma 14, and so the comparison test Theorem 17

(1) shows that Y 7, an+, converges, hence also Y7 ay,.
(2) By induction we have

lan+x| > lan+k—1] > ... > |an|, Kk >0.
Thus we cannot have |a,| — 0 as n — oo and so >~ a,, diverges.
PROBLEM 1. What is the radius of convergence of the power series

o0 o0
2n 2n)!

S (A )=y e
n nln!

n=0 n=0

The root test is very hard to apply here without Stirling’s formula n! ~ v/27n (%)n
On the other hand the ratio test applies easily:

(2n+2)! n+1

. |ant . DHCESYE
lim |27t lim %
n—oo Qp n—oo 2n)! _n

nin!

o ‘(2714—2) 2n+1)
A D) et 1)

z‘:4|z|.

By the remark following the ratio test, the power series converges if |z| < L and

1
: ; 1 . 1
diverges if |z| > ;. Thus the radius of convergence is 7.

PROBLEM 2. What is the radius of convergence of the power series y -, i ?
Since

Zn+1
. Qp+41 . n+1)! . z
lim |[——| = lim ( n) = lim =0,
n—oo anp n—oo 2—’ n—oo |n + 1

we see that the radius of convergence is co. This is the exponential function

oo

(3.1) Eap(z) =Y =

nl’

n
zeC.
n=0

Finally, we note the sense in which the scope of the ratio test is not as wide as
that of the root test.

PRrOPOSITION 11. For any sequence {an}zozl of positive numbers we have

. a
lim sup a, <lim sup ntl

n—00 n—oo On

Thus the root test gives convergence of the series Y - a, whenever the ratio
test does.

Proof: Suppose L = limsup,,_, . a2:1 < o0 and choose L < R < co. Then
there is N such that

any1 < Ra,, n>N.

By induction we have

an+k < Ranyp-1 < R?anyp—2 < .. < Rfay, k>0,
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and so with n = N + k,

1 1 k 1 N 1 N 1
W= (CLN-Hg)E < (Rk |aND" = Rma]’{, = Rl_maj\; = Rl—?aﬁi
Now we take the limit superior as n — oo to obtain
. . _n 1 . an =
lim sup {/a, < Rlim sup R »a} = Rlim sup (—N> =R

n—00 n— o0 n— oo

by limit (2) at the beginning of the previous subsection. Since R > L was arbitrary
we conclude that limsup,, ,., /a, < L =limsup,,_, % as required.



CHAPTER 5

Continuity and Differentiability

The notion of a continuous function f : X — Y makes sense when the function
is defined from one metric space X to another Y. We will initially examine the
connection between continuity and sequences, and after that between continuity
and open sets. The notion of a differentiable function f : X — Y requires that X
and Y be Euclidean spaces, usually the real or complex numbers. Central to all of
this is the concept of limit of a function.

DEFINITION 24. Suppose that (X,dx) and (Y,dy) are metric spaces. Let E be
a subset of X and suppose that f : E — Y is a function from E toY. Let p € X
be a limit point of E and suppose that q € Y. Then

lim f (z) =q
T—p
if for every e > 0 there is § > 0 such that
(0.2) dy (f (x),q) < € whenever x € E\ {p} and dx (z,p) <.

Note that the concept of a limit of f at a point p is only defined when p is a
limit point of the set E on which f is defined. Do not confuse this notion with the
definition of limit of a sequence s = {s,} _, in a metric space Y. In this latter
definition, s is a function from the natural numbers N into the metric space Y, but
the limit point p is replaced by the symbol co. Here is a characterization of limit
of a function in terms of limits of sequences.

THEOREM 23. Suppose that (X,dx) and (Y,dy) are metric spaces. Let E be a
subset of X and suppose that f : E —Y is a function from F toY. Let p € X be
a limit point of E and suppose that ¢ € Y. Then lim,_,, f () = ¢ if and only if

lim f (s,) = q
for all sequences {s,},-, in E\ {p} such that

lim s, = p.
n—oo

Proof: Suppose first that lim, ., f (z) = ¢. Now assume that {s,} ., is a
sequence in E'\ {p} such that lim,,_,, s, = p. Then given ¢ > 0 there is 6 > 0 such
that (0.2) holds. Furthermore we can find N so large that dx (sp,p) < § whenever
n > N. Combining inequalities with the fact that s, € E gives

dy (f (sn),q) < € whenever n > N,

which proves lim, .. f (s,) = q.
Suppose next that lim,_,, f () = ¢ fails. The negation of Definition 24 is that
there exists an ¢ > 0 such that for every ¢ > 0 we have

(0.3) dy (f (z),q) > ¢ for some z € E\ {p} with dx (z,p) <é.

71
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So fix such an & > 0 and for each § = 1 > 0 choose a point s, € E \ {p} with
dx (sn,p) < L. Then {s,} 7, is a sequence in E \ {p} such that the sequence

{f (sn)},—, does not converge to ¢ - indeed, dy (f (sn),q) > ¢ >0 for all n > 1.

As a corollary of the theorem we immediately obtain that limits are unique if
they exist. In addition, if Y = C is the space of complex numbers, then limits
behave as expected with regard to addition and multiplication.

PROPOSITION 12. Suppose that (X, d) is metric space. Let E be a subset of X
and suppose that f,g: E — C are complex-valued functions on E. Let p € X be a
limit point of E and suppose that A, B € C satisfy

lim f(z) = A and lim g (z) = B.
T—p T—p

Then
(1) limg—p {f(z)+9g(2)} = A+ B.
(2) limg—, f (x) g (z) = AB.

(3) limg_, ééig = £ provided B # 0.

1. Continuous functions

A function f : X — Y from one metric space X to another Y is said to be
continuous if it is continuous at each point p in X. We thus turn first to the
definition of continuity at a point, which we give initially in a more general setting.

DEFINITION 25. Suppose that (X,dx) and (Y,dy) are metric spaces. Let E be
a subset of X and suppose that f: E —Y is a function from E toY. Letp € F.
Then f is continuous at p if for every € > 0 there is 6 > 0 such that

(1.1) dy (f (z), f (p)) < & whenever x € E and dx (z,p) < 6.
Note that (1.1) says
(1.2) f(Bp,d)NE)CB(f(p),e).

There are only two possibilities for the point p € E; either p is a limit point of F or
p is isolated in E (a point x in FE is isolated in E if there is a deleted ball B’ (z,r)
that has empty intersection with E). In the case that p is a limit point of E, then
f is continuous at p if and only if lim,_,, f (z) exists and the limit is f (p), i.e.

(1.3 lim £ (@) = / (7).

On the other hand, if p is an isolated point of F, then f is automatically continuous
at p since (1.1) holds for all ¢ > 0 with 6 = r where B’ (z,7) N E = (). From
these remarks together with Theorem 23, we immediately obtain the following
characterization of continuity in terms of sequences.

THEOREM 24. Suppose that X and Y are metric spaces. Let E be a subset of
X and suppose that f : E — Y is a function from E toY. Let p € E. Then f is
continuous at p if and only if

lim f(sn) = f(p)

for all sequences {s,},-, in E\ {p} such that

lim s, =p.

n—oo
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REMARK 12. The theorem remains true if we permit the sequences {s,}. ., to
lie in E rather than in E\ {p}.

Before continuing any further, we point out that our definition of continuity of
f+E—Y atapoint p € E C X has absolutely nothing to do with the complement
X \ E of the set E in the ambient space X. Thus the definition of continuity at
a point is intrinsic in the sense that it doesn’t matter what ambient space X we
choose to contain E, and in fact we can just restrict attention to the case X = F
is a metric space in its own right. Note that the definition of limit in Definition 24
is not intrinsic since the limit point p may not lie in the set E.

DEFINITION 26. A function f : X — Y is said to be continuous on X if f is
continuous at each point p € X.

The previous theorem says that f : X — Y is continuous if and only if
lim, . f (sn) = f (p) for all sequences {s,},.; in X such that lim, . s, = p.
There is an alternate characterization of continuity of f : X — Y in terms of open
sets which is particularly useful in connection with compact sets and continuity of
inverse functions.

THEOREM 25. Suppose that f: X — Y is a function from a metric space X to
a metric space Y. Then f is continuous on X if and only if

(1.4) I~ H(G) is open in X for every G that is open in Y.

COROLLARY 10. Suppose that f : X — Y is a continuous function from a
compact metric space X to a metric space Y. Then f(X) is compact.

COROLLARY 11. Suppose that f : X — Y is a continuous function from a
compact metric space X to a metric space Y. If f is both one-to-one and onto,
then the inverse function f~1:Y — X defined by

=Y (y) = = where x is the unique point in X satisfying f (z) =y,
18 a continuous map.
Proof (of Corollary 10): If {Ga},c 4 is an open cover of f (X), then { f~ (G4)}

is an open cover of X, hence has a finite subcover {ffl (Gak)}ljjzl. But then
{Gozk}ff:1 is a finite subcover of f (X) since

N N N
fXxycs (U ! (Gak)> c U (1 (Ga) € | Gar-
k=1 k=1

k=1

a€cA

Note that it is not in general true that f=! (f (G)) C G.

Proof (of Corollary 11): Let G be an open subset of X. We must show that
(f_l)_1 (G) is open in Y. Note that since f is one-to-one and onto, we have
(f_l)_1 (G) = f(G). Now G° = X \ G is closed in X, hence compact, and so
Corollary 10 shows that f (G¢) is compact, hence closed in Y, so f (G¢) is open in
Y. But again using that f is one-to-one and onto shows that f (G) = f(G)°, and
so we are done.

REMARK 13. Compactness is essential in this corollary since the map
f:00,2n) = T={2€C:|z| =1} defined by f (§) = e = (cosh,sinb),
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takes [0,2m) one-to-one and onto T, yet the inverse map fails to be continuous at
z = 1. Indeed, for points z on the circle just below 1, f=!(z) is close to 2w, while
fry=o.

Proof (of Theorem 25): Suppose first that f is continuous on X. We must
show that (1.4) holds. So let G be an open subset of Y. We must now show that
for every p € f~! (G) there is > 0 (depending on p) such that B (p,r) C f~1(Q).
Fix p € f~1(G). Since G is open and f(p) € G we can pick ¢ > 0 such that
B(f(p),e) C G. But then by the continuity of f there is § > 0 such that (1.2)
holds, i.e. f(B(p,d)) C B(f(p),e) C G. It follows that

B(p,6) C f7H(f(B(p,9)) C fTH(G).
Conversely suppose that (1.4) holds. We must show that f is continuous at
every p € X. So fix p € X. We must now show that for every € > 0 there is 6 > 0
such that (1.2) holds, 1e f(B(p,d)) C B(f(p),e). Fixe > 0. Since B(f (p),¢) is

(
open, we have that f (B(f (p), €)) is open by (1.4). Since p € f~1 (B (f (p),¢))
there is thus § > 0 such that B (p,8) C f~1 (B (f (p),e)). It follows that

F(B@8)Cf(f (B(f(p),e) cB(f(p),e).

Before specializing to the case where Y is the space of real or complex numbers,
we show that continuity is stable under composition of maps. Continuity on a metric
space is easily handled with the help of Theorem 25.

THEOREM 26. Suppose that X,Y,Z are metric spaces. If f : X — Y and
g:Y — Z are both continuous maps, then so is the composition h=go f: X — Z
defined by

hiz)=g(f(z), =zeX
Proof: If G is open in Z, then
hHG) = (97H(@)
is open since g continuous implies ¢g~! (G) is open by Theorem 25, and then f

continuous implies f 1 (g_1 (G)) is open by Theorem 25. Thus / is continuous by
Theorem 25.

Continuity at a point is also easily handled using Definition 25. We leave the
proof of the following theorem to the reader.

THEOREM 27. Suppose that X,Y,Z are metric spaces. If p € E C X and
f:+E —Y is continuous at p and g : f (E) — Z is continuous at f (p), then the
composition h =go f: E — Z is continuous at p.

1.1. Real and complex-valued continuous functions. Proposition 12 es-
tablished limit properties for sums and products of complex-valued functions, and
some definition chasing easily leads to the following analogous result for continuous
maps.

ProrosiTioN 13. If f and g are continuous complex-valued functions on a
metric space X, then so are the functions f + g and fg. If in addition g never

vanishes, then 5 is also continuous on X.

Here is an extremely useful consequence of Corollary 10 when the target space
Y is the real numbers.
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THEOREM 28. Suppose that X is a compact metric space and f : X — R is
continuous. Then there exist points p,q € X satisfying

f(p)=supf(X) and f(q) =inf f (X).

REMARK 14. Compactness of X is essential here as evidenced by the following
example. If X is the open interval (0,1) and f : (0,1) — (0,1) is the identity map
defined by f (x) = x, then f is continuous and

sup f ((07 1)) = Sup (07 1) =1,
inf £((0,1)) = inf(0,1) = 0.
However, there are no points p,q € (0,1) satisfying either f (p) =1 or f(q) =0

Proof (of Theorem 28): Corollary 10 shows that f (X) is compact. Lemmas 4
and 6 now show that f (X) is a closed and bounded subset of R. Finally, Theorem

5 shows that sup f (X) exists and that sup f (X) € f (X), i.e. there is p € X such
that sup f (X) = f (p). Similarly there is ¢ € X satisfying inf f (X) = f (q).

Now consider a complex-valued function f : X — C on a metric space X, and
let u: X — R and v : X — R be the real and imaginary parts of f defined by

u(z) = Ref(x)z7f(ac)—;f(ac)7
vi@) = =01

for z € X. It is easy to see that f is continuous at a point p € X if and only if each
of uw and v is continuous at p. Indeed, the inequalities

max {[a| , [b|} < /lal® + [b]* < |a] + [?]
show that if (1.1) holds for f (with E = X), i.e
de (f (), f (p)) < € whenever dx (x,p) < 9,
then it also holds with f replaced by u or by v:

dr (u(z),u(p)) = [u(z) —u(p)|

VIu@) —u @) + o (@) — v ()
— Ao (f >,f<p>><s

whenever dx (z,p) < 4.

Similarly, if (1.1) holds for both w and v then it holds for f but with & replaced by
2e:

IA

de (f (=), f (p))

VIu@) —u @ + o (2) — v ()
\u() <>|+|v<w>—v<p>|
ds (u () (p)) + di (v () v (p)) < 2

whenever dx (x,p) < 0.

IN

The same considerations apply equally well to Euclidean space R™ (recall that
C = R? as metric spaces) and we have the following theorem. Recall that the
dot product of two vectors z = (z1,...,2,) and w = (wq, ..., w,) in R™ is given by
Z-W =) 1 ZpW.
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THEOREM 29. Let X be a metric space and suppose £ : X — R™. Let fi (x) be
the component functions defined by f () = (f1 (x), ..., fn (¥)) for 1 <k <n.

(1) The vector-valued function £ : X — R™ is continuous at a point p € X if
and only if each component function fr : X — R is continuous at p.

(2) If both £ : X — R"™ and g : X — R™ are continuous at p then so are
f+g: X —=R"andf-g: X - R.

Here are some simple facts associated with the component functions on Euclid-
ean space.

e For each 1 < j < n, the component function w = (w1,...,w,) — w;j is
continuous from R"™ to R.

e The length function w = (wy,...,w,) — |W| is continuous from R" to
[0, 00); in fact we have the so-called reverse triangle inequality:

|z| — |w|| <|z—w|, z,weR™
e Every monomial function w = (wy, ..., w,) — w’fl w’;?ws is continuous

from R™ to R.
e Every polynomial P (w) =3, . , _y by ... o, W WK Wk is continu-
ous from R" to R.

1.2. Uniform continuity. A function f: X — Y that is continuous from a
metric space X to another metric space Y satisfies Definition 25 at each point p in
X, namely for every p € X and ¢ > 0 there is §,, > 0 (note the dependence on p)
such that (1.1) holds with £ = X:

(1.5) dy (f (z), f (p)) < € whenever dx (z,p) < Jp.

In general we cannot choose 6 > 0 to be independent of p. For example, the function
f (z) = L is continuous on the open interval (0,1), but if we want

1 1
- = ’ whenever [p — z| < 4,
r p

e>dy (f(z),f(p) =

we cannot take p = § since then x could be arbitrarily close to 0, and so % could
be arbitrarily large. In this example, X = (0, 1) is not compact and this turns out
to be the reason we cannot choose § > 0 to be independent of p. The surprising
property that continuous functions f on a compact metric space X have is that we
can indeed choose d > 0 to be independent of p in (1.5). We first give a name to
this surprising property; we call it uniform continuity on X.

DEFINITION 27. Suppose that f : X — Y maps a metric space X into a metric
space Y. We say that f is uniformly continuous on X if for every ¢ > 0 there is
0 > 0 such that

dy (f (z), f (p)) < & whenever dx (z,p) < 0.

The next theorem plays a crucial role in the theory of integration and its ap-
plication to existence and uniqueness of solutions to differential equations.

THEOREM 30. Suppose that f : X — Y is a continuous map from a compact
metric space X into a metric space Y. Then f is uniformly continuous on X.
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Proof: Suppose ¢ > 0. Since f is continous on X, (1.2) shows that for each
point p € X, there is d,, > 0 such that

(1.6) FBE.5,) CB(f().5)-

) ‘@”’

N
) } has a finite subcover {B (pk, 5’%) }
pEX

k=1
N
0 = min {5[)"} .
2 k=1

Since the minimum is taken over finitely many positive numbers (thanks to the
finite subcover, which in turn owes its existence to the compactness of X), we have
0 >0.

Now suppose that z,p € X satisfy dx (z,p) < 6. We will show that

dy (f (z), f(p)) <e.

Choose k so that p € B (pk, 6’%) Then we have using the triangle inequality in
X that

Since X is compact, the open cover {B (p,
Now define

J ) J
dX (xapk) S dX (:C,p) + dX (p7pk) < 5+ % S % + % = 6pka
so that both p and z lie in the ball B (p, d,, ). It follows from (1.6) that both f (p)
and f (z) lie in

7 (B (pr.6,)) € B (£ (). 5) -

Finally an application of the triangle inequality in Y shows that

dy (f (@), J (0)) < dv (F (&) . f (1) + v (F (00) . F () < 5 + 5 = <.

1.3. Connectedness.

DEFINITION 28. A metric space X is said to be connected if it is not possible

to write X = E U F where E and F are disjoint nonempty open subsets of X. A
subset Y of a metric space X is connected if it is connected when considered as a
metric space in its own right. A set that is not connected is said to be disconnected.

Equivalently, X is disconnected if it has a nonempty proper clopen subset (a
clopen subset of X is one that is simultaneously open and closed in X).

LEMMA 16. A subset Y of X is disconnected if and only if there are nonempty
subsets £ and F' of X withY = EUF and
(1.7) ENF=0and ENF =0,
where the closures refer to the ambient metric space X .

Proof: Theorem 4 shows that E is an open subset of the metric space Y if
and only if FN F = (. Similarly, F' is open in Y if and only if EN F = (). Finally,
E is clopen in Y if and only if both £ and F =Y \ E are open in Y.

The connected subsets of the real line are especially simple - they are precisely
the intervals
[a7 b] Y (a'3 b) ) [a? b) ) (a” b]
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lying in R with —oo < a < b < 0o (we do not consider any case where a or b is £o00
and lies next to either [ or ]).

THEOREM 31. The connected subsets of the real numbers R are precisely the
intervals.

Proof: Consider first a nonempty connected subset Y of R. If a,b € Y, and
a < ¢ < b, then we must also have ¢ € Y since otherwise ¥ N (—oo, ¢) is clopen in
Y. Thus the set Y has the intermediate value property (a,b € Y and a < ¢ < b
implies ¢ € Y), and it is now easy to see using the Least Upper Bound Property of
R, that Y is an interval. Conversely, if Y is a disconnected subset of R, then Y has
a nonempty proper clopen subset E. We can then find two points a,b € Y with
a€ Eandbe F=Y \ E and (without loss of generality) a < b. Set

c=sup(ENJa,b]).

By Theorem 5 we have ¢ € E, and so ¢ ¢ F by (1.7). If also ¢ ¢ E, then Y fails the
intermediate value property and so cannot be an interval. On the other hand, if
c € E then ¢ ¢ F (the closure of F), and so there is d € (¢,b) \ F. But then d ¢ E
since d > ¢ and so lies in (a,b) \ Y, which again shows that Y fails the intermediate
value property and so cannot be an interval.

Connected sets behave the same way as compact sets under pushforward by a
continuous map.

THEOREM 32. Suppose f: X — Y is a continuous map from a metric space X
to another metric space Y, and suppose that A is a subset of X. If A is connected,
then f (A) is connected.

Proof: We may suppose that A = X and f(A) = Y. If Y is disconnected,
there are disjoint nonempty open subsets F and F' with ¥ = FE U F. But then
X = f~1(E)Uf~! (F) where both f~! (E) and f~! (F) are open in X by Theorem
25. This shows that X is disconnected as well, and completes the proof of the
(contrapositive of the) theorem.

COROLLARY 12. If f : R — R is continuous, then f takes intervals to intervals,
and in particular, f takes closed bounded intervals to closed bounded intervals.

Note that this corollary yields two familiar theorems from first year calculus, the
Intermediate Value Theorem (real continuous functions on an interval attain their
intermediate values) and the Extreme Value Theorem (real continuous functions on
a closed bounded interval attain their extreme values).

Proof: Apply Theorems 32, 11 and 10.

Finally we have the following simple description of open subsets of the real
numbers.

PROPOSITION 14. Every open subset G of the real numbers R can be uniquely
written as an at most countable pairwise disjoint union of open intervals {I,}, < :

o= U

n>1
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Proof: For z € G let
I, = U {all open intervals containing = that are contained in G} .
It is easy to see that I, is an open interval and that if x,y € G then
either I, = I, or I, N I, = 0.

This shows that G is a union |J, 4 [ of pairwise disjoint open intervals. To see
that this union is at most countable, simply use (2) of Proposition 3 to pick a
rational number r, in each I,. The uniqueness is left as an exercise for the reader.

2. Differentiable functions

We can define the derivative of a real-valued function f at a point p provided f
is defined on an interval I containing p. We give the definition when [ is a closed
interval, the remaining cases being similar.

DEFINITION 29. Suppose f : [a,b] — R and that p € [a,b]. Then p is a limit
point of E = [a,b]\ {p} and the function Q (z) = %{)(p) of Difference Quotients
is defined on E. We say that f is differentiable at x if there is ¢ € R such that

lim Q (z) = ¢
x—p

in accordance with Definition 24. In this case we say that q is the derivative of f
at p and we write

(2.1) ' (p) =q=lim Q (z) = lim M

z—p z=p T —P

In the case p = a, we say that f’ (a) defined as above is a right hand derivative
of f at a, while if p = b, we that f’ (b) is a left hand derivative of f at b. We can
of course define left and right hand derivatives of f at p € (a,b) by restricting the
domain of f to [a,p] and [p, b] respectively. If f is differentiable at every point in a
subset E of [a,b], then we say that f is differentiable on E.

REMARK 15. The Difference Quotient %ﬁ(") is the slope of the line segment
joining the points (p, f (p)) and (z, f (z)) on the graph of f. Thus if f' (p) exists, it

is the limiting value of the slopes of the line segements (p, f (p)) (z, f (z)) as z — p,
and so we define the line L through the point (p, f (p)) having this limiting slope
1 (p) to be the tangent line to the graph of f at the point (p, f (p)). The equation
of the tangent line L is

(2.2) y=f)+f(®E-p, zck

LEMMA 17. Suppose f : [a,b] — R and that p € [a,b]. If f is differentiable at
p, then f is continuous at p.

Proof: We have
lim (f (z) — £ (p))

oy (LEL=L6Y)

(=) ()
= f'(p)-0=0,

which implies lim,_,, f (z) = f (p). Thus f is continuous at p by (1.3).
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Now we investigate the calculus of derivatives. First we have the derivative
calculus of the field operations. To state the formulas we revert to the more common
notation of using x in place of p as the point at which we compute derivatives.

PROPOSITION 15. Suppose that f,g : (a,b) — R are functions differentiable at
a point x € (a,b), and suppose that ¢ € R represents the constant function. Then
we have

(1) (f+9) (@) = f'(2) + 4 (x),

(2) (cf) (2) = cf' (2),

3) (f9)' (@) = f'(2) g () + [ () ¢’ (x),

(4) ( ) () = I (x)g(x)(w)f(x)g @) provided g () # 0.

Proof: For example, to prove (3) we use (2.1) and the corresponding properties
of limits to obtain

(f¢) (z) = lim (f9) y) — (fg) (z)

Yy—x y —

y—x y—z

lim g (y) + f (z) lim M
y—z Y —T y—a y—z Y —x

= [@)g@)+f(z)g (z).

The other formulas are proved similarly.

Second we have the calculus of composition of functions, the so-called "chain
rule". This is most easily proved using an equivalent formulation of differentiability
due to Landau. We begin by rewriting (2.1) in the alternate form

P a) = i LEEW @)

h—0 h

Then we rewrite this latter expression using Landau’s "little oh" notation as
(2.3) fl@t+h)=f(@)+f (@h+o(h),
where o (h) denotes a function of h satisfying @ —0ash—0.

PROPOSITION 16. Suppose that f is differentiable at x and that g is differen-
tiable at y = f (z). Then

(go ) (z) =g (y) [ (@) =g (f (2)) ' ().

Proof: We use the Landau formulation (2.3) of derivative and the correspond-
ing properties of limits as follows. Write

fla+h) = f(@)+f(z)hi+o1(h),

gW+ha) = gy)+g (y) ha+o2(ha),
and then with

hy = f(z+h) = f(z)=f"(2) b1+ 01 (M),
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we have,
(go f)(z+h) g(f(z+h1))
= g(f(x)+ f () h1 +o01 (k1))
= g(y+ho)
= 9(y) +9 (y) ha + 02 (h2)

(go f) (@) +g () {f () hi+ 01 (h1)} + 02 (h2)
(go f)(x)+d (y) f' () hi+ 03 (h1)

where using limp, .0 he = 0, we conclude that as h; — 0,

03}5’;1) = ¢ () 01}(:1) n 02}552) [ (z) hl};; 01 (h1)

—9g' (y)-0+0-f (z)=0.

EXAMPLE 8. There is a function f : R — R whose derivative f' : R — R exists
everywhere on the real line, but the derivative function f' is not itself differentiable
at 0, not even continuous at 0. For example

z2sint  if x#0
J @)= { 0 if =0
has these properties. Indeed,
1 1

rion_ ) 2wsing —cos  if T #O0
f(l’){ 0 if =0

fails to be continuous at the origin.

PROPOSITION 17. Suppose that f : [a,b] — R is continuous and strictly in-
creasing. Let x € (a,b) and set y = f (x). If [ is differentiable at x and f' (z) # 0,
then f~' is differentiable at y and

1 1
@) )
Proof: We first note that by Corollary 12, f : [a,b] — [f (a), f (b)] is contin-

uous, one-to-one and onto. Thus Corollary 11 shows that f~! is continuous. Then
with

(F Y )

h=f"y+k)—f W =r"w+k —=

we have
fla+h)=f(fy+k)=y+k,
and so
TR = ) B o
k f@+h)—f(x) f(2)

as k — 0 since f’ (x) # 0 and

lim b= lim (f~* (y+k) = f7' (1)) =0

by the continuity of f~! at ¥.



82 5. CONTINUITY AND DIFFERENTIABILITY

2.1. Mean value theorems. We will present four mean value theorems in
order of increasing generality. They all depend on the following theorem of Fermat.
If f: X — R where X is any metric space, we say that f has a relative mazimum
at a point p in X if there is § > 0 such that

f(p)> f(x) forall z € B(p,d).
A relative minimum is defined similarly.

THEOREM 33. Suppose f : [a,b] — R and p € (a,b). If f has either a relative
mazimum or a relative minimum at p, and if f is differentiable at p, then

f'(p)=0.

Proof: Suppose f has a relative maximum at p. Then there is 6 > 0 such that
fx)—f(p)<0forze(p—4dp+3). It follows that

M < 0, for x € (p,p+9),
r—p
f@) = fp) > 0, forze(p—4,p).
r—p
If we take a sequence {x,},, in (p,p+ &) converging to p, we see that
n—oo Tp — P

and if we take a sequence {z,} ., in (p — d,p) converging to p, we see that

n—oo {L‘n — p

> 0.

Combining these inequalities proves that f’ (p) = 0. The proof is similar if f has a
relative minimum at p.

THEOREM 34. (First Mean Value) Suppose that f : [a,b] — R is continuous
on la,b] and differentiable on (a,b). If f(a) = f(b) = 0, then there is ¢ € (a,b)
such that

f'(c)=0.

Proof: If f =0 then any ¢ € (a,b) works. Otherwise we may suppose without
loss of generality that f (z) > 0 for some z. Then by Theorem 28 there is ¢ € [a, ]
such that

sup f ([a,0]) = f ().
Since f (¢) > f(x) > 0 we must have ¢ € (a,b), and so f has a relative maximum
at ¢. Theorem 33 now implies f/ (c) = 0.

THEOREM 35. (Second Mean Value) Suppose that f : [a,b] — R is continu-
ous on [a,b] and differentiable on (a,b). Then there is c € (a,b) such that

P CENI0)

b—a
Proof: Define g : [a,b] — R by
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so that g (x) is the signed vertical distance from the graph of f at x to the graph
of the line joining (a, f (a)) to (b, f (b)) at . Then g satisfies the hypotheses of
Theorem 34 and so there is a point ¢ € (a, b) satisfying

0=g ()= f (o - 1O,

Note that the conclusion of the second mean value theorem can be rewritten
as

(2.4) fO)=f(a)+f () (b—a).

THEOREM 36. (Third Mean Value) Suppose that f,g : [a,b] — R are each
continuous on [a,b] and differentiable on (a,b). Then there is ¢ € (a,b) such that
[9(0) =g (a)] f' () = [f (b) = f(a)lg' ().

Proof: Define h : [a,b] — R by

h(z) =g () —g(a)l f(z) = [f(b) = f(a)lg(x), a<z<b

Then h satisfies the hypotheses of Theorem 35 and a small calculation shows that
h(a) = h(b). So there is a point ¢ € (a, ) satisfying
h(b) —h(a
% =H(c)=[g(b) —g(a)] f'(c) = [f (b) — f(a)l g’ (c).

DEFINITION 30. If f : [a,b] — R is differentiable on [a,b], and if f' : [a,b] — R
is differentiable on a subset E of [a,b], then we define f"" = (f') on E, and call
f" the second deriwative of f on E. More generally, for n > 2 we define f =
(f("_l))/on E if f=V s defined on an interval containing E.

0=

The form (2.4) can be generalized to higher order derivatives.

THEOREM 37. (Fourth Mean Value) Suppose that f : [a,b] — R isn —1
times continuously differentiable on [a,b], i.e. f, f',..., f*~V) are each defined and
continuous on [a,b], and suppose that =Y is differentiable on (a,b), i.e. f(
exists on (a,b). Then there is ¢ € (a,b) such that

_ ’ 7 (b— Q)Q n—1 (b— a)n_l
JO) = J@+L@b=a)+f" (@) 5+t (@) S
0 () L=
n—1 k n
3 50 @) O g o O
k=0

Proof: Define g : [a,b] — R by
(z—a)"

1 + M (z—a)", a<xz<b

)

n—1
g(@) =f(z)=> P (a)
k=0
and where M is the number uniquely defined by requiring ¢ (b) = 0, i.e.

I = P
M(b—a)" =) f® (@) ==~ f (b).
k=0
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Calculations show that

n—1 k—1
@9 5@ = F@ - T 0 G e e o
n_—l (SL‘ _ a)k-?
g (x) = f'(z)- f(k)(a)w+"("—1)M(x_a)n_27
k=2
g V(@) = fO V@) - V@) +nn-1)...3)(2) 1) M (z—a),
g™ () = f™(x)—0+n!M.

Now the conclusion of the theorem is that

n n—1 k
R R DY LI R TR

n!

i.e. f0 (¢) +n!M = 0. Thus using the last line in (2.5) we see that we must show
g™ (¢) = 0 for some ¢ € (a,b).
Now the £*" line of (2.5) shows that

(2.6) g9 )= fOD%) - fO@)+0=0, 0<l<n-—1.
Since g (a) = g (b) = 0, the first mean value theorem shows that there is ¢; € (a,b)
satisfying

g (c1) =0.
Using (2.6) we see that ¢’ (a) = ¢’ (c1) = 0, and so the first mean value theorem
shows that there is ¢a € (a,c;) satisfying

9" (c2) = 0.
Continuing in this way we obtain ¢, € (a, c;—1) satisfying

g(Z) (C@) =0,

for each 1 < ¢ < n. The number ¢ = ¢, € (a,b) satisfies g™ (c) = 0 and this
completes the proof of the fourth mean value theorem.

REMARK 16. The first three mean value theorems can each be interpreted as
saying that there is a point on a curve whose tangent is parallel to the line seg-
ment joining the endpoints of the curve. For example, in the second theorem, f’(c)
is the slope of the tangent line to the graph of [ at (c, f(c)), while W s
the slope of the line joining the endpoints (a, f (a)) and (b, f (b)) of the graph. In

the third theorem, g:ég is the slope of the parametric curve v — (f (x),g(z)) at

the point (f (¢),g(c)), while % is the slope of the line joining the endpoints
(f(a),g(a)) and (f (b),g(b)). On the other hand, the second and fourth theo-
rems can each be interpreted as saying that a function can be approvimated by a
polynomial.
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2.2. Some consequences of the mean value theorems.

THEOREM 38. (monotone functions) Suppose f : (a,b) — R is differentiable.
(1) If f' (z) =0 for all € (a,b), then f is constant on (a,b).
(2) If f' (x) > 0 (respectively f' (x) <0) for all x € (a,b), then f is monoton-
ically increasing (respectively decreasing) on (a,b).
Proof: Apply (2.4) of the second mean value theorem to the interval [a, (] for
any a < a < 8 < b to obtain

fB)=f(@)+f(c)(B—a),
for some ¢ € (o, B).
(1) If f'(¢) =0 for all c € (o, ), then f(B) = f(a) foralla < a < < b.

(2) If f'(¢) > 0 for all ¢ € (e, B), then f(B) > f () foralla < a < g < b. If
f'(c)<0forall ce (a,pB), then f(8) < f(a)foralla<a<f<b.

Recall from Corollary 12 that continuous functions have the Intermediate Value
Property. The next theorem shows that derivatives also have the Intermediate Value
Property, despite the fact that they need not be continuous functions - see Example
8. This is often referred to as a continuity property of derivatives.

THEOREM 39. (continuity of derivatives) Suppose f : [a,b] — R is differen-
tiable. If f' (a) < A < f'(b), then there is ¢ € (a,b) such that f'(c) = .

Proof: We effectively reduce matters to the case A = 0 by considering g :
[a,b] — R defined by

g(@)=f(x)— Az, z€la,b].
By Theorem 28 there is a point p € [a, b] such that
inf g ([a,b]) = g (p) -
We claim that p € (a,b), i.e. that p cannot be either of the endpoints a or b. Indeed,

(2.7) g (z) = f'(z) = X
and so
g (a) = f(a)=A<0,
G = FB-A>0.

Since 0 > ¢ (a) = lim;_,q %, there is some 1 € (a,b) such that
g(z1) —g(a) <0,

and this shows that p # a. Since 0 < ¢’ (b) = lim,_ g(miig(b), there is some
x2 € (a,b) such that

g(2) —g(b) <O,
and this shows that p # b. Thus g has a relative minimum at p and by Theorem
33 we conclude that ¢’ (p) = 0. Hence f' (p) = A by (2.7).

THEOREM 40. (I’Héspital’s rule) Suppose f,g : (a,b) — R are each differen-
tiable, and that ¢’ () # 0 for all a < x < b. Iflim, ., f (z) = limy_ag(z) =0

and ,
tim L&) _
v—a g (z)
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then
lim f(x) =
a—a g (z)
Proof: Given € > 0 there is § > 0 such that
!
f/(a:) —L‘ <eforalla<z <a+d.
g (z)

Now for a < o < 8 < a + ¢, the third mean value theorem gives a point ¢ € (a, )
such that

|
—
~
=
N—

|
\
—
L
b\
S
N—

[9(8) =g ()] f (¢)

and since ¢’ (¢) # 0 we can write

Q) _ fB)~f(e)

Thus we have

fB)—f(o)
—r -~ L fi 11 .
70 =g Li<eforalla<a<f<a+d
Now let @ — a and use lim,—,, f (@) = limy—4 g (@) = 0 to get
f(B)

— L Ll <eforalla < p <a+d.
9(B) ‘
f(x)

This completes the proof that lim,_., % = L.



Part 2

Integration



In the second part of these notes we consider the problem of describing the
inverse operation to that of differentiation, commonly called integration. There are
four widely recognized theories of integration:

e Riemann integration - the workhorse of integration theory that provides
us with the most basic form of the fundamental theorem of calculus;

e Riemann-Stieltjes integration - that extends the idea of integrating the
infinitesmal dz to that of the more general infinitesmal da (x) for an in-
creasing function .

e Lebesgue integration - that overcomes a shortcoming of the Riemann the-
ory by permitting a robust theory of limits of functions, all at the expense
of a complicated theory of ‘measure’ of a set.

e Henstock-Kurtzweil integration - that includes the Riemann and Lebesgue
theories and has the advantages that it is quite similar in spirit to the
intuitive Riemann theory, and avoids much of the complication of mea-
surability of sets in the Lebesgue theory. However, it has the drawback of
limited scope for generalization.

In Chapter 6 we follow Rudin [3] and use uniform continuity to develop the
standard theory of the Riemann and Riemann-Stieltjes integrals. A short detour
is taken to introduce the more powerful Henstock-Kurtzweil integral, and we use
compactness to prove its uniqueness and extension properties.

In Chapter 7 we prove the familiar theorems on uniform convergence of func-
tions and apply this to prove that the metric space Cg (X) of real-valued continuous
functions on a compact metric space X is complete. We then use integration theory
and the Contraction Lemma from Chapter 4 to produce an elegant proof of exis-
tence and uniqueness of solutions to certain initial value problems for differential
equations. We also construct a space-filling curve and the von Koch snowflake.

Chapter 8 draws on Stein and Shakarchi [5] to provide a rapid introduction to
the theory of the Lebesgue integral.



CHAPTER 6

Riemann and Riemann-Stieltjes integration

Let f :[0,1] — R be a bounded function on the closed unit interval [0, 1]. In
Riemann’s theory of integration, we partition the domain [0, 1] of the function into
finitely many disjoint subintervals

N
U LTy — lyxna

and denote the partition by P = {0 =xz¢ < 21 < ... < zn = 1} and the length of
the subinterval [x,—1,2,] by Az, = x, — -1 > 0. Then we define upper and
lower Riemann sums associated with the partition P by

N
U (f;P) Z( sup f)Axn,

[In 1 zﬂ]

L(f;P) = i( inf )Amn.

[Zn—1,%n]

Note that the suprema and infima are finite since f is bounded by assumption.
Next we define the upper and lower Riemann integrals of f on [0, 1] by

U =ifU(fiP), L) =swL(fP).

Thus the upper Riemann integral U (f) is the "smallest" of all the upper sums, and
the lower Riemann integral is the "largest" of all the lower sums.

We can show that any upper sum is always larger than any lower sum by con-
sidering the refinement of two partitions P; and Po: P; U Ps denotes the paritition
whose points consist of the union of the points in P; and P, and ordered to be
strictly increasing.

LEMMA 18. Suppose f : [0,1] — R is bounded. If P; and Py are any two
partitions of [0,1], then

(0.8) U(f;P1) 2U(f;PrUP2) > L(f;P1UP2) > L(f;Pa).
Proof: Let
P = {0=xzo<z1 <..<zpr =1},
Py = {0=yo<y1 <..<yn=1},
PiUPy = {0=2<2z<..<zp=1}.

Fix a subinterval [x,,_1,x,] of the partition P;. Suppose that [z,_1,z,] contains
exactly the following increasing sequence of points in the partition P; U Ps:

20, < 20,41 < oo < 20, 4mys

89
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ie. zp, = xp—1 and 2, +ym, = Tpn. Then we have

( sup f>Amn = ( sup f> ZAZ&LH
[ [ j=1

Tn—1,Tn] Tn—1,Tn]

M,
> sup  f ) Dz,
=1 \[Zen+i—1:7e +5]

since suppz, .z, ) S SUPR, o) f When [ze, o1, 20,45] C [2n-1, 0] If we
now sum over 1 <n < M we get

Umm::2<prA%

n=1 [fn—laxn]

M m,
sup fl Az, 44
n=1 j=1 \[Ztn+i—1:2en+;]

P
= ( sup f>Asz(f;P1UP2)~
[

Zp—1,2p]

Y

(]
i\g

Similarly we can prove that
L(fiP2) S L(f;P1UP2).

Since we trivially have L (f;P1 UP2) < U (f;P1UPs), the proof of the lemma is
complete.

Now in (0.8) take the infimum over P; and the supremum over P, to obtain
that

Uf)zLf),

which says that the upper Riemann integral of f is always equal to or greater than
the lower Riemann integral of f. Finally we say that f is Riemann integrable on
[0,1], written f € RI[0,1], if U (f) = L(f), and we denote the common value by
1 1

fo f or fo f(z)dz

We can of course repeat this line of definition and reasoning for any bounded
closed interval [a, b] in place of the closed unit interval [0, 1]. We summarize matters
in the following definition.

DEFINITION 31. Let f : [a,b] — R be a bounded function. For any partition
={a=xz9<z1 <..<zy=>b} of [a,b] we define upper and lower Riemann
sums by

N

U(f;P) = Z({ sup ]f>A33m
n=1 Tn—1,Tn
N

L(f;P) = Z([z inf | )Aaﬁn~
n=1 n—1¥n

Set
U(f) =mtU (f:P), E(f)=8171)pL(f;7’),
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where the infimum and supremum are taken over all partitions P of [a,b]. We say
that f is Riemann integrable on [a,b], written f € R[a,b], if U (f) = L(f), and
we denote the common value by

/abf or /abf(x)dx

A more substantial generalization of the line of definition and reasoning above
can be obtained on a closed interval [a,b] by considering in place of the positive
quantities Ax, = z,, — z,_1 associated with a partition

P:{a:I0<I1 <...<$N:b}
of [a, b], the more general nonnegative quantities
ANay = a(zy) — a(zp-1), 1<n<N,

where « : [a,b] — R is nondecreasing. This leads to the notion of the Riemann-
Stieltjes integral associated with a nondecreasing function « : [a, b] — R.

DEFINITION 32. Let f : [a,b] — R be a bounded function and suppose « :
[a,b] — R is nondecreasing. For any partition P = {a = ¢ < 21 < ... < zy = b}
of [a,b] we define upper and lower Riemann sums by

N
lwmm::2<wp0A%

[mn 1 fn]

L(f;P,a) = Z]j:( inf )Aan.

[Tn—1,2n]

Set
U(f,0)=ifU(f:P.a),  L(f,0)=suwL(f;P,a),
P

where the infimum and supremum are taken over all partitions P of [a,b]. We say
that f is Riemann-Stieltjes integrable on [a,b], written f € Rq [a,b], if U (f,a) =
L(f,«), and we denote the common value by

/abfda or /abf(a:)da(x)

The lemma on partitions above generalizes immediately to the setting of the
Riemann-Stieltjes integral.

LEMMA 19. Suppose f : [a,b] — R is bounded and « : [a,b] — R is nondecreas-
ing. If P1 and Py are any two partitions of [a,b], then

(0.9) U(f;Pr,a) >U (f; PrUPa, ) > L(f; PLUPy, ) > L(f;Pa2,a).

0.3. Existence of the Riemann-Stieltjes integral. The difficult question
now arises as to exactly which bounded functions f are Riemann-Stieltjes integrable
with respect to a given nondecreasing « on [a,b]. We will content ourselves with
showing two results. Suppose f is bounded on [a, b] and « is nondecreasing on [a, b].
Then

o f€Ryla,b if in addition f is continuous on [a, b];
o f€Ryla,b]if in addition f is monotonic on [a,b] and « is continuous on

[a, b].
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Both proofs will use the Cauchy criterion for existence of the integral f; fda
when f : [a,b] — R is bounded and « : [a,b] — R is nondecreasing;:

(0.10) For every € > 0 there is a partition P of [a,b] such that
U(f;P,a) = L(f;P,a) <e.

Clearly, if (0.10) holds, then from (0.9) we obtain that for each € > 0 that there is
a partition P, satisfying

U(f,a)—L(f,a) = i%fU(f;P7a)—sL;pL(f;P’a)
U(f;Peya) — L(f;Peya) <e.

It follows that U (f,a) = L(f,«) and so f: fda exists. Conversely, given € > 0
there are partitions P; and Py satisfying

U(fa) = mtU(f;P,a) >U(f;Pr,0) -

L(f,a) = supL(f;P,a) < L(f;P2,a)+
P

IN

[\3\0)[\3 | ™

Inequality (0.9) now shows that
U(f;P1UP2,a) = L(f;PrUP2,0) < U(f;Pr,a) = L(f;P2,0)

< (Z/{(f,a)+§) - (L(f,a)—g) —

since U (f,a) = L (f, ) if fab fda exists. Thus we can take P = P; U Py in (0.10).

The existence of f; fda when f is continuous will use Theorem 30 on uniform
continuity in a crucial way.

THEOREM 41. Suppose that f : [a,b] — R is continuous and « : [a,b] — R is
nondecreasing. Then f € Ry [a,b].

Proof: We will show that the Cauchy criterion (0.10) holds. Fix ¢ > 0. By
Theorem 30 f is uniformly continuous on the compact set [a, b], so there is § > 0
such that
whenever |z — 2’| < 6.

_ N < &
@)~ <
Let P ={a =129 < x1 < .. <xy = b} be any partition of [a, b] for which

max Az, <0.
1<n<N

Then we have
sup f— inf f< sup If (z) = f(a)] <e,

[@n—1,2n] [zn—1,2n] 2,07 €[Tn_1,7n]

since |z — 2’| < Az, < § when z,2’ € [z,_1,2,] by our choice of P. Now we
compute that

N
U(f;P,a)— L(f;P,a) = Z( sup f— inf f)Aan

n=1 [Zn—1,2n] [Tn—1,2n]
N

S Z ( > Aa, =c¢,
n=1 ( )

which is (0.10) as required.
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REMARK 17. Observe that it makes no logical difference if we replace strict
inequality < with < in ‘€ — ¢ type’ definitions. We have used this observation twice
in the above proof, and will continue to use it without further comment in the sequel.

The proof of the next existence result uses the intermediate value theorem for
continuous functions.

THEOREM 42. Suppose that [ : [a,b] — R is monotone and « : [a,b] — R is
nondecreasing and continuous. Then f € R, [a,b].

Proof: We will show that the Cauchy criterion (0.10) holds. Fix ¢ > 0 and
suppose without loss of generality that f is nondecreasing on [a,b]. Let N > 2 be a
positive integer. Since « is continuous we can use the intermediate value theorem
to find points z,, € (a,b) such that zo = a, xx = b and

oz(xn):a(a)+%(a(b)—a(a)), 1<n<N-1.

Since « is nondecreasing we have z,,_1 < x, for all 1 <n < N, and it follows that
P={a=xp<x1 <..<xy=0}
is a partition of [a, b] satisfying
a(b) —ala) < €
N f®)=f(a)

provided we take N large enough. With such a partition P we compute

Aoy, = a(z,) — a(zp—1) =

N
U(f;P,a)— L(f;P,a) = Z( sup f— inf }f)Aozn

n—1 [Zn—1,Tn] LTn—1,Tn

3 il )
m Z ([mns_ufrn] f a [fnl—rif:l’n] f)

= e Y (@)~ flan) =6,

IN

This proves (0.10) as required.

0.4. A stronger form of the definition of the Riemann integral. For the
Riemann integral there is another formulation of the definition of f; f that appears
at first sight to be much stronger (and which doesn’t work for general nondecreasing
« in the Riemann-Stieltjes integral). For any partition P = {a = 29 < 1 < ... < xy = b},
set ||P|| = maxi<p<n Azy, called the norm of P. Now if f; f exists, then for every
€ > 0 there is by the Cauchy criterion (0.10) a partition P = {a = o < 1 < ... < zy = b}
such that

U(f;P)—L(f;P)<§

Now define ¢ to be the smaller of the two positive numbers

€
in A .
1£LI£N Zn and 2N diam f ([a,b])

Cramm 1. If Q={a=yy <y1 < ... <ym = b} is any partition with

= A 0
el | Jnax Ay <,
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then
U(f;Q —L(f;Q)<e.

Indeed, since Ay, < § < Az, for all m and n by choice of 4, each point z,,
lies in a distinct one of the subintervals [y;,—1,Ym] of Q, call it J, = [ym, -1, Ym,, |-
The other subintervals [y;,—1,¥ym] of @ with m not equal to any of the m,,, each
lie in one of the separating intervals K, = [ymnfl , ymn_l} that are formed by the
spaces between the intervals J,,. These intervals K,, are the union of one or more
consecutive subintervals of Q. We have for each n that

Z ([ sup f - inf f> A Ym

_ [Ym—1,Ym]
M [Ym—1,Ym] CEKn \Ym 1Ym] e

$n1$n+1] ["5711"5711»1]

S sup f - inf f Z Aym
[y""nfl7ymn—1] [ymnfl’ym”_l} M:[Ym—1,Ym] CKn
< ({ sup f— inf f) (Ym — Ym-1)

T, Tnt1] [Tns@nt1

§< sup f— inf f>(58n+193n)-
[

Summing this in n yields

N
(0.11) Z Z ({ sup f— inf f)Aym

n=1m:[Ym—1,Yym|CKn Ym—1,Ym] [Ym—1,ym]

(@, Tn41] [T Tnt1

N
< Z( sup f— inf ]f>(wn+1—wn)=U(f;7’)—L(f;7’)-
n=1

Now we compute

M
U(f;Q)—L(f;Q)=Z<[ sup f— inf ]f>Aym
m=1

Ym—1,Ym] [Ym—1,ym

N
= (supf it f) o — Y1)
n—1 Jn Jn

N
> > <sup f— inf f)Aym,

n—1 7n:[ym_1,ym]CKn [ym,l,ym] [ym—laym]

which by (0.11) and choice of § is dominated by

N
diam f ([a,8]) Y Wm, = Ym.—1) + U (F;P) = L (f;P)
n=1
< diam f([a,b])N(S—l—% < %—l—g:&,

and this proves the claim.
Conversely, if

(0.12) For every ¢ > 0 there is 6 > 0 such that
U(f;Q)—L(f;Q) < e whenever ||Q] <,
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then the Cauchy criterion (0.10) holds with P equal to any such Q. Thus (0.12)

provides another equivalent definition of the Riemann integral f; f that is more
like the € — ¢ definition of continuity at a point (compare Definition 25).

1. Simple properties of the Riemann-Stieltjes integral

The Riemann-Stieltjes integral f: fda is a function of the closed interval [a, b],
the bounded function f on [a,b], and the nondecreasing function « on [a,b]. With
respect to each of these three variables, the integral has natural properties related
to monotonicity, sums and scalar multiplication. In fact we have the following
lemmas dealing with each variable separately, beginning with f, then o and ending
with [a, b].

LEMMA 20. Fiz [a,b] C R and « : [a,b] — R nondecreasing. The set R, [a,b]

is a real vector space and the integral f: fda is a linear function of f € R, [a,b]:
if fj € Rla,b] and \j € R, then

b b b
f=Mfi+XfoeRala,b] and/ deV:)\l/ f1d01+)\2/ foda.

Furthermore, R, [a,b] is partially ordered by declaring f < g if f(z) < g(x) for
x € [a,b], and the integral fab fda is a nondecreasing function of f with respect to
this order: if f,g € Rq [a,b] and f < g, then fj fda < ff gda.
LEMMA 21. Fiz [a,b] C R and f : [a,b] — R bounded. Then
Crla,b] = {a:[a,b] — R: « is nondecreasing and f € R [a,b]}
is a cone and the integral ff fda is a ‘positive linear’ function of a: if aj € Cy [a, D]

and ¢; € [0,00), then

b b b
a=cioq + cas € Cy[a,b] and / fda = cl/ fdaq + 02/ fdas.
a a a

LEMMA 22. Fiz [a,b] C R and « : [a,b] — R nondecreasing and f € R, [a,b].
Ifa<c<b, then a: [a,c] = R and « : [¢,b] — R are each nondecreasing and

b c b
fE€Rala,c] and f € Ry |c,b] and/ fda:/ fda+/ fda.

These three lemmas are easy to prove, and are left to the reader. Properties
regarding multiplication of functions in R, [a, c] and composition of functions are
more delicate.

THEOREM 43. Suppose that f : [a,b] — [m, M| and f € Rala,b]. If ¢ :
[m, M] — R is continuous, then po f € Ry [a,b].

COROLLARY 13. If f,g € Ra|a,b], then fg € Ra[a,b], |f| € Ra[a,b] and

/abfda s/abﬂda.

is continuous, Lemma 20 and Theorem 43 yield

fgzé{(f+g)2*f2792} € Ra[a,b].

Proof: Since ¢ (v) = 22
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Since ¢ (z) = |z| is continuous, Theorem 43 yields |f| € Rq [a,b]. Now choose
¢ = =1 so that cf: fda > 0. Then the lemmas imply

/abfdoz :c/abfda:/ab(cf)dag/abudw

Proof (of Theorem 43): Let h = ¢ o f. We will show that h € R, [a,b] by
verifying the Cauchy criterion for integrals (0.10). Fix ¢ > 0. Since ¢ is continuous
on the compact interval [m, M], it is uniformly continuous on [m, M] by Theorem
30. Thus we can choose 0 < § < ¢ such that

lp (s) — ¢ (t)] < & whenever |s —t| < 0.
Since f € R, [a,b], there is by the Cauchy criterion a partition
P={a=xp<z1 <..<zxNy =0}

such that
(1.1) U (f;P,a) - L(f;P,a) < &°.
Let
M, = [mnsulpmn} f and m,, = [z"i_rfxn 1,
M, = sup handm; = inf A,
[Tn—1,%n] [Tn—1,2n]
and set

A={n: M, —m, <} and A={n: M, —m, >4§}.
The point of the index set A is that for each n € A we have

My —mg = sup [ (f (@) —e(f )] < sup [ (s) — @ (1)
I:ye[a?n—17w7z] ‘S_t‘SMn_mn
< sup Je(s) —e(t)] <e, n e A.
|s—t|<d

As for n in the index set B, we have Aa,, < M,, —m,, and the inequality (1.1) then

gives
0 Nan <Y (My —my) Ao, < 6%

neB neB
Dividing by § > 0 we obtain
Z Aoy, < 9.

neB
Now we use the trivial bound

M;, — m}, < diam o ([m, M))
to compute that

Uh;P,a) — L(h;P,a) = {Z Z} A

n€eA neB

< ZsAanJeriamcp([m,M])Aan
neA neB

< e(a(d) —al(a)) + 6 diam o ([m, M])

< ela(b) - a(a)+ diam ¢ ([m, M])],
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which verifies (0.10) for the existence of f; hda as required.

1.1. The Henstock-Kurtzweil integral. We can reformulate the e—§ defin-
ition of the Riemann integral f; fin (0.12) using a more general notion of partition,
that of a tagged partition. If P = {a =29 < 1 < ... < xy = b} is a partition of
[a,b] and we choose points t, € [Tn—1,%y,] in each subinterval of P, then

Pr={a=20<t1 <21 < ... <aoy_y <ty <ay =b},
where g < 71 < ... < Tn,

is called a tagged partition P* with underlying partition P. Thus a tagged parti-
tion consists of two finite intertwined sequences {In}g:() and {tn}ﬁf:l, where the
sequence {mn}gzo is strictly increasing and the sequence {tn}fl\f:1 need not be. For
every tagged partition P* of [a, b], define the corresponding Riemann sum S (f; P*)
by

N
S(f;P*) = Zf(tn> Ay,
n=1
Note that infj,, _, .| f < f(tn) <supy, , .. f implies that

L(f;P)<S(f;P*)<U(f;P)

for all tagged partitions P* with underlying partition P.
Now observe that if f € R [a,b], € > 0 and the partition P satisfies

U(fiP) = L(f;P) <e,
then every tagged partition P* with underlying partition P satisfies

b
(1.2) S(f;P*)—/ [l <UP) - L(iP) <<

Conversely if for each € > 0 there is a partition P such that every tagged partition
P* with underlying partition P satisfies (1.2), then (0.10) holds and so f € R [a, b].
However, we can also formulate this approach using the ¢ — § form (0.12) of

the definition of f: f. The result is that f € R [a,b] if and only if

(1.3) There is L € R such that for every ¢ > 0 there is § > 0 such that
|S (f;P*) — L| < & whenever ||P*|| < 4.

Of course if such a number L exists we write L = f; f and call it the Riemann
integral of f on [a,b]. Here we define ||P*|| to be ||P|| where P is the underlying
partition of P*. The reader can easily verify that f € R[a,b] if and only if the
above condition (1.3) holds.

Now comes the clever insight of Henstock and Kurtzweil. We view the positive
constant ¢ in (1.3) as a function on the interval [a, b], and replace it with an arbitrary
(not necessarily constant) positive function ¢ : [a,b] — (0,00). We refer to such
an arbitrary positive function 0 : [a,b] — (0,00) as a guage on [a,b]. Then for any
guage on [a, b], we say that a tagged partition P* on [a,b] is -fine provided

(1.4) [Zn_1,2n] C (tn — 6 (tn) tn + 0 (t2)), 1<n < N.

Thus P* is -fine if each tag t,, € [x,—_1,z,] has its associated guage value ¢ (¢,,)
sufficiently large that the open interval centered at ¢, with radius 0 (t,) contains
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the n'* subinterval [z,,_1,z,] of the partition . Now we can give the definition of
the Henstock and Kurtzweil integral.

DEFINITION 33. A function f : [a,b] — R is Henstock-Kurtzweil integrable on
[a,b], written f € HK [a,b], if there is L € R such that for every € > 0 there is a
guage d¢ : [a,b] — (0,00) on [a,b] such that

IS (f;P*) — L| < & whenever P* is §-fine.

It is clear that if f € R [a,b] is Riemann integrable, then f satisfies Definition

33 with L = f; f - simply take d. to be the constant guage ¢ in (1.3). However,
for this new definition to have any value it is necessary that such an L is uniquely
determined by Definition 33. This is indeed the case and relies crucially on the fact
that [a, b] is compact. Here are the details.

Suppose that Definition 33 holds with both L and L’. Let € > 0. Then there
are guages d. and J_ on [a, b] such that

IS (f;P*)—L| < e whenever P* is j.-fine,
IS (f;P*) = L'| < ¢ whenever P* is §.-fine.
Now define
n. (z) = min {6, (z),0. (z)}, a<az<b

Then 7, is a guage on [a,b]. Here is the critical point: we would like to produce
a tagged partition P that is n.-fine! Indeed, if such a tagged partition P exists,
then P* would also be §.-fine and §’-fine (since 7. < 6. and 7. < §~) and hence

IL—L'| <|S(f;PZ) = LI +|S(f;PZ) — L'| < 2¢
for all € > 0, which forces L = L’.

However, if 7 is any guage on [a, b], let

Bz, (@) = (& —n(z),z+1(x)) andB(a:,n(x>> - <x— n(z) m+”(”““)>.

2 2’ 2

Then {B (x, "(;))} ] is an open cover of the compact set [a,b], hence there
x€E|a,

N
is a finite subcover {B (xn, @)} . We may assume that every interval
n=0

2
in the union of the others. We may also assume that a =z < z1 < ... < xny = 0.

It follows that B (xn_l, w> NnB (xn, w> # (b, so the triangle inequality
yields

B (asn, "(x")) is needed to cover [a, b] by discarding any in turn which are included

N (Tn—1) +1(z5)
2

[Ty — Tp—1] < , 1<n<N.
If n(z,) > n(xn—1) then
[xn—lvxn] cB (xnvn (xn)) )

and so we define
th, = Tpn.

Otherwise, we have 1 (z,—1) > 1 (z,) and then

[xn—la xn} C B (xn—l, n (wn—l)) )
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and so we define

tn = Tp—-1-
The tagged partition
Pr={a=ao<ti <z <..<ay_1 <ty <any=0b}

is then 7-fine.

With the uniqueness of the Henstock-Kurtzweil integral in hand, and the fact
that it extends the definition of the Riemann integral, we can without fear of confu-

sion denote the Henstock-Kurtzweil integral by f; f when f € HK [a,b]. It is now
possible to develop the standard properties of these integrals as in Theorem 43 and
the lemmas above for Riemann integrals. The proofs are typically very similar to
those commonly used for Riemann integration. One exception is the Fundamental
Theorem of Calculus for the Henstock-Kurtzweil integral, which requires a more
complicated proof. In fact, it turns out that the theory of the Henstock-Kurtzweil
integral is sufficiently rich to include the theory of the Lebesgue integral, which we
consider in detail in a later chapter. For further development of the theory of the
Henstock-Kurtzweil integral we refer the reader to Bartle and Sherbert [1] and the
references given there.

2. Fundamental Theorem of Calculus

The operations of integration and differentiation are inverse to each other in a
certain sense which we make precise in this section. We consider only the Riemann
integral. Our first theorem proves a sense in which

Dif ferentiation o Integration = Identity,
and the second theorem proves a sense in which
Integration o Dif ferentiation = Identity.

The second theorem is often called the Fundamental Theorem of Calculus, while
the two together are sometimes referred to in this way. As an application we derive
an integration by parts formula in the third theorem below.

THEOREM 44. Suppose f € Ra,b]. Define

T
m):/ f@)dt,  fora<axz<hb.
Then F is continuous on [a,b] and
F' (z) exists and equals f (z)
at every point © € [a,b] at which f is continuous.

Proof: First we show that F' is continuous on [a, b]. Since f is bounded there
is a positive M such that |f (z | < M for a < x <b. Then Lemma 22 yields

o [ sl [ s

and if we apply Corollary 13 we obtam fora <z <y<b,

|F (x) |</ |f(t |dt</ Mdt = —z)=Mlz—yl.

[F(y) )| =
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This easily gives the continuity of F on [a, b], in fact it implies the uniform continuity
of Fron [a,b]: |F (x) — F (y)| < € whenever [z —y| <d = 7.
Now suppose that f is continuous at a fixed g € [a,b]. Given € > 0 choose
0 > 0 so that
|f () — f(z0)] < €if |x—x0| < and z € [a,b].

Then if t € (zg, 2o + ) N [a,b] we have

F (t) = F (o) Jif (@) da
t_moo—f(-’fo)‘ = ﬁ—f(xo)
- == [ v - s
1

/ |f () — f(x0)|dx < €.

t—SCO

Similarly if ¢ € (zo — d,20) N [a, b] we have

F(20) — F (1)
p— —f(l‘o) <E.
F(x0)—F(t)

This proves that lims_,,, = f(xo) as required.

wo—t

THEOREM 45. Suppose f € Rla,b]. If there is a continuous function F on
[a, b] that is differentiable on (a,b) and satisfies

F'(z)=f(z), z€/(ab),
then

b
(2.1) / f(z)dze = F(b) - F (a).

Proof: Given € > 0 use the Cauchy criterion for integrals (0.10) to choose a

partition
P={a=z9<x1 <..<zxy=0b}
of [a, b] satisfying
U(f;P)—L(f;P) <e.
Now apply the second mean value Theorem 35 to F' on the subinterval [x,_1, 2z,
to obtain points ¢, € (z,_1,,) such that
F(xn) _F(xn—l)

F (1) = =0 2,

so that
F(xy) — F(zp_1) = F (ty) DNxy = f(ta) A .
Thus we have
N N

F (b) - F (a) = Z (F (xn) - F(xn—l)) = Z ! (tn) A Ty,

n=0 n=0

But (1.2) implies that

b N
[ =3 ) b <U P - L) <.
a n=0
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and we conclude that

'F(b)F(a)/

a

for every € > 0, hence (2.1) holds.

THEOREM 46. (Integration by parts) Suppose that F,G are differentiable func-
tions on [a,b] with F',G' € R[a,b]. Then

b
/F’ dx+/ F(2)G' (z)dz = F (b) G (b) — F (a) G (a).

Proof: By Proposition 15 the function H (z) = F (z) G (x) has derivative
H' (z)=F'(2)G (z) + F (z) G’ (x),
and by Lemma 17 and Theorems 41 and 13 we have
H' € Ra,b].
Now we apply (2.1) to H and h = H’ to obtain

H(b)—H(a)=/abh:/ab(F’G+FG’):/abF’G+/abFG’.






CHAPTER 7

Function spaces

A very powerful abstract idea in analysis is to consider metric spaces whose
points consist of functions defined on yet another metric space. A prime example
is the ‘metric space of functions’ Cg (X), which we now define. Suppose X is a
compact metric space and let

Cr(X)={f:X —R: fis continuous},

be the set of all continuous functions f mapping X into the real numbers R. Clearly
Cgr (X) is a real vector space with the usual notion of addition of functions and
scalar multiplication. However, we can also define a metric structure on Cg (X) as
follows. For f,g € Cr (X), define

(02) d(fvg) :dC[R(X) (f7g) :flel)g|f(x)_g($)|

Since f — g € Cr(X) is continuous on a compact set X, and the absolute value
function is continuous, it follows from Theorem 28 that the supremum defining
d(f,g) is a finite nonnegative real number (and is even achieved as |f () — g (z)]
for some x € X). Note that in the case X = [a, b] is a closed interval on the real line,
the quantity d(f,g) is the largest vertical distance between points on the graphs
of f and g. It is an easy exercise to verify that d : X x X — [0, 00) satisfies the
axioms of a metric. In particular, if f,g,h € Cgr (X), then

d(fih) = :gg\f(x)—h(w)I:Sggl[f(x)—g(m)]+[g($)—h(fﬂ)]l

sup [f (¢) — g ()| + sup |g (z) — h(x)| = d(f,9) +d(g,h).
zeX zeX

IN

Thus (Cr (X),d) is a metric space whose elements are continuous real-valued func-
tions on X. The single most important result of this chapter is that this particular
metric space is complete, i.e. every Cauchy sequence in Cg (X) converges. A cru-
cial role is played here by an investigation of limits of sequences in Cg (X ), namely
limits of sequences of continuous functions on X.

1. Sequences and series of functions

We begin by examining more carefully the notion of convergence of a sequence
of functions in the metric space Cg (X). We begin with a general definition of
uniform convergence.

DEFINITION 34. Suppose X andY are metric spaces and E C X . Suppose that
{fn}or, is a sequence of functions f, : E —Y and that f : E — Y. We say that
the sequence {f,} -, converges uniformly to f on E if for every e > 0 there is a
positive integer N such that

(1.1) dy (fn(z),f(z)) <e foralln> N and all x € E.

103
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In this case we write f, — f uniformly on E.

Note in particular that if f, — f uniformly on E then the sequence {f,} -,
converges pointwise to f on E, written f,, — f pointwise on F, by which we mean

T f () = f (2),

for each # € E. The point of uniform convergence of the sequence {f,} _; is that
there is a positive integer N that depends only on € and not on x € E, that works
in (1.1).

EXAMPLE 9. Let fp, : [0,1] — [0,1] by fn () = z™. Let

{0 if 0<az<l
f(w)_{1 if  w=1

Then fn, — f pointwise on [0,1] but the convergence is not uniform. Indeed, for
any n > 1 there is a point x € [0,1) such that

, 1
@)= J @) =|a" —0] = 2" >
This is because the monomial ™ is continuous and so lim,_,; 2™ = 1" = 1.

An important feature of this example is that the functions f,, are each continu-
ous on the set [0, 1] (which also happens to be compact), yet their pointwise limit is
not continuous on [0, 1]. The next theorem shows that the reason can be attributed
to the failure of uniform convergence here.

THEOREM 47. Suppose that X and Y are metric spaces and E C X. Suppose
also that {fn},—, is a sequence of continuous functions from E to Y and that
f+E =Y. If f, — f uniformly on E, then f is continuous on E.

Proof: Fix a point p € F and let € > 0. We must show that there is § > 0
such that

dy (f (), f (p)) < € whenever dx (z,p) < d and z € E.

Since f,, — f uniformly on E we can choose N so large that (1.1) holds with £ in
place of e:

(1.2) dy (fn (z), f(z)) < % for all n > N and all z € E.
Now use the continuity of fx on E at the point p to find § > 0 satisfying
(1.3) dy (fn (z), fn (p) < % whenever dx (z,p) < d and z € E.

Finally the triangle inequality yields
dy (f (), f(p) < dy (f(z),fn (@) +dy (fx (), fn (P) +dy (fn (), f (P))

< E4—5—&-5—5
3 3 3 7

whenever dx (x,p) < § and x € E, upon applying (1.2) with n = N to the first and
third terms on the right, and applying (1.3) to the middle term on the right.
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2. The metric space Cg (X)

We can now prove the main result of this chapter, namely that the metric space
Cr (X) is complete. Recall that X is compact now. The connection with uniform
convergence is this: a sequence {f,},—; in Cr (X) converges to f € Cg (X) in the
metric d of Cr (X) given in (0.2), if and only if f, — f uniformly on X. This is in
fact a definition chaser as in the case F = X and Y = R, (1.1) says precisely that

d(fn, f) =sup |fn (z) — f(x)] <eforalln > N.
reX

It follows immediately that f, — f in Cg (X) if and only if f,, — f uniformly on
X.

THEOREM 48. Let X be a compact metric space. Then the metric space Cg (X)
is complete.

Proof: Let {f,} -, be a Cauchy sequence in Cg (X). We must show that
{fn}oL converges to some f € Cg (X). Now for every ¢ > 0 there is N such that

SUp |fm (2) = fu (2)] = d(fu f) <€ forall m,m > N.
zeX

In particular for each z € X the sequence {f, (z)} —, is Cauchy in R. Since the
real numbers R are complete, there is for each z € X a real number f (z) such that

T f () = f ().
Moreover for m > N and z € X we have

@) = £ @] = | () = lim fu(@)] = T [fon (@) = fu ()] < Jim e =,
This shows that f,, — f uniformly on X. Now we apply Theorem 47 to conclude
that f is continuous on X, i.e. f € Cg (X). We've already noted that in the metric

space Cr (X), fm — f in Cr (X) is equivalent to f,, — f uniformly on X. Thus
we’ve shown that {f,} -, converges to f in Cg (X) as required.

Now that we know the metric space Cg (X) is complete we can apply the
Contraction Lemma 12 to Cg (X):

LeMMA 23. Suppose that T : Cr(X) — Cgr(X) is a strict contraction on
Cr (X), i.e. there is 0 < r < 1 such that

d(Tf7Tg)STd(fvg)7 forallf,geCR(X).

Then T has a unique fized point h in Cr (X), i.e. there is a unique h € Cg (X)
such that Th = h.

2.1. Existence and uniqueness of solutions to initial value problems.
We can use Lemma 23 in the case X is a closed bounded interval in R to give an
elegant proof of a standard existence and uniqueness theorem for solutions to the
nonlinear first order initial value problem

y/ = f($7y)
(2.1) {y(xo) IR a<z<b,

where a < z9 < b, yo € R and f : [a,b] x R — R is continuous and satisfies a
Lipschitz condition in the second variable. A function h : [a, f] x R — R is said to
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satisfy a Lipschitz condition in the second variable if there is a positive number L
such that

(22) |f (l‘,y) - f(xvy/” S L |y - y/|7 for all x € [aaﬁ] and yay/ e R.

DEFINITION 35. A differentiable function y : [a,b] — R is defined to be a
solution to (2.1) if

(2.3) v (x) = f(x,y(x)) forallx € [a,b],
and y (zo) = o

THEOREM 49. Suppose that a < xog < 3, yo € R and f : [a, f] X R — R s
continuous and satisfies the Lipschitz condition (2.2). Then there are a,b satisfying
a<a<xzg<b< B such that there is a unique solution y : [a,b] — R to the intial
value problem (2.1).

Proof: Our strategy is to first use the Fundamental Theorem of Calculus to
replace the initial value problem (2.1) with an equivalent integral equation (2.4).
Then we observe that a solution to the integral equation (2.4) is a fized point of
a certain map T : Cr ([o, f]) — Cr ([, 0]). Then we will choose a < zg < b
sufficiently close to xy that the map T is a strict contraction when viewed as a
map on the metric space Cg ([a,b]). The existence of a unique fixed point to the
integral equation (2.4) then follows immediately from Lemma 23, and this proves
the theorem. Here are the details.

We claim that y : [a,b] — R is differentiable and a solution to (2.1) if and only
if y is continuous and satisfies the integral equation

(2.4) y(x):yo+/wf(t,y(t))dt, a<a<bh

This equivalence will use only the continuity of f and not the Lipschitz condition
(2.2). Note that if y is continuous, then the map t — (¢,y (¢)) € R? is continuous,
and hence so is the map ¢ — f(¢,y(¢£)) € R. Theorem 41 thus shows that the
integrals on the right side of (2.4) all exist when y is continuous.

Suppose first that y : [a,b] — R is a solution to (2.1). This means that y’ (¢)
exists on [a, b] and satisfies (2.3). However, y (t) is then also continuous and hence so
is f (¢,y (t)) by the above comments. Thus (2.3) shows that y’ is actually continuous
on [a,b], hence ' € R[zg,z] for all a < z < b. Now apply the Fundamental
Theorem of Calculus 2.1 to (2.3) to obtain

v@ -y = [ v @d= [ Feym)a
o To
which is (2.4) since y (z9) = yo by the second line in (2.3).

Conversely, suppose that y : [a,b] — R is a continuous solution to (2.4). Then
the integrand f (¢,y (t)) is continuous and by Theorem 44 we have

J @ =2 [ feyOd=feya), asesh

which is the first line in (2.3). The second line in (2.3) is immediate upon setting
x =z in (2.4).
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Now we observe that y is a solution to the integral equation (2.4) if and only
if y € Cr ([a,b]) is a fized point of the map T : Cr ([a,b]) — Cr ([a,b]) defined by

D=+ [ fle@i  a<e<h peCr(al).

Note that T" maps Cg ([a,b]) to itself since if ¢ € Cgr([a,b]) then f (¢, (1)) is
continuous on [a,b] and Theorems 41 and 44 show that T'p € Cg ([a,b]). In order
to apply Lemma 23 we will need to choose a < z¢ < b sufficiently close to xg that
the map T is a strict contraction on Cg ([a, b]). We begin by estimating the distance
in Cg ([a,b]) between T'p and T for any pair ¢, € Cr ([a,b]):

deg(ap) (T, TY) = sup [T (x) — T (2)]

a<z<b

— /xf(t,so(t))—f(t,w(t))dt’

a<z<b

< sup /|f <,w<t>>|dt'

a<z<b

< sup /Llw() v (0)]dt|,

a<z<b

where the final line uses the Lipschitz condition (2.2). But with
m = max {b — xg,x0 — a},

we can dominate the final expression by

L sup
a<z<b

[l v 01at] < L s 1010~ (0] = L ey (0.9).
a<t<b

Thus if we choose a and b so close to xy that m < %, then r = Lm < 1 and we
have

dCR([a,b]) (Tp, TyY) <r dC’R([a,b]) (0, %),

for all ,v € Cg ([a,b]), which shows that T is a contraction on Cg ([a,b]) since
r < 1. Lemma 23 now shows that 7' has a unique fixed point y € Cg ([a,b]), and
by what we proved above, this function y is the unique solution to the initial value
problem (2.1).

2.1.1. An example. Let f : R x R — R by f(z,y) = y. Then f is continuous
and satisfies the Lipschitz condition (2.2) with L = 1. Theorem 49 then yields a
unique solution E : [a,b] — R to the initial value problem

/ —
{y%) _ Y a<ac<y,

for some a < 0 < b. An examination of the proof of Theorem 49 shows that we
only need a and b to satisfy m = max{b— 0,0 —a} < + = 1, so that we have a
unique solution E) : [-A\,A\] = R for any 0 < A < 1. By uniqueness, all of these
solutions F coincide on common intervals of definition. Thus we have a function
E:(-1,1) — R satisfying

{Fo

—1l<z<l.

|
=
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But much more is true. If -1 < zg < 1 and 0 < A < 1 then the above reasoning
shows that the initial value problem

y o=y
, A<z —20 <A,
{ y(zo) = E(xo) - 0=

has a unique solution F) : [zg — A <z <x9+ A = R. But F) (z9) = F (x9) and
so by uniqueness we must have F) = FE on their common interval of definition.
Repeating this type of argument it follows that there is a unique extension of E to
a function E defined on all of R that satisfies

E'(z) = E(z), z€R,

E(0) = 1.
Thus E is infinitely differentiable E(™) = E and is of course the exponential function
Ezp(x) in (3.1), as can be easily seen using Taylor’s formula Theorem 37:

n n+1
E = FE(0 E' (0 E(”) 0 i E(TL+1) xz
@ O+ Bz +E70) o+ © iy
" pntl
= 1 R E(n+1)
to ottt (c)(n+1)!,
for some ¢ between 0 and x. Indeed,
x’ﬂ+1 | |n+1
E(c < sup |E(c =0
‘ ) (n+1)! |c|g|x\| @ (n+1)!
as n — 00, so that
" ° "

REMARK 18. In most applications it is not the case that f : [a, 5] x R = R
satisfies a Lipschitz condition for all y,y' € R as in (2.2), but more likely that the
Lipschitz condition is restricted to a finite interval y,y’ € [vy,0], or even that f is
only defined on a bounded rectangle [, 5] X [, 0] with yo € (~,d). Theorem 49 can
still be profitably applied however if we simply redefine f (x,y) to be constant in y
outside an interval |7y, 0] that contains yo in its interior. More precisely, set

_ flay) if a<z<p,  y<n,
flay) =9 fley) if a<z<pB, y<y<yd,
fz,6) if a<z<p, <y,
Thenif f : [, 8] %[y, 0] — R is continuous and satisfies the local Lipschitz condition
Fw) - fa) <Lly—yl.  forallzc o] andy.y' € [r.d).

the function f: [a, ] x R — R is continuous and satisfies the Lipschitz condition
(2.2). Thus Theorem 49 produces a < xo < b and a solution y : [a,b] Xx R — R to
the initial value problem

y(zo) = Yo ’ -

Since y is continuous and

(1'072—/(‘%'0)) = (Z’o,yo) € (a’b) X (775)3
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there exist a < A < wg < B < b such that (z,y(z)) € [A,B] x [y,0] for A<z <
B. But then f(z,y(z)) = f(z,y(x)) for such x and we see from (2.8) that the
restriction of y to [A, B] solves the initial value problem

/ _
y(zo) = Yo
2.2. Space-filling curves and snowflake curves. We first use the com-

pleteness of Cg ([0, 1]) to construct two continuous maps ¢, 1) € Cg ([0, 1]) with the
property that

{le), v (#):0<t<1}=10,1] x [0,1].
Thus if we define ® (t) = (¢ (t),v¢ (t)) for 0 < ¢ < 1, then ® : [0,1] — [0,1]?
takes the closed unit interval continuously onto the closed unit square! This is the
simplest example of a space-filling curve. Note that it is impossible for a space-filling
curve to be one-to-one:

LEMMA 24. If ® : [0,1] — [0,1]? is both continuous and onto, then ® is not
one-to-one.

Proof: Suppose in order to derive a contradiction that & is continuous, one-to-
one and onto. Since [0, 1] is compact, Corollary 11 then shows that the inverse map
®-1:0,1]*> — [0,1] is continuous. Now consider the distinct points P = ® (0) and
Q = @ (1) in the unit square. Pick any two continuous curves 7; (¢) : [0,1] — [0, 12,
j =1,2, for which
(2.5) 71 (0) = 7 (1)=Pr

7 (1) = 7(0)=0,
i) # (), 0<t<1

Thus v, takes P to () continuously and -, takes @) to P continuously, and the
images «; (t) and v, (t) of the two curves in the square are distinct for each ¢.

Now consider the difference of the composition of these two curves with the
continuous map ® !

BH)=2 (i (1) =@ (y2 (1), O0<t<L
Thus §: [0,1] — [0, 1] is continuous and
B0) = @71 (P) -7 (Q) =1,
B) = Q- (P)=1.

Since 0 is an intermediate value, the Intermediate Value Theorem shows that there
is ¢ € (0,1) such that

0=5(c) =27 (v, (c) = 27" (72 (c)),

which implies

Y1(0) =@ (271 (71 (e) = @ (27" (72 (c)) =72 (),
contradicting the third line in (2.5).

To construct our space-filling curve ® (t) = (¢ (t),v (t)), we begin with a con-
tinuous function f : R — [0,1] of period 2, i.e. f(t+2) = f(t) for all t € R, that

satisfies .
0 if 0<
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Then for N € N define
N
wa (32"711) and 9y (t 2232— f(3m), o0<t<L

Each of the sequences {py}rn_; and {¢y}x_, is Cauchy in the metric space
Ck ([0,1]) since if M < N,

d(er,en) = sup |oy (t) — @ ()]
0<t<1
N N 1
_ 2n—1
= swp | > S f(TM)S D oo <ayw
0=<t<1 n=M+1 n=M+1

tends to 0 as M — oo, and similarly d (¢, %) — 0 as M — co. Since Crg ([0, 1])
is complete, there are continuous functions ¢ and ¥ on [0, 1] such that

o= A}im py and P = Nlim Yy in Cr([0,1]).

Then @ (t) = (¢ (), (t)), 0 <t <1, defines a continuous map from [0, 1] into
the unit square [0, 1]% since 0 < ¢ (¢), 1 (¢) < 1 for 0 < ¢ < 1. We claim that given
(z0,30) € [0,1]* there is to € [0,1] such that ® (to) = (z0,%0). To see this expand
both xg and gy in binary series:

=3t (5) =Y o (3) -
n=1 n=1

where each coefficient as,—1 and asg, is either 0 or 1. Now set

o0

2
o= g
k=1
For ¢ € N consider the number
-1 9 9
3 =Y 37120, + o+ Z 3k19q, = Ay + 30+ Be.
k=1 k=(+1
Now Ay = ;;11 3¢=%=12q, is an even integer and
0 < By= Y 37"l < > 3701
k=0+1 k=0+1
1 1 1 1 1
= 2 — + .. =2——— = —.
{9 * 27 } 91— % 3

If follows from the fact that f has period 2 that

f(3%) =r (Az + %ae + Bz) =f <§ae + Bz) )

and then from the fact that f is constant on and [%7 1] that

l
3
f(3%) = (3 )
and finally that

(2.6) f(3%0) = au,
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since f(0) =0 and f(2) =1.
Armed with (2.6) we obtain

oo

- 1 2n—1 1
¢ (t) = hm e (to) :E_ 2* (3 to) = E_l on @2n—1 = T0;
P (to) = hm Y (to) OOE i (3%"t9) 3 ia =
0 - Nooo N 0 ] on P on 2n = Yo,

which implies ® (¢9) = (¢ (to),% (to)) = (x0,%0), and completes the proof that @
1

maps [0, 1] onto [0, 1]%.

Now we return to the von Koch snowflake K constructed in Subsection 3.2 of
Chapter 3. Recall that we constructed the snowflake in a sequence of steps that
we called ‘generations’. At the k" generation, we had constructed a polygonal

X
path consisting of 4% closed segments{L?}j,: ) each of length 3% We denoted this
polygonal ‘snowflake-shaped’ path by P,. We now parameterize this polygonal

path Py with a constant speed parameterization on the unit interval [0,1]. Since
the length of Py is

k
1 4
length (Py) =4%- — = () ,
this will result in a curve

Y (8) = (o (8), B (1)), 0<t<1,
that traces out the polygonal path Py in such a way that

.
[ (o, (8), 8 ()] = \/\a; OF +18, )" = (;L) ’

at all ¢ except those corresponding to the vertices of P.
We now observe that the vertices of Py are precisely the points =, (i,c), and

moreover that
J J
Y (4’“) =7, (4/&) whenever k' > k.

Thus the vertices in the constructions remain fixed once they appear, and are
thereafter achieved by each «y,, with the same parameter value. In fact we can prove
the following estimate for the difference between consecutive curves by induction:

1
e O =7 <55 0<t<L k>1

As a consequence we see that each of the sequences {ay }ro; and {3, },-; of contin-
uous functions on [0, 1] is a Cauchy sequence in the metric space Cg ([0, 1]). Indeed,
if m < n then the triangle inequality gives

n—1 n—1

d(am,an) < Y d(okar) < Y sup Jagpr (8) — ax (1))
k=m k=m 0St=1
n—1 [e%s)
1 1 1
< su - = ,
< X o OOl <3 g =gy
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which tends to 0 as m — oo, and similarly for d (3,,,, 8,,)- Thus there are continuous
functions a, § € Cg ([0, 1]) such that the curve

70 = Jim o, () = i (o (). (0) =  Jim (0, i 54 (1)) = (6. 6.0)
maps onto the von Koch snowflake K.

We now sketch a proof that + : [0,1] — K is one-to-one, thus demonstrating
that the fractal K is a closed Jordan arc, namely a continuous one-to-one image
of the closed unit interval [0, 1]. Indeed, let Si, Sa, S5 and Sy be the similarities
characterizing K in Theorem 13. These are given in the table in Subsection 3.2 of
Chapter 3: for x = (z1,22) € R?,

Six = ==,

SQ.Z‘

1 3 V3

Sz % (x4 (2,0)).

Now define T' to be the open triangle with vertices

0.0). (355 ) (1.0,

and for 0 <t <1, expand t in a series

(2.7) t=> an <i) . a,€{0,1,2,3},

n=1

where the sequence {a,},., does not end in an infinite string of consecutive 3’s,
except for the case where all the a,, are 3. With this restriction, the series repre-
sentation (2.7) of ¢ € [0,1] is unique.

One can now show (we leave this to the reader) that the intersection

ﬁ Sa;41 (--Saz+1 (Sar41 (T)))

= Suvir (T) N Sarss (Sarss (T)) N o1 8,11 (oSt (Sersn (T))) .
consists of ezactly the single point ~ (). Moreover:

e The four triangles Sy (T'), S2 (T), S3(T), S4(T) are pairwise disjoint,
as well as the four triangles

S1(S(T)), S2(S(T)), S5(S(T)), Sa(S(T))
where S is any finite composition of the similarities S, S, S3 and Sj.

It now follows easily that -« (t) # v (') for ¢ # ¢’ upon expanding

t= ian (i)n and t' = ia’n (i)n
n=1

n=1
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as in (2.7) above, considering the smallest n for which a, # a},, and then ap-
plying the observation in the bullet item to S,, (S (7)) and S, (S (7)) where
S =S4, 1410 ...0 84,410 Sa,+1. This shows that S,, (S(T)) N Sa, (S(T)) =0
and in order to obtain S,, (S (7)) N Sa, (S (T)) =0, we use the assumption that
the coefficients in the series representation (2.7) do not end in an infinite string of
consecutive 3’s.

Finally, we show that the curve - (¢) is nowhere differentiable. For each k there
is j such that
J Jj+1
& St< T
Let A = 4% and By = 3‘4%1' Suppose in order to derive a contradiction that ~' (t)
AUl

exists. Then we would have
1

‘7 (Bi) — v (Ak)
However, the length of the line segment v (By) — v (Ax) is 37, and By — Ay, =
H’Y (Br) — v (Ag)

kaAk-
S0 &
_m (4
By, — Ay & \3)7

which tends to co as k — oo, the desired contradiction.

lim v (Bi) — v (Ar)

2.8 li
( ) — k—o0 By — Ak

k—oo

1
21k







CHAPTER 8

Lebesgue measure theory

Recall that f is Riemann integrable on [0, 1), written f € R[0,1), if U (f) =
L(f), and we denote the common value by fol for fol f(x)dz. Here U (f) and

L (f) are the upper and lower Riemann integrals of f on [0,1) respectively given
by

N
uf) = ing( sup f)A:vn,
=1 \[#n-1.20)

N
Z < inf f> A xy,
— \[Zn—1,7n)

where P = {0 =29 <1 < ..<azy =1} is any partition of [0,1) and Az, =
Zp, — Tp—1 > 0. For convenience we work with [0, 1) in place of [0, 1] for now.

This definition is simple and easy to work with and applies in particular to
bounded continuous functions f on [0,1) since it is not too hard to prove that
f € R[0,1) for such f. However, if we consider the vector space L% ([0,1)) of
Riemann integrable functions f € R[0,1) endowed with the metric

a(f,g) = </01|f(fv)g(z)l2dx)é,

it turns out that while L% (]0,1)) can indeed be proved a metric space, it fails to be
complete. This is a serious shortfall of Riemann’s theory of integration, and is our
main motivation for considering the more complicated theory of Lebesgue below.
We note that the immediate reason for the lack of completeness of L% ([0, 1)) is the
inability of Riemann’s theory to handle general unbounded functions. However,
even locally there are problems. For example, once we have Lebesgue’s theory in
hand, we can construct a famous example of a Lebesgue measurable subset E of
[0,1) with the (somewhat surprising) property that

L(f) = sup
P

0<|ENn(a,b)]<b—a, 0<a<b<l,

where |F'| denotes the Lebesgue measure of a measurable set F' (see Problem 5
below). It follows that the characteristic function xp is bounded and Lebesgue
measurable, but that there is no Riemann integrable function f such that f =
Xg almost everywhere, since such an f would satisfy U (f) = 1 and L(f) = 0.
Nevertheless, by Lusin’s Theorem (see page 34 in [5] or page 55 in [4]) there is a
sequence of compactly supported continuous functions (hence Riemann integrable)
converging to xp almost everywhere.



116 8. LEBESGUE MEASURE THEORY

On the other hand, in Lebesgue’s theory of integration, we partition the range
[0, M) of the function into a homogeneous partition,

0.0 = [in-0503) = U

and we consider the associated upper and lower Lebesgue sums of f on [0, 1) defined
by

U*(f;P)

|
(=
/7~
S
==
~—
=
=

N
v = Y (- )l

where of course

and |E| denotes the "measure” or "length" of the subset F of [0, 1).

Here there will be no problem obtaining that U* (f;P) — L* (f;P) is small
provided we can make sense of | ft (In)| But this is precisely the difficulty with
Lebesgue’s approach - we need to define a notion of "measure" or "length" for
subsets E of [0,1). That this is not going to be as easy as we might hope is
evidenced by the following negative result. Let P ([0,1)) denote the power set of
[0,1), i.e. the set of all subsets of [0,1). For z € [0,1) and E € P ([0,1)) we define
the translation F @ x of E by x to be the set in P ([0, 1)) defined by

Edzr = E+z  (modl)
= {z€]0,1):thereisy € E withy+z— 2z € Z}.

THEOREM 50. There is no map p: P ([0,1)) — [0,00) satisfying the following
three properties:

(1) u((0.) =1
(2) p{UpeiBn ) = S0, w(Ey) whenever {E,}>7 | is a pairwise disjoint

sequence of sets in P ([0,1)),
(3) p(Edx)=u(E) for all E € P([0,1)).

REMARK 19. All three of these properties are desirable for any notion of mea-
sure or length of subsets of [0,1). The theorem suggests then that we should not
demand that every subset of [0,1) be "measurable”. This will then restrict the func-
tions f that we can integrate to those for which f=1 ([a,b)) is "measurable"” for all
—0<a<b<oo.

Proof: Let {r,},—, = QN[0,1) be an enumeration of the rational numbers
in [0,1). Define an equivalence relation on [0,1) by declaring that © ~ y if z —
y € Q. Let A be the set of equivalence classes. Use the aziom of choice to
pick a representative a = (A) from each equivalence class A in A. Finally, let
E = {(A) : A € A} be the set consisting of these representatives a, one from each
equivalence class A in A.
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Then we have
o0

[0,1) = Un:lE DTy

Indeed, if z € [0,1), then = € A for some A € A, and thus z ~ a = (4), i.e.
r—a€{ry},~ . fz>athenz—acQn(0,1) and 2 = a + ry, where a € E and
Tm € {rptoey. fz <athenz—a+1€QnN0,1) and 2 = a + (ry, ©1) where
a€ Fandr, o1 ¢ {rn};o:l. Finally, ifa®r,, =b&r,, thenacb=r,6r, € Q
which implies that a ~ b and then r, = r,,.

Now by properties (1), (2) and (3) in succession we have

oo

1:“([071)):“<Un_1E@’%> =Y n(Eer,) =) uE),

which is impossible since the infinite series >~ u (E) is either oo if u (E) > 0 or
0if 4 (E) = 0.

1. Lebesgue measure on the real line

In order to define a "measure" satisfying the three properties in Theorem 50,
we must restrict the domain of definition of the set functional p to a "suitable"
proper subset of the power set P ([0,1)). A good notion of "suitable" is captured
by the following definition where we expand our quest for measure to the entire
real line.

DEFINITION 36. A collection A C P (R) of subsets of real numbers R is called
a o-algebra if the following properties are satisfied:

(1) ¢ €A,
(2) A € A whenever A € A,
(3) U2, A, € A whenever A, € A for all n.

Here is the theorem asserting the existence of "Lebesgue measure" on the real
line.

THEOREM 51. There is a o-algebra L C P (R) and a function p: £ — [0, 0]
such that

(1) [a,b) € L and p([a,b)) =b—a for all —co < a < b < 00,
(2) Up1En € L and p <Un_1En> = > w(E,) whenever {E,}" | is a

pairwise disjoint sequence of sets in L,
B) E+xeL and p(E+x)=pu(E) forall E € L,
(4) E € L and p(F) =0 whenever E C F and F € L with pn(F) = 0.

It turns out that both the o-algebra £ and the function p are uniquely deter-
mined by these four properties, but we will only need the existence of such £ and
p. The sets in the o-algebra L are called Lebesgue measurable sets.

A pair (£, ) satisfying only property (2) is called a measure space. Property
(1) says that the measure p is an extension of the usual length function on intervals.
Property (3) says that the measure is translation invariant, while property (4) says
that the measure is complete.
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From property (2) and the fact that p is nonnegative, we easily obtain the
following elementary consequences (where membership in £ is implied by context):

(1.1) ¢ € Land u(s) =0,
E € L for every open set F in R,

w(I) = b—a for any interval I with endpoints a and b,
p(E) = supp(E,) = nhjroloﬂ (En) if En /' E,
p(E) = infu(E,) = lim u(E,) if E, \, E and p(F) < co.

For example, the fourth line follows from writing

E=E U {Un_lEn+1 N (En)“}

and then using property (2) of wu.

To prove Theorem 51 we follow the treatment in [5] with simplifications due to
the fact that Theorem 31 implies the connected open subsets of the real numbers
R are just the open intervals (a,b). Define for any E € P (R), the outer Lebesgue
measure p* (E) of E by,

* =i — : —00 < < .

w* (F) = inf {2:1 (b —an): EC Un:l (an,by) and — oo < a, < b, < oo}
n=
It is immediate that p* is monotone,
pw (E) <u*(F)if ECF.
A little less obvious is countable subadditivity of p*.

LEMMA 25. pu* is countably subadditive:

W (U En) <> (B,  {B.}L, CP(R).

n=1
. o0
Proof: Given 0 < ¢ < 1, we have E,, C {J,_; (akn,br,n) with
— €
(b — an) < 1" (En) + TR n>1.
k=1
Now let )
oo . 00 .M
L—J1 (Uk_l (Qkns bkn)> = LJm:1 (Cmsdm),

where M* € NU {oco}. Then define disjoint sets of indices
Iy = {(k’n) : (ak,nabk,n) C (Cm,dm)}.

In the case ¢, d, € R, we can choose by compactness a finite subset F,, of Z,,
such that
€ € >
(12) Cm + §5m>dm - i(sm} C U (akﬂubk,n) y
(k7n)6f’ln
where 0,, = d,, — ¢;,. Fix m and arrange the left endpoints {ak’n}(}~c n)EF, in

strictly increasing order {ai}le and denote the corresponding right endpoints by
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b; (if there is more than one interval (a;, b;) with the same left endpoint a;, discard
all but one of the largest of them). From (1.2) it now follows that a; 1 € (a;,b;) for
i < I since otherwise b; would be in the left side of (1.2), but not in the right side,
a contradiction. Thus a;41 —a; < b; — a; for 1 <14 < I and we have the inequality

€ €
(1—¢)d, = (dm - 55,”) - (cm + fam)
1
< br—a1; = (by —ay) +Z (@it1 — @)
=1
I
< Z b - CL Z (bk,n - ak,n)
i=1 (k) EFm
< Z (bk,n - akm) .

We also observe that a similar argument shows that > o7 (bkn — @kn) = 00
if §,, = co. Then we have

p(E) < Z O < (bkn — akn)
m=1 (k,n)EF,
1 0o o
< 1_EZ(bk,n_akn = EZZ bk:n akn
k,n n=1k=1

1 I O €
< T () = i B
Let € — 0 to obtain the countable subadditivity of p*.

Now define the subset £ of P (R) to consist of all subsets A of the real line such
that for every € > 0, there is an open set G O A satisfying

(1.3) (G A) <e.

REMARK 20. Condition (1.3) says that A can be well approximated from the
outside by open sets. The most difficult task we will face below in using this defini-
tion of L is to prove that such sets A can also be well approximated from the inside
by closed sets.

Set
p(A)=p (4), AcL
Trivially, every open set and every interval is in £. We will use the following two

claims in the proof of Theorem 51.

. N*

Cram 2. If G is open and G = J,_; (an,by) (where N* € N U {o0}) is
the decomposition of G into its connected components (an,by,) (Proposition 14 of
Chapter 5), then

N*
n(G) =p"(G) = Z (b —an).

n=1
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We first prove Claim 2 when N* < co. If G C Um:l (¢, dm ), then for each
1 <n < N* (an,b,) C (¢m,dn) for some m since (ay,b,) is connected. If

={n:(an,bn) C (cm,dm)},

it follows upon arranging the a,, in increasing order that

Z (bn - an) § dm, — Cm,

nELy,

since the intervals (ay,, b,) are pairwise disjoint. We now conclude that

p(G) = inf{Z( GCU (¢ m}

m=1

[} N*
> Z (bn an) = Z (bn an) )
m=1n€eZ,, n=1
* N N*
and hence that p* (G) = 25:1 (bp, — ap) by definition since G C |J,,,; (@n,bn).

Finally, if N* = oo, then from what we just proved and monotonicity, we have
. N

p(G) > p* (Um: an, n) Z

for each 1 < N < co. Taking the supremum over N gives p* (G) > Y07 | (b, — ay,),

and then equality follows by definition since G C |J,,_; (@n,bn)-
CrAM 3. If A and B are disjoint compact subsets of R, then
w* (A) + " (B) = " (AUB).
First note that
d=dist(A,B) =inf{|lx —y|: 2 € A,y € B} >0,

since the function f (x,y) = |z — y| is positive and continuous on the closed and
bounded (hence compact) subset A x B of the plane - Theorem 28 shows that f
achieves its infimum dist (A4, B), which is thus positive. So we can find open sets
U and V such that

ACUand BCVand UNV = ¢.

For example, U = |J,c4 B ( x, 2) and V =,z B (:v, g) work. Now suppose that

oo

AUBCG= U (Gnsbn) -

Then we have
. K* L*
AcUﬁG:Uk: (ex, fr) and BC VNG = U (9o, he)
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and then from Claim 2 and monotonicity of y* we obtain

K* L*
pA) T (B) < Y (fe—ex)+ D (he—g0)
k=1 (=1
K* L

= W Ukzl(ekafk) U Uzzl(gi”hf)

o0
< Zb —ap).
n=1

Taking the infimum over such G gives p* (A) + p* (B) < p* (AU B), and subaddi-
tivity of p* now proves equality.

Proof (of Theorem 51): We now prove that £ is a o-algebra and that £ and p
satisfy the four properties in the statement of Theorem 51. First we establish that
L is a o-algebra in four steps.

Step 1: Ae Lif p*(A)=0.

Given ¢ > 0, there is an open G D A with p* (G) < e. But then p* (G\ A) <
©* (G) < & by monontonicity.

Step 2: |J,2, A, € £ whenever A, € L for all n.

Given ¢ > 0, there is an open G, D A, with pu*(Gn,\ An) < 57. Then
A = U, A, is contained in the open set G = |Jo—; G,, and since G \ A is
contained in J,;~; (G, \ 4,), monotonicity and subadditivity of x* yield

u*(G\A)<u*<U(Gn\A> Z (G \ Ap) ZQinzg.

n=1 n=1 n=1
Step 3: A € L if A is closed.

Suppose first that A is compact, and let € > 0. Then using Claim 2 there is
. N*
G =,,—; (an,b,) containing A with

oo

Z (b, —an) < p* (A) + & < .

.M
Now G'\ A is open and so G\ A =J,,_; (¢m,dm) by Proposition 14. We want to
show that p* (G\ A) < e. Fix a finite M < M* and

1
O<T]<§1m1nM(dmfcm).

Then the compact set
M

Ky = U [em + 1, di — ]

m=1

is disjoint from A, so by Claim 3 we have

WA+ (K) = 1 (AU K,).
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We conclude from subadditivity and AU K, C G that

M M
WA+ Y (dn—em—2n) = @' (A)+p" (U (Cm+77adm77)>

m=1

< pt(A) +p (Kn)
— 1(AUK,)
< w(G) < u(A) +e

N

Since p* (A) < oo for A compact, we thus have

M
Z (dm —cm) <e+2Mn

m=1
for all 0 < n < mini<m<ps (dp, — ¢n). Hence Zﬁle (dm — ¢m) < € and taking
the supremum in M < M™* we obtain from Claim 2 that
M
pr(G\A) = Z (dm —cm) <e.
m=1

Finally, if A is closed, it is a countable union of compact sets A = J7—_, ([—n,n] N A),
and hence A € L by Step 2.
Step 4: Acc Lif Ae L.
For each n > 1 there is by Claim 2 an open set G, D A such that p* (G, \ 4) <
%. Then F,, = G¢ is closed and hence F,, € £ by Step 3. Thus
(oo}
S = UFHEL‘,, S C A°,

n=1

and A°\ S C G, \ A for all n implies that

1
pANNS) spt(Gu\A) <, m2 L

Thus p* (A°\ S) = 0 and by Step 1 we have A°\ S € L. Finally, Step 2 shows that
AC=SU(A4A°\ S) e L.

Thus far we have shown that £ is a o-algebra, and we now turn to proving that

L and p satisfy the four properties in Theorem 51. Property (1) is an easy exercise.

Property (2) is the main event. Let {E,}, -, be a pairwise disjoint sequence of sets
. OO

in£,and let E=J,,_,En.
We will consider first the case where each of the sets E,, is bounded. Let £ > 0
be given. Then Ef € £ and so there are open sets G, D Ef such that
W (G \ ES) < Qin n>1.
Equivalently, with F,, = G¢, we have F), closed, contained in E,,, and

3

27, nZl

N* (En\Fn) <



2. MEASURABLE FUNCTIONS AND INTEGRATION 123

Thus the sets {F,} -, are compact and pairwise disjoint. Claim 3 and induction

shows that
N N
St () = (U F) < (E), N=x1,
n=1 n=1

and taking the supremum over N yields
o0
Z p(F) < pt(E).
n=1

Thus we have

> u(En)

N
(]
—~—
7;*
&
—
&
+
t*
5
=

n=1
[e’e] c &) i .

< Dt W () et pt(B).
n=1 n=1

Since € > 0 we conclude that > >~ , p* (E,) < p* (E), and subadditivity of y* then
proves equality.
In general, define E,, , = E, N {(—k —1,—k]U [k,k+ 1)} for k,n > 1 so that

. o0

B= Un:lEn - Un,k:lEmk'

Then from what we just proved we have

o0 o0

pE) = > (Bng) =Y (Z pw (En,k)> =Y u(En).
n=1 \k=1 n=1

oo

Finally, property (3) follows from the observation that E C Un:l (an, by) if and

only if E4+ 2z C J,,_; (an + x,b, + x). It is then obvious that p* (E 4+ z) = pu* (E)
and that E+x € L if E € L. Property (4) is immediate from Step 1 above. This
completes the proof of Theorem 51.

2. Measurable functions and integration

Let [—00,00] = RU {—00,00} be the extended real numbers with order and
(some) algebra operations defined by

—00 < x< o9, z € R,

r+o00 = 00, z € R,

r—00 = —00, x € R,
.00 = 00, z > 0,

r-o0o = —00, z <0,
0-c0 = 0.

The final assertion 0 - oo = 0 is dictated by 220:1 a, = 0 if all the a,, = 0. It turns
out that these definitions give rise to a consistent theory of measure and integration
of functions with values in the extended real number system.

Let f: R — [—00,00]. We say that f is (Lebesgue) measurable if

Y ([~o0,2)) €L, zER.
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The simplest examples of measurable functions are the characteristic functions x5
of measurable sets E. Indeed,

¢ if <0
(xg) ' ([~o0,2))={ E° if 0<az<1
R if r>1

It is then easy to see that finite linear combinations s = 27]:7:1 anXg, of such
characteristic functions xp , called simple functions, are also measurable. Here
a, € R and FE,, is a measurable subset of R. It turns out that if we define the
integral of a simple function s = Zf:;l anXp, by

/RSXN:%M(ETL),

n=1
the value is independent of the representation of s as a simple function. Armed
with this fact we can then extend the definition of integral fR f to functions f that
are nonnegative on R, and then to functions f such that [, |f| < co.

At each stage one establishes the relevant properties of the integral along with
the most useful theorems. For the most part these extensions are rather routine, the
cleverness inherent in the theory being in the overarching organization of the con-
cepts rather than in the details of the demonstrations. As a result, we will merely
state the main results in logical order and sketch proofs when not simply routine.
We will however give fairly detailed proofs of the three famous convergence theo-
rems, the Monotone Convergence Theorem, Fatou’s Lemma, and the Dominated
Convergence Theorem. The reader is referred to the excellent exposition in [5] for
the complete story including many additional fascinating insights.

2.1. Properties of measurable functions. From now on we denote the
Lebesgue measure of a measurable subset E of R by |F| rather than by u (E) as in
the previous sections. We say that two measurable functions f,g : R — [—o00, 00]
are equal almost everywhere (often abbreviated a.e.) if

{zeR: f(z)#g(z)} =0
We say that f is finite-valued if f : R — R. We now collect a number of elementary
properties of measurable functions.

LEMMA 26. Suppose that f, fn,g: R — [—00,00] for n € N.

(1) If f is finite-valued, then f is measurable if and only if f=1(G) € L for
all open sets G C R if and only if f=1 (F) € L for all closed sets F C R.

(2) If f is finite-valued and continuous, then f is measurable.

(3) If f is finite-valued and measurable and ® : R — R is continuous, then
® o f is measurable.

(4) If {fn},— is a sequence of measurable functions, then the following func-
tions are all measurable:

sup fn (z), inf f, (z),..lim sup f,(z), lim inf f,(x).

n— oo n—oo

(5) If{fn},—, is a sequence of measurable functions and f (x) = lim, oo fr (%),
then f is measurable.

(6) If f is measurable, so is f™ for n € N.

(7) If f and g are finite-valued and measurable, then so are f + g and fg.
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(8) If f is measurable and f = g almost everywhere, then g is measurable.

Comments: For property (1), first show that f is measurable if and only if
F ((a,b)) € L for all —co < a < b < co. For property (3) use (®o f)~ ' (G) =
f71 (27 (G)) and note that @' (G) is open if G is open. For property (7), use

{(f+9>a} = JUf>a-rin{g>r}], ac€R,
reQ

fo = 1[0+ar--97].

Recall that a measurable simple function ¢ (i.e. the range of ¢ is finite) has
the form

N
wzzakXEk, ar €R, By € L.
k=1

Next we collect two approximation properties of simple functions.

PROPOSITION 18. Let f : R — [—00, 00| be measurable.

(1) If f is nonnegative there is an increasing sequence of nonnegative simple
functions {¢}re; that converges pointwise and monotonically to f:

o (2) < gy (z) and klim o (@)= f(x), foralxzeR.
(2) There is a sequence of simple functions {¢}}r, satisfying
ler (@) < |41 (2)] and lim @ (z) = f(2),  forallz €R.

Comments: To prove (1) let fay = min {f, M}, and for 0 < n < NM define

1
En)N7M:{xER:;<fM(m)§n; }

x
Then ¢, (x) = Zifl FXE, i, () works. Property (2) is routine given (1).

2.2. Properties of integration and convergence theorems. If ¢ is a
measurable simple function (i.e. its range is a finite set), then ¢ has a unique
canonical representation

N
0= arxpg,
k=1

where the real constants oy, are distinct and nonzero, and the measurable sets Ej,
are pairwise disjoint. We define the Lebesgue integral of ¢ by

/(p(x)dx = Zak |Ex| .
k=1

If F is a measurable subset of R and ¢ is a measurable simple function, then so is
X g, and we define

[ e@dr= [ (xee) @ do

LEMMA 27. Suppose that ¢ and i are measurable simple functions and that
E.Fel.
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(1) If p = Zkle BrXr, (not necessarily the canonical representation), then

M
/wx)dxzzﬁum

) [(ap+b)=a[@+b[1 forabeC,
) Jpopr=Jpe+ [pe fENF =9,
4) [o< [vife <1,

) [[e] < [lel.

Properties (2) - (5) are usually referred to as linearity, additivity, monotonicity
and the triangle inequality respectively. The proofs are routine.

Now we turn to defining the integral of a nonnegative measurable function
f:R —[0,00]. For such f we define

/f x:sup{/g(x)dar:nggfandwissimple}.

It is essential here that f be permitted to take on the value oo, and that the
supremum may be oo as well. We say that f is (Lebesgue) integrable if [ f (z)dx <
oo. For E measurable define

| r@ie= [ own @

Here is an analogue of Lemma 27 whose proof is again routine.

(2
(3
(

LEMMA 28. Suppose that f,g : R — [0,00] are nonnegative measurable func-
tions and that E, F € L.

(1) [(af+bg)=a [ f+b[g forabe (0,00),
) Jpopf=Jpf+ [pfiAENF =0,

@) [f<[gif0<[f<g.

(4) If [ f < oo, then f (z) < ¢ for a.e. z,

(5) If [ f =0, then f(z) =0 for a.e. .

Note that convergence of integrals does not always follow from pointwise con-
vergence of the integrands. For example,

lim X[n,n+1] (IZZ) dr =1 7é 0= /nhigo X[n,nJrl] (527) d.’E,

n—oo

and

lim "X (0,2) (x)de=1#£0= / lim 07X, 1

] () dx.

n—oo ‘n

In each of these examples, the mass of the integrands "disappears" in the limit; at
"infinity" in the first example and at the origin in the second example. Here are our
first two classical convergence theorems giving conditions under which convergence

does hold.

THEOREM 52. (Monotone Convergence Theorem) Suppose that {fy}.o, is an
increasing sequence of nonnegative measurable functions, i.e. fn (x) < fni1 (2),
and let
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Then f is nonegative and measurable and
/f (z)dx = lim [ f, (z)dz.

Proof: Since [ f, < [ fn41 we have lim,, .o [ f = L € [0,00]. Now f is
measurable and f, < f implies [ f,, < [ f so that

Lg/ﬁ

To prove the opposite inequality, momentarily fix a simple function ¢ such that
0 < ¢ < f. Choose ¢ < 1 and define

E,={zeR: f,(z) >cp(x)}, n>1L

Then E,, is an increasing sequence of measurable sets with J7; E,, = R. We have

/RZ/LQQ/% n> 1.
E, E,

Now let ¢ = Zi\;l ak X, be the canonical representation of . Then

N
t/m © ZZEZ:ak|E%f7f%|,
En k=1

and since lim,_,o |E, N Fy| = |F)| by the fourth line in (1.1), we obtain that

N N
L/‘<p::j£:akLEanE%|—ﬁ 2::ak|Fk|:‘/n¢
n k=1 k=1

as n — o0o. Altogether then we have

L = lim fn>c / %)
for all ¢ < 1, which implies L > [ ¢ for all simple ¢ with 0 < ¢ < f, which implies
L > [ f as required.

COROLLARY 14. Suppose that ay (x) > 0 is measurable for k > 1. Then

/gak(x)dng/ak(gc)dx_

To prove the corollary apply the Monotone Convergence Theorem to the se-
quence of partial sums f, (z) = >} _; ax (z).

LEMMA 29. (Fatou’s Lemma) If {f,},—, is a sequence of nonnegative mea-

surable functions, then
/lim inf f,(z)dz <lim inf [ f,(z)dz.
n—oo n—oo

Proof: Let g, (z) = infy>, fi (z) so that g, < f, and [g, < [ f,. Then
{gn}.2, is an increasing sequence of nonnegative measurable functions that con-
verges pointwise to liminf,, . f, (z). So the Monotone Convergence Theorem
yields

n—oo n—oo n—oo

/lim inf fp,(x)der= lim [ g, (x)de <lim inf [ f, (x)dz.
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Finally, we can give an unambiguous meaning to the integral [ f (z)dx in the
case when f is integrable, by which we mean that f is measurable and [ |f (z)|dz <
00. To do this we introduce the positive and negative parts of f:

f*(2) = max {f (z),0} and f_ (z) = max {-f (z),0}.

Then both f* and f_ are nonnegative measurable functions with finite integral.

We define
/f($)d$=/f+(w)dx—/f_(z)dx.

With this definition we have the usual elementary properties of linearity, addi-
tivity, monotonicity and the triangle inequality.

LemMmA 30. Suppose that f,g are integrable and that E, F € L.
(1) [(af+bg)=a [ f+b[g forabeR,

(2) fEUpf:fEf+fFf ifEmF:¢7

B [f<[agiff<g

@ [[r1< 151

Our final convergence theorem is one of the most useful in analysis.

THEOREM 53. (Dominated Convergence Theorem) Let g be a nonnegative in-
tegrable function. Suppose that {f,},— | is a sequence of measurable functions sat-
isfying

lim f, (z) = f(x), a.e. x,

and
fu (@) <g(x), ae
Then
Jim [ |f (2) = fu (@) dz = 0,
and hence

Proof: Since |f| < g and f is measurable, f is integrable. Since |f — f,| < 2g,
Fatou’s Lemma can be applied to the sequence of functions 2g — | f — f,.| to obtain

/29 < limniggo/@g—lf—fnl)
/2g+limniil(f)o <—/|f—fn|)
— /2g—limnsggo/|f—fn|'

Since [2g < 0o, we can subtract it from both sides to obtain

tim sup [ 17~ £,/ 0.

n—oo

which implies lim, o [ |f — fn| = 0. Then [ f = lim, . [ f, follows from the
triangle inequality | [ (f — fu)| < [1f — ful-
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Finally, if f(z) = u(x) + t (z) is complex-valued where u (x) and v (z) are
real-valued measurable functions such that

[ir@lde= [\ow? +o@iar <o,
/f(m)difz/u(x)dx—&—i/v(x)dm.

The usual properties of linearity, additivity, monotonicity and the triangle inequal-
ity all hold for this definition as well.

then we define

2.3. Three famous measure problems. The following three problems are
listed in order of increasing difficulty.

PROBLEM 3. Suppose that Ey, ..., E,, are n Lebesque measurable subsets of [0, 1]
such that each point x in [0,1] lies in some k of these subsets. Prove that there is
at least one set E; with |E;| > £.

PROBLEM 4. Suppose that E is a Lebesgue measurable set of positive measure.
Prove that
E-E={z—y:z,yc E}
contains a nontrivial open interval.

PrOBLEM 5. Construct a Lebesgue measurable subset of the real line such that
|[ENI|

<1
1|

0<

for all nontrivial open intervals I.

To solve Problem 3, note that the hypothesis implies k < 37, xp, () for
x € [0,1]. Now integrate to obtain

1 1 n n 1 n
b= [hdo< [ S @) =3 [ xp, @)de= Y 1B
0 0 \j=1 j=170 j=1

which implies that |E;| > % for some j. The solution is much less elegant without
recourse to integration.

To solve Problem 4, choose K compact contained in E such that |K| > 0. Then
choose G open containing K such that |G\ K| < |K|. Let 6 = dist (K,G°) > 0. It
follows that (—d,0) C K — K C E— E. Indeed, if z € (=4, 6) then K — 2 C G and
K N (K — x) # ¢ since otherwise we have a contradiction:

2|K[=|K[+|K —2| < |G| < |G\ K|+ |K| <2]K].
Thus there are k; and k2 in K such that k; = ks — x and so
r=ky— k1 € K- K.

Problem 5 is most easily solved using generalized Cantor sets E,,. Let 0 < a <1
and set I = [0, 1]. Remove the open interval of length %a centered in I and denote
the two remaining closed intervals by I and I3. Then remove the open interval of
length B%Oz centered in I{ and denote the two remaining closed intervals by I? and
I3. Do the same for I} and denote the two remaining closed intervals by I2 and I3.
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i
Continuing in this way, we obtain at the k" generation, a collection {I]’?}jzl

of 2% pairwise disjoint closed intervals of equal length. Let

Then by summing the lengths of the removed open intervals, we obtain
2

1 2 2
|[O,1]\Ea|:§a+3—2a+3—3a+...:a,

and it follows that F, is compact and has Lebesgue measure 1 — o. It is not hard
to show that E,, is also nowhere dense. The case o = 1 is particularly striking: E}
is a compact, perfect and uncountable subset of [0, 1] having Lebesgue measure 0.
This is the classical Cantor set introduced as a fractal in Subsection 3.1 of Chapter
3.

In order to construct the set F in Problem 3, it suffices by taking unions of
translates by integers, to construct a subset E of [0, 1] satisfying

ENnI
(2.1) 0< | 7] | <1,  for all intervals I C [0,1] of positive length.
1
Fix 0 < a1 < 1 and start by taking E* = E,,. It is not hard to see that |E‘ITI| <1

for all I, but the left hand inequality in (2.1) fails for E = E* whenever I is a subset
of one of the component intervals in the open complement [0,1]\ E'. To remedy
this fix 0 < az < 1 and for each component interval .J of [0, 1] \ B, translate and
dilate E,, to fit snugly in the closure J of the component, and let E? be the union
2

of E' and all these translates and dilates of E,,. Then again, % < 1 for all
I but the left hand inequality in (2.1) fails for E = E? whenever I is a subset of
one of the component intervals in the open complement [0,1] \ E2. Continue this
process indefinitely with a sequence of numbers {a,},-, C (0,1). We claim that
E =J,2, E™ satisfies (2.1) if and only if

(2.2) > (1—ap) <.

n=1

To see this, first note that no matter what sequence of numbers «,, less than
|ENI|
o ]
each set E™ is easily seen to be compact and nowhere dense, and each component
interval in the complement [0, 1] \ E™ has length at most

oy g,

33 3 -
Thus given an interval I of positive length, there is n large enough such that I will
contain one of the component intervals J of [0,1] \ E™, and hence will contain the
translated and dilated copy C (E.,,,,) of E,,,, that is fitted into J by construction.

Since the dilation factor is the length |J| of J, we have
|E‘m I| 2 |C (Ean,+l)’ = ‘J| |E04n+1| = |J| (1 - a"-‘rl) >0,
since ay4+1 < 1.

It remains to show that |ENI| < |I| for all intervals I of positive length in
[0,1], and it is here that we must use (2.2). Indeed, fix I and let J be a component

one is used, we obtain that 0 < for all intervals I of positive length. Indeed,
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interval of [0,1] \ E™ (with n large) that is contained in I. Let C (E.,,,) be the
translated and dilated copy of F, that is fitted into J by construction. We
compute that

ENJ] = [C(Eap)| + 1 = ang2) |[T\C(Bapyy)| + -
= (1 - ozn+1) |J‘ + (1 - an+2) (1 - (1 - an-‘rl)) |J|
+ (1= ant3) (1= (1 —ant1) = (1 = ang2) (1 = (1 = ang1))) [J]| + ...

= > BrlJl,
k=1

where by induction,

n41

62 = (1 — Oln+k) Aptfp—1---Cnt1, k 2 1.
Then we have
|ENJ| = (Zﬁﬁ) 7] < 11,
k=1

and hence also Ibm” < 1, if we choose {ay,} -, so that Y p-, B < 1 for all n.

Now we have

Zﬁk = Z 1 - an+k:) On+k—1---Qnt1 = 1- H An+tk,
k=1 k=1
and by the ﬁrst line in (2.3) below, this is strictly less than 1 if and only if
> one i (1= ays) < oo for all n. Thus the set E constructed above satisfies (2.1) if
and only if (2.2) holds.
2.3.1. Infinite products Ifo0<uwu, <1and0<uw, < oo then

1—un > 0 if and only if Zun<oo,

n=1

(2.3)

1+Un < oo if and only if Zvn<oo.

n=1

n::18n::1

To see (2.3) we may assume 0 < u,, v, < 1, so that e™"» > 1—u, > e s and

etvn < 14w, <e¥. For example, when 0 < z < %, the alternating series estimate
yields
(22)°

—2x
e sl 2!

<1-uz,

while the geometric series estimate yields

62’””<1—|—<1 >{1+x+x + .. }<1+x

)=
) = ]

Thus we have

(2.4) exp (

exp (

(Y
2

(1 —uy) >exp< QZun),
(1+wv,) <exp (Z vn>.

n=1

1

IN
2

>
>

[\D\)—‘

1
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