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Introduction

What follows is a summary of the various chapters in Rudin’s real&complex

analysis. I developed these notes while studying for a qualifying exam in
Analysis. From each chapter I have taken the theorems and definitions I felt
deserved the most attention during my studies. This is not to say that these
are the most important theorems or definitions; simply the ones which I chose
to spend more time studying.

My goal here was to condense the enormity of Rudin’s text to a digestible
summary. Hence, there currently is very little in the way of comments or ex-
planation of concepts. These can be found in the original text. I therefore
emphasize that this work is not meant to be a substitute for the original text,
but rather a complement.

I have, however, taken the liberty to include examples; one thing which is
sorely lacking in the text. The examples I have included are from the preliminary
exams I studied, and the solutions are my own. I make no guarantee that the
solutions are correct, and suspect that there may be holes here and there. If
you find mistakes in the solutions, or if you have any suggestions or comments,
you can email me at

bobby@math.utah.edu

You may notice that Chapter 7 on Differentiation is currently blank. This
chapter was not covered during the course, and most of the information in it
was familiar. I hope to add it later.

I have the files for this document archived at

http://www.math.utah.edu/∼bobby/rudin.zip

The LATEX files are included, as are all necessary .eps files. In this way, you are
free to modify these notes toward your own studies. You should be aware, how-
ever, that several packages are required to compile the LATEX files. In particular,
the mathrsfs package is needed for the math script fonts.
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Chapter 1

Abstract Integration

Definition. A collection M of subsets of a set X is called a σ-algebra in X if
M has the following properties:

1. X ∈M.

2. A ∈M implies A{ ∈M.

3. If A is a countable collection of sets in M, then
⋃A ∈M.

If M is a σ-algebra in X , then X is called a measurable space, and the sets
in M are called the measurable sets in X .

If X is a measurable space, and Y is a topological space, and f : X −→ Y ,
then f is said to be a measurable function provided that f−1(V ) is a measurable
set in X for every open set V in Y .

Theorem. Let g : Y −→ Z be a continuous map between topological spaces.
If X is a measurable space and f : X −→ Y is a measurable function, then
h = g ◦ f is measurable.

Example 1. Let f and g be real-valued measurable functions on a measurable
space X . Show that

E = {x ∈ X : sin f(x) ≥ cos g(x)}

is a measurable subset of X .

Proof. Let h = sin ◦f − cos ◦g. Then, by continuity of sin and cos, and the
measurability of f and g, we may conclude that h is measurable. Furthermore,
E = h−1(−∞, 0){, and (−∞, 0) is an open set. Therefore the inverse image
under h of (−∞, 0) is measurable, and the complement of such is also measur-
able.
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Theorem (Lebesgue Monotone Convergence Theorem). Let {fn} be a
sequence of measurable functions on X such that

1. 0 ≤ f1(x) ≤ f2(x) ≤ . . . ≤ ∞, ∀x ∈ X ,

2. fn(x)→ f(x) as n→∞, ∀x ∈ X .

Then f is measurable, and

∫

X

fn dµ→
∫

X

f dµ as n→∞.

Theorem. Let fn : X −→ [0,∞] be measurable for n ∈ N, and

f(x) =

∞∑

n=1

fn(x) ∀x ∈ X.

Then ∫

X

f dµ =

∞∑

n=1

∫

X

fn dµ.

Proof. Apply LMCT twice.

Theorem (Fatou’s Lemma). Let fn : X −→ [0,∞] be measurable for n ∈ N,
then ∫

X

(
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫

X

fn dµ

Definition. Let M be a σ-algebra of X and let µ be a positive measure on M.
We define the space of functions L1(µ) via

L1(µ) =

{
f : X −→ C ∪ {∞} :

∫

X

|f | dµ <∞
}
.

If f ∈ L1(µ), we say f is integrable.

Theorem. If f ∈ L1(µ), then

∣∣∣∣
∫

X

f dµ

∣∣∣∣ ≤
∫

X

|f | dµ.
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Theorem (Lebesgue Dominated Convergence Theorem). Let {fn} be a
sequence of measurable functions on X such that

f(x) = lim
n→∞

fn(x)

exists for every x ∈ X . If there is a g ∈ L1(µ) with

|fn(x)| ≤ g(x) ∀n ∈ N, ∀x ∈ X,

then f ∈ L1(µ),

lim
n→∞

∫

X

|fn − f | dµ = 0,

and

lim
n→∞

∫

X

fn dµ =

∫

X

f dµ.

Proof. Uses Fatou’s Lemma

Example 2. Let (X,M, µ) be a positive measure space, and let f ∈ L1(µ). Let
Xn = {x ∈ X : |f(x)| > n}. Show that

lim
n→∞

nµ(Xn) = 0.

Proof. Let χn = χXn
be the characteristic function, and define fn = |f · χn|.

For every x ∈ X there exists M ∈ N such that |f(x)| < M . 1 This implies that
for all n > M , χn(x) = 0. Therefore, fn(x)→ 0 for all x ∈ X . Notice that

nµ(Xn) <

∫

Xn

|f | dµ =

∫

X

fn dµ.

Furthermore fn are all dominated by f . Thus, by applying Lebesgue dominated
convergence, we conclude that

lim
n→∞

nµ(Xn) ≤ lim
n→∞

∫

X

fn dµ ≤
∫

X

lim
n→∞

fn dµ = 0.

The result follows.

1There is the following subtlety here: it is actually possible that no M ∈ N bounds |f(x)|
since f(x) could possibly be ∞. However, the set on which that can happen must have
measure zero since f ∈ L1(µ). Thus, we can replace f with another L1 function by forcing
those values to be zero, without loss of generality.
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Example 3. Let µ be a positive measure on a measure space (X,M), and let
f be a complex valued function on X which is integrable with respect to µ. For
each n, set

En = {x ∈ X : 1/n ≤ |f(x)| ≤ n} .
Then each En is a measurable set on which |f | is bounded. Prove that

1. µ(En) is finite for each n, and

2. lim
n→∞

∫

En

f dµ =

∫

X

f dµ.

Proof. Let fn = fχEn
. Let x ∈ X . If f(x) = 0, then fn(x) = 0 for all n ∈ N. If

|f(x)| = ε > 0 then there exists N ∈ N such that for all n ≥ N ,

1

n
< ε < n.

Thus fn(x) = f(x) for all n ≥ N . We conclude that fn → f , and |fn| ≤ |f |.
Thus, we apply Lebesgue dominated convergence theorem to get

1. Since f ∈ L1(µ),

nµ(En) =

∫

En

n dµ ≤
∫

X

|fn| dµ ≤
∫

X

|f | dµ <∞.

Therefore, µ(En) is finite.

2.

lim
n→∞

∫

En

f dµ = lim
n→∞

∫

X

fn dµ =

∫

X

f dµ.
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Chapter 2

Positive Borel Measures

Definition. If {x : f(x) > α} is open for all real α, then f is lower semicontin-
uous.
If {x : f(x) < α} is open for all real α, then f is upper semicontinuous.

Theorem (Urysohn’s Lemma (Partitions of Unity)). Let X be a locally
compact hausdorff space, V an open set in X , and K a compact subset of V .
Then there exists a function f ∈ Cc(X) (the space of continuous functions on
X with compact support) with

0 ≤ f ≤ 1, f
∣∣
K
≡ 1, f

∣∣
XrV

≡ 0.

(The last condition is equivalent to support(f) ⊆ V ).

Theorem (Riesz Representation Theorem). Let X be a locally compact
hausdorff space, λ a positive linear functional on Cc(X). Then there exists a
σ-algebra M in X and a measure µ on M which “represents” λ:

1. λf =

∫

X

f dµ ∀f ∈ Cc(X),

2. µ(K) <∞ whenever K is compact,

3. ∀E ∈M,

µ(E) = inf
{
µ(V )

∣∣V is open and contains E
}
.

(µ is outer-regular).

4. If E is open, or if µ(E) <∞, then

µ(E) = sup
{
µ(K)

∣∣K is a compact subset of E
}
.

(µ is inner-regular).

5. If E ∈M, A ⊆ E, µ(E) = 0, then A ∈M.

5



Chapter 3

L
p-Spaces

Definition. Lp(µ) =

{
f : X → C ∪ {∞} :

(∫

X

|f |p dµ
)1/p

<∞
}

.

Theorem. Let p and q be conjugate exponents ( 1
p + 1

q = 1), 1 < p < ∞. Let
X be a measure space with measure µ. Let f and g be measurable functions on
X with range in [0,∞]. Then the following inequalities hold:

• (Hölder’s Inequality).

∫

X

fg dµ ≤
(∫

X

fp dµ

)1/p(∫

X

gq dµ

)1/q

.

• (Schwarz Inequality). Take p = q = 2 above.

• (Minkowski Inequality).

(∫

X

(f + g)p dµ

)1/p

≤
(∫

X

fp dµ

)1/p

+

(∫

X

gp dµ

)1/p

.

This is the triangle inequality for Lp(µ): ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Definition (‖f‖∞). Define the essential supremum of f , denoted ‖f‖∞, by the
property that

|f(x)| ≤ α for almost all x ⇐⇒ ‖f‖∞ ≤ α.
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Theorem (this is a summary of a few theorems). Let p and q be conjugate
exponents, 1 ≤ p ≤ ∞, and f, g ∈ Lp(µ), and h ∈ Lq(µ). Then:

1. fh ∈ L1(µ) with ‖fh‖1 ≤ ‖f‖p‖h‖q,

2. f + g ∈ Lp(µ) with ‖f + g‖1 ≤ ‖f‖p + ‖g‖p,

3. If α ∈ C then αf ∈ Lp(µ) with ‖αf‖p = |α| ‖f‖p,

4. Lp(µ) is complete (a Banach space).

5. If p <∞ then the simple functions are dense in Lp(µ).

6. If p < ∞ then Cc(X) is dense in Lp(µ), when X is a locally compact
Hausdorff space and µ is regular.

Example 4. Let 0 < p < r < q. Show that if (X,M, µ) is a (positive) measure
space, then

Lr(µ) ⊆ Lp(µ) + Lq(µ).

Proof. Let f ∈ Lr(µ). Then |f |r ∈ L1(µ). Let

A = {x ∈ X : |f(x)| > 1}

B = {x ∈ X : |f(x)| ≤ 1}.
Define g = fχA and h = fχB. Then f = g + h and since 0 < p < r <
q, |g|p, |h|q ≤ |f |r on X . Therefore, f ∈ Lr(µ) implies g ∈ Lp(µ) and h ∈
Lq(µ).

Example 5. Let X be a measure space with µ(X) =!. Let f be a measureable
function in L∞(X). Not that ‖f‖p ≤ ‖f‖∞ for all p ≥ 1. In particular, f can
be considerd an element of Lp(X) for all p ≥ 1. Show that

lim
p→∞

‖f‖p = ‖f‖∞.

Proof. Except on a set of measure 0, |f | ≤ ‖f‖∞. Therefore,

‖f‖pp ≤
∫

X

‖f‖∞ dµ = ‖f‖∞µ(X) = ‖f‖∞.

So ‖f‖p is bounded above by ‖f‖∞. We will use Höler’s inequality to show that
it is also non-decreasing. Let r < s, and let q be the conjugate exponent to
p = s/r. Then consider

∫

X

|1 · f |r dµ ≤
[∫

X

|f |rp dµ

]1/p [∫

X

1q dµ

]1/q

.

By the Hölder inequality. But notice that rp = s. So

‖f‖rr ≤ ‖f‖rs · µ(X)1/q.
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But µ(X) = 1, so we take the rth root of both sides to get

‖f‖r ≤ ‖f‖s.

Hence, the p-norms are increasing, and bounded above by ‖f‖∞. Therefore, the
limit exists.

Now we claim that ‖f‖∞ = supp ‖f‖p. If this is indeed the case, then the
result follows. We already know it is an upper bound, so it suffices to show that
it is the least upper bound. Suppose 0 < M < ‖f‖∞. Then there is some set A
with 0 < µ(A) ≤ 1 on which |f | > M . Then

Mpµ(A) <

∫

A

|f |p dµ ≤ ‖f‖pp.

In other words, M p
√
µ(A) ≤ ‖f‖p. Since µ(A) ≤ 1, as p → ∞, p

√
µ(A) → 1.

Thus, there must be some p0 such that if r > p0, then M < ‖f‖r. Thus, ‖f‖∞
is the least upper bound.

Example 6. Let f(x) = 1/
√
x if 0 < x < 1, f(x) = 0 for x /∈ (0, 1). Let

{rn}∞n=1 be an enumeration of the rationals. Show that if

g(x) =

∞∑

n=1

f(x− rn)

2n

then g ∈ L1(R) and hence g(x) < ∞ a.e. Show however, that even though
g2(x) <∞ a.e., that g /∈ L2(R).

Proof. We first note that from ordinary calculus,
∫

R
f =

∫ 1

0 f = 2, while
∫

R
f2 =

∞. Thus, f ∈ L1(R) but not L2(R). Now by a corollary to Lebesgue Monotone
Convergence, we may compute

∫

R

g(x) dx =
∞∑

n=1

1

2n

∫

R

f(x− rn) dx.

By translation invariance of the integral, the righthand side becomes
∑ 1

2n−1 ,
which is finite. Thus, g ∈ L1(µ), and hence g(x) <∞ a.e.

Since g(x) <∞ a.e., g2(x) <∞ a.e. But

∫

R

[g(x)]2 dx ≥
∞∑

n=1

1

22n

∫

R

[f(x− rn)]2 dx

by ignoring the cross terms in the square of the series. But now the righthand
side is ∞. Thus, g /∈ L2(µ).
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Chapter 4

Elementary Hilbert Space

Theory

Definition (Inner Product Space). A complex vector space H is called an
inner product space if for each x, y ∈ H there exists a complex number 〈x, y〉,
the so-called inner product of x and y, so that the following hold:

1. 〈y, x〉 = 〈x, y〉. (The inner product is skew symmetric or Hermitian)

2. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ H .

3. 〈αx, y〉 = α〈x, y〉 for all x, y ∈ H and α ∈ C.

4. 〈x, x〉 ≥ 0 for all x ∈ H .

5. 〈x, x〉 = 0 ⇐⇒ x = 0.

6. We can define the norm, ‖x‖ of x ∈ H by

‖x‖2 = 〈x, x〉.

Theorem (Schwarz Inequality). |〈x, y〉| ≤ ‖x‖ ‖y‖ for all x, y ∈ H

Theorem (Triangle Inequality). ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ H .

Definition (Hilbert Space). By the Triangle inequality, we can define a met-
ric on any inner product space H . If H is complete in this metric (all Cauchy
sequences converge in H) then we say that H is a Hilbert space.

Lemma (Parallelogram Law). If x, y ∈ H , an inner product space, then

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Essentially, this says that if we have a parallelogram formed from the vectors
x and y, then the sum of the squares of the diagonals is equal to the sum of the
squares of the sides. See Figure 4.1
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x+y

x

y

x-y

0

Figure 4.1: The parallelogram law

Proof. Write down ‖x + y‖2 = 〈x + y, x + y〉 and ‖x − y‖2 = 〈x − y, x − y〉.
Simplify according to the definition of inner product and the result follows.

Example 7. Let Cn = {z = (z1, . . . , zn) : zi ∈ C} be the n-dimensional
complex vector space equipped with the norm

‖z‖ =

n∑

i=1

|zi|.

Prove that this norm does not come from inner product. That is, show there is
no inner product on Cn with the property that ‖z‖2 = 〈z, z〉, for all z ∈ Cn.

Proof. If ‖ · ‖ does come from inner product, then the parallelogram law must
hold for all x, y ∈ Cn. Let x be such that x1 = 1 and all other entries are zero.
Let y be such that y2 = 1 and all other entries are zero. Then

‖x‖ = ‖y‖ = 1,

and
‖x+ y‖ = ‖x− y‖ = 2.

Thus the parallelogram law fails since 8 6= 4.

Example 8. Show that the parallelogram law fails for L1([0, 1]) so it is not a
Hilbert space.

Proof. Let f = χ[0,1/2] and g = χ[1/2,1]. Then ‖f‖1 = ‖g‖1 = 1
2 , and ‖f+g‖1 =

‖f − g‖1 = 1. But

12 + 12 = 2 6= 1 = 2

(
1

2

)2

+ 2

(
1

2

)2

.

Here is another classification of Hilbert spaces:

Theorem. Every nonempty closed convex set in a Hilbert space has a unique
element of minimal norm.
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Example 9. Here is another way to do Example 7. Consider n = 2 (the higher
dimensions follow). Then consider the unit ball B = {z : ‖z‖ ≤ 1. Translate B
by the vector w = (1, 1). Then B + w has no unique element of minimal norm.

Theorem. If H is a Hilbert space, and y ∈ H is fixed, then the mappings

x 7→ 〈x, y〉, x 7→ 〈y, x〉, x 7→ ‖x‖

are all continuous.

Orthogonality

Definition. Let x, y ∈ H . If 〈x, y〉 = 0, we say x and y are orthogonal and write
x ⊥ y. Let x⊥ denote the subspace of all y which are orthogonal to x. If M is
a subspace of H , let M⊥ denote the space of all y ∈ H which are orthogonal to
every x ∈M . Note that x⊥ and M⊥ are closed subspaces.

Theorem. LetM be a closed subspace of a Hilbert spaceH . Then the following
hold:

1. Every x ∈ H has a unique decomposition:

x = Px+Qx

into a sum of Px ∈M and Qx ∈M⊥.

2. Px and Qx are the nearest points to x in M and M⊥, respectively.

3. The mappings P : H −→M and Q : H −→M⊥ are linear.

4. ‖x‖2 = ‖Px‖2 + ‖Qx‖2.

Corollary. If M 6= H then there exists y ∈ H , y 6= 0, such that y ⊥M .

Example 10. Let H be a Hilbert space, M a closed subspace, and N a finite-
dimensional subspace of H . Show that M +N is a closed subspace of H .

Proof. By induction, we may assume that N has dimension one. Thus N =
{λx0 : λ ∈ C}. If x0 ∈M then we are done, because M +N = M in this case.
If x0 /∈ M then we may write x0 = x1 + x2 where x1 ∈ M and x2 ∈ M⊥. So
without loss of generality, we may assume that x1 = 0, and thus N ⊥M .

Now let (mn + λnx0) be a Cauchy sequence in H converging to x. We will
show that x ∈ M + N . Let P : H → M and Q : H → M⊥ be orthogonal
projections. Then (mn + λnx0) → x implies that P (mn + λnx0) → Px and
Q(mn + λnx0) → Qx. Therefore, mn → Px and λnx0 → Qx. But this means
that λn converges to some λ ∈ C. Hence, we conlcude that x = Px+λx0, which
is in M +N .
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Example 11. Let P be a self-adjoint operator on a Hilbert space H such that
P 2 = P . Show that P is a projection on a closed subspace. (By self-adjoint we
mean that 〈Px, y〉 = 〈x, Py〉 for all x, y ∈ H).

Proof. We have P : H −→ H . Let M = imgP , and K = kerP . If we can show
that M = K⊥, then it will be closed. First, we note that

M⊥ = {x ∈ H : 〈x, Py〉 = 0, for all y ∈ H}.

Since P is self-adjoint, we may say

M⊥ = {x ∈ H : 〈Px, y〉 = 0, for all y ∈ H}.

But if 〈Px, y〉 = 0 for all y, then Px = 0. Therefore, M⊥ = K. This tells us
that the kernel is closed, since it is the orthogonal space to a subspace.

Now we know we can write H = K + K⊥. If we can show that in fact
H = K + M , then we will have M = K⊥, and thus will be closed. Let Y :
H −→ M and Z : H −→ M⊥ be the orthogonal projections. Let x ∈ H .
Then x = Y x + Zx. Now apply P to both sides. Px = P (Y x) + P (Zx) =
P (Y x)+0. But Y x = Px0 for some x0 ∈ H . Thus, P (x−Px0) = 0. Therefore,
x−Px0 ∈ K. So, we can write x = (x−Px0)+Px0. Thus we have decomposed
H = K +M .

Example 12. Let A be a closed subspace of C ([0, 1]) which is also closed in
L2 ([0, 1]). Prove that the orthogonal projection P which projects L2 ([0, 1])
onto A is continuous as a linear transformation from L2 ([0, 1]) into C ([0, 1]).
Note that C ([0, 1]) has the topology determined by the sup norm ‖ ˝ ‖∞, while
L2 ([0, 1]) has the topology determined by the norm ‖ ˝ ‖2.

Proof. Let A2 = (A, ‖ ˝ ‖2) and A∞ = (A, ‖ ˝ ‖∞). Then we want to verify that

P̂ : L2 ([0, 1])
P−→ A2

id−→ A∞
incl−→ C ([0, 1])

is continuous, where id is the identity map, and incl is the inclusion map. Since
projection and inclusion under the same norm are always continuous, we simply
need to verify that the identity function, id : A2 −→ A∞, is continuous.

We notice that ‖f‖∞ < M implies that ‖f‖2 < M . Therefore, the inverse
image of open balls are open balls. Thus, the identity map is continuous, and
P̂ is continuous.

Theorem (Riesz Representation Theorem). If λ is a continuous linear
functional on a Hilbert space H , then there exists a unique y ∈ H so that

λx = 〈x, y〉, ∀x ∈ H.

12



Theorem. Let T ⊆ C be the unit circle, f ∈ C(T ), and ε > 0. Then there
exists a trigonometric polynomial,

P (t) = a0 +

N∑

n=1

(an cos(nt) + bn sin(nt))

such that |f(t) − P (t)| < ε for all t ∈ R. (i.e., the trigonometric polynomials
are dense in C(T )).

Fourier Series

Definition (Fourier coefficients). Let f ∈ L1(T ). We define the Fourier
coefficients of f by:

f̂(n) =
1

2π

∫ π

−π

f(t)e−int dt, ∀n ∈ Z.

Definition. ℓ2(Z) is the space of sequences in Z whose sums of squares is finite.

That is, (an) ∈ ℓ2(Z) if an ∈ Z for all n and

∞∑

n=1

a2
n <∞.

Thus, we get a correspondence L2(T )↔ ℓ2(Z):

Theorem (Riesz-Fischer Theorem). If {cn} is a sequence of complex num-
bers such that

∞∑

n=−∞

|cn|2 <∞,

then there exists f ∈ L2(T ) such that cn = f̂(n).

Theorem (Parseval Theorem).

∞∑

n=−∞

f̂(n)ĝ(n) =
1

2π

∫ π

−π

f(t)g(t) dt ∀f, g ∈ L2(T ),

and the sum converges absolutely. Furthermore, if

sN =

N∑

−N

f̂(n)eint, N ∈ N,

then lim
N→∞

‖f − sN‖2 = 0.
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Chapter 5

Examples of Banach Space

Techniques

Joke. Q: What’s yellow, normed, linear, and complete?

Ans: A Bananach space.

Definition (Banach Space). A Banach space is a normed, linear, complete
metric space. If X and Y are normed linear spaces, and T : X −→ Y is linear,
then we can define the norm of T , ‖T ‖ by

‖T ‖ = sup {‖Tx‖Y : x ∈ X, ‖x‖X ≤ 1} .

If ‖T ‖ <∞ we say T is bounded

Theorem. If X and Y are normed linear spaces, and T : X −→ Y is linear,
then the following are equivalent:

1. T is bounded

2. T is continuous

3. T is continuous at a point x0 ∈ X .

The Big Four

Theorem (Banach-Steinhaus Theorem). Let X be a Banach space, Y a
normed linear space, {λα : X −→ Y } a collection of bounded linear transfor-
mations where α ranges over some index set A . Then either

1. There is a bound M <∞ such that ‖λα‖ < M for all α ∈ A , or

2. There exists a dense Gδ subset of X such that

sup
α∈A ‖λαx‖ =∞, ∀x ∈ Gδ.
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Geometric Interpretation

In other words, either

1. There is a ball B ⊆ Y centered at 0 with radius M so that for every
α ∈ A , λα maps the unit ball of X into B, OR

2. There is an x (in fact a dense set of them) such that no ball B ⊆ Y
contains λαx for all α ∈ A .

Here is a weak form of the Banach-Steinhaus theorem:

Theorem. Let X be a Banach space Y a normed linear space, and let (λα) :
X −→ Y be a set of bounded linear transformations from X to Y . Suppose
there exists an M > 0 such that for every α ∈ A , |λα| ≤ M . Then for every
x ∈ X , the family {‖λα(x)‖} is bounded in Y . That is,

sup
α
‖λα(x)‖ <∞.

The Banach-Steinhaus theorem actually says that the implication indeed
goes both ways.

Theorem (Open Mapping Theorem). If X and Y are Banach spaces, and
f : X −→ Y is bounded, linear, and onto, then f is an open map. (The image
of every open ball in X with center at x0 contains an open ball in Y with center
f(x0)).

Example 13. A bounded linear transformation T : X −→ Y between Banach
spaces is said to be a compact linear transformation if the image under T of
the unit ball in X has compact closure in Y . Prove that if a compact linear
transformation is also surjective, then Y must be finite dimensional (we may
assume that a locally compact Banach space must be finite dimensional).

Proof. Let T : X −→ Y be a compact linear transformation between Banach
spaces which is also surjective. Then T is bounded by the definition.1 Therefore,
by the open mapping theorem, T is an open map. So consider the following.

Let y ∈ Y . Then there exists x ∈ X such that Tx = y. Let Vx be the ball of
radius 1 about x in X . Then, T (Vx) is a neighborhood of y, since T is an open
map. Let W = T (Vx), and W is compact, since T is a compact map.

Therefore, every point in Y has a neighborhood with compact closure. Hence,
Y is locally compact, and must be finite dimensional.

Example 14. Let α(x, y) be a continuous function on [0, 1]× [0, 1]. Show that

A(f)(x) =

∫ 1

0

α(x, y)f(y) dy

defines a bounded operator from L2([0, 1]) to C([0, 1]), considered as a Banach
space with respect to ‖f‖ = sup

x
|f(x)|.

1Note: we can deduce boundedness since the image of the unit ball in X is bounded in Y .
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Proof. We first note that the integral defining Af does not depend on x. Thus,
we can pull limits in x inside. Furthermore, since α is continuous in x, we can
pass limits through α as well:

lim
x→p

Af(x) = lim
x→p

∫ 1

0

α(x, y)f(y) dy

=

∫ 1

0

lim
x→p

α(x, y)f(y) dy

=

∫ 1

0

α(p, y)f(y) dy

= Af(p).

Hence, Af ∈ C([0, 1]). Now to show that it is bounded. First, we note that
f ∈ L2([0, 1]) implies f ∈ L1([0, 1]) by the Schwarz inequality and the fact that
m([0, 1]) < ∞. Furthermore, ‖f‖1 ≤ ‖f‖2. Let Mα = max

[0,1]×[0,1]
|α|. Then we

have

|Af(x)| =

∣∣∣∣
∫ 1

0

α(x, y)f(y) dy

∣∣∣∣

≤
∫ 1

0

|α(x, y)| |f(y)| dy

≤ Mα‖f‖1 <∞.

Hence, A is bounded.

Definition. Let f : X −→ Y be any function. Define the graph of f as

graph(f) = {(x, f(x)) ∈ X × Y }.

If X and Y are normed, then we say that graph(f) is closed if for every sequence
{xn} inX for which x = lim xn, and y = lim f(xn) exist, it is true that y = f(x).

Theorem (Closed Graph Theorem). If X and Y are Banach spaces,
f : X −→ Y linear, then f is bounded (therefore continuous) if and only if
graph(f) is closed in X × Y .

And now the theorem which does not depend on completeness!

Theorem (Hahn-Banach Theorem). If Y ⊆ X are normed linear spaces,
then for all f ∈ Y ∗ there is a (nonunique) extension F ∈ X∗ so that F

∣∣
Y

= f
and ‖f‖ = ‖F‖.

Some Consequences of the Hahn-Banach Theorem

Theorem. Let M be a linear subspace of a normed linear space X and let
x0 ∈ X . Then x0 is in the closure M of M if and only if there is no bounded
linear functional f on X with f

∣∣
M
≡ 0 and f(x0) 6= 0.
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Theorem. If X is a normed linear space, with x0 ∈ X , x0 6= 0 then there is a
bounded linear functional f on X with norm 1 and f(x) = ‖x0‖.

Remark. For x ∈ X , ‖x‖ = sup{|f(x)| : f ∈ X∗, ‖f‖ = 1}. Therefore, the
“evaluation” map x̂ ∈ (X∗)∗, given by x̂ : f 7→ f(x), is a bounded linear
functional on X∗ of norm ‖x‖. Hence the following Theorem:

Theorem. X embeds isometrically into X∗∗.

Example 15. Let λ be a bounded linear functional on a linear subspace V of
a Hilbert space H . Show that there exists a unique bounded linear functional
Λ on H such that

1. ‖Λ‖ = ‖λ‖, and

2. Λ(x) = λ(x) for all x ∈ V .

Proof. Let V be the closure of V in H . Then λ extends to V uniquely, so we
may assume V is closed. By Riesz representation, λ is given uniquely by inner
product. That is, there exists w ∈ V such that λ(v) = 〈v, w〉 for all v ∈ V . Now,
use Hahn-Banach to extend λ to Λ on H . Again, by Riesz representation, there
is a w̃ ∈ H such that Λ(x) = 〈x, w̃〉 for all x ∈ H . Furthermore, ‖Λ‖ = ‖λ‖,
which implies ‖w̃‖ = ‖w‖. For all x ∈ V we have Λ(x) = λ(x). This implies
that w̃ − w is orthogonal to w. That is, w̃ = w + z where z ⊥ w. But since
‖w̃‖ = ‖w‖ we may conclude that z = 0.

Example 16. Let X be a normed linear space.

1. Suppose (xn) is a sequence in X such that xn → x. Show that λ(xn) →
λ(x) for all bounded linear functionals λ.

Proof. This is simply continuity.

2. Now suppose (yn) is a sequence in X and λ(yn)→ 0 for all bounded linear
functionals λ. Show that (yn) is a bounded sequence.

Proof. Let Y = X∗. Then Y is Banach (even if X is not!). Now we will
think of each yn as the “evaluation” functional ỹn on Y given by ỹn(λ) =
λ(yn). Then by Hahn-Banach, ‖ỹn‖∗ = ‖yn‖. Then, by assumption,
ỹn(λ) → 0 for every λ ∈ Y . But convergent sequences are bounded.
Therefore, by Banach-Steinhaus, there existsM > 0 such that ‖ỹn‖∗ ≤M .
Hence ‖yn‖ ≤M .

3. Does it follow that yn → 0?

17



Chapter 6

Complex Measures

Definition. Let µ be a positive measure on (X,M), and λ and κ be complex
measures. Then we say that λ is absolutely continuous with respect to µ, and
write

λ≪ µ,

if λ(E) = 0 whenever µ(E) = 0.
We say that λ is concentrated on A if λ(B) = 0 whenever B ∩ A = ?. We

say that λ and κ are mutually singular if there exist sets L,K ⊆ X , which cover
X such that λ is concentrated on L and κ is concentrated on K. In this case,
we write

λ ⊥ κ.

Theorem (Radon-Nikodym Theorem). Let µ be a positive σ-finite measure
on X , λ a complex measure on X .

1. There are unique complex measures λab and λsing on X such that

λ = λab + λsing, λab ≪ µ, λsing ⊥ µ.

2. There is a unique h ∈ L1(µ) such that

λab(E) =

∫

E

h dµ, ∀E ∈M, (the σ-algebra on X).

dλab = h dµ.

h is called the “Radon-Nikodym derivative” of λ with respect to µ.
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Some Consequences of the Radon-Nikodym Theorem

Theorem. Let µ be a complex measure on X , then there exists a measurable
function h on X such that |h(x)| = 1 for all x ∈ X and

dµ = h d|µ|.

Theorem. Let µ be a positive measure on X , g ∈ L1(µ). Then,

λ(E) =

∫

E

g dµ =⇒ |λ|(E) =

∫

E

|g| dµ.

Theorem (Hahn Decomposition Theorem). Let µ be a real measure on
X , then there exist measurable disjoint sets A and B which cover X and

µ+(E) = µ(A ∩ E), µ−(E) = −µ(B ∩ E),

where

µ+ =
1

2
(|µ|+ µ), µ− =

1

2
(|µ| − µ).

Bounded Linear Functionals on Lp(µ)

Let µ be a positive measure, p and q conjugate exponents, 1 ≤ p ≤ ∞. For all
g ∈ Lq(µ), define g : Lp(µ) −→ R by

g(f) =

∫

X

fg dµ.

Then Hölder’s Inequality implies g ∈ Lp(µ)∗ is bounded with norm at most
‖g‖q. In fact:

Theorem. If p < ∞ and φ ∈ Lp(µ)∗ is bounded, then there exists a unique
g ∈ Lq(µ) with φ = g =

∫
X

˝ g dµ, and ‖φ‖ = ‖g‖q.

In other words, Lp(µ)∗ is isometrically equivalent to Lq(µ).

Theorem (Riesz Representation Theorem). If X is a locally compact
Hausdorff space then every linear functional φ on C0(X) is represented by a
unique regular complex Borel measure µ via

φ(f) =

∫

X

f dµ, ∀f ∈ C0(X).

Moreover, the norm of φ is the total variation of µ:

‖φ‖ = |µ|(X).

In words, there is an isometry C0(X)∗ ∼=B(X), the space of regular complex
Borel measures on X .
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Example 17. LetX = [0, 1], and C(X) denote the space of continuous complex
valued functions on X , equipped with the sup norm:

‖f‖∞ = sup
x∈[0,1]

|f(x)|.

Let fn be a sequence in C(X). Prove that the following statements are equiva-
lent.

1. For each bounded linear functional λ on C(X), λ(fn)→ 0;

2. fn(x)→ 0 for all x ∈ X , and sup
n
‖f‖∞ is finite.

Proof. Suppose that λ(fn)→ 0 for every bounded linear functional λ on C(X).
Then, for each x ∈ X , the evaluation map x̃ : f 7→ f(x) is bounded and linear.
Thus, fn(x) = x̃(fn) → 0. Since fn are all continuous on a compact set X , it
is clear that sup

n
‖fn‖∞ must be finite if fn → 0. Suppose not. We will find

a point x0 where fn(x0) 6→ 0. For m ∈ N, there is some Nm > 0 such that
for each n > Nm there is a point ym(n) ∈ X such that |fn (ym(n)) | > m. Let
nm = min{n ∈ N : n > Nm}, and let xm = ym(nm). Then xm forms a sequence
of points in X . Since X is compact, there is some x0 ∈ X such that xm → x0.
Then, since all of the fn are continuous, the sequence fn(x0) diverges. This is
a contradiction.

Conversely, Suppose fn → 0 and M = sup
n
‖f‖∞ is finite. Let λ be a

bounded linear functional on C(X). Then by the Riesz representation theorem,
λ is represented by a regular Borel measure µ in that

λ(f) =

∫ 1

0

f(x) dµ(x).

Thus, we apply Lebesgue dominated convergence theorem to the fn, which are
dominated by the constant function M . We conclude that λ(fn)→ 0.

The following problem will pull together many of the important ideas.

Example 18. Let D be the unit disk in C, D its closure, and T its boundary,
the unit circle. Prove that for every positive measure µ of total mass one on D
there is a positive measure ν of total mass one on T for which

∫

D

f dµ =

∫

T

f dν

for every f which is continuous on D and holomorphic on D.

Proof. Let X = C(D)∩H (D). Then X is a Banach space under the sup-norm

‖f‖ = sup
z∈D

|f(z)| = sup
z∈T
|f(z)|
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(the second equality follows from the Maximum Modulus Principle). Let r :
C(D) −→ C(T ) be the restriction map f 7→ f

∣∣
T
. r is not injective, but if

we restrict to X , it is. Furthermore, by the Maximum Modulus Principle,
‖rf‖C(T ) = ‖f‖X. Therefore, X and r(X) are isometrically equivalent.

Now let µ be a positive measure on D of total mass one. Let Λ denote
integration with respect to µ. That is,

Λ(f) =

∫

D

f dµ

for all f ∈ C(D). Then Λ ∈ C(D)∗ and ‖Λ‖ = |µ|(D) = µ(D) = 1. Now restrict
Λ to X . So we think of Λ

∣∣
X
∈ X∗. It is still bounded. In fact, ‖Λ

∣∣
X
‖ = 1 as

well!
So we have this isometry r : X −→ r(X) ⊆ C(T ), and we have a bounded

linear functional Λ
∣∣
X

on X . Define ϕ ∈ r(X)∗ via

ϕ(f) = Λ(r−1f)

for all f ∈ r(X). Then ‖ϕ‖ = 1.
By Hahn-Banach, we can extend ϕ to Φ ∈ C(T )∗ so that ‖Φ‖ = ‖ϕ‖. Then

Φ is a bounded linear functional on the space of continuous functions over a
compact Hausdorff space. Thus, by Riesz Representation, there exists a regular
complex Borel measure ν of total variation ‖Φ‖ = 1, such that

Φ(f) =

∫

T

f dν.

But

|ν|(T ) = 1 = Φ(1) =

∫

T

dν = ν(T ).

Therefore, in fact, ν is positive.

Example 19. Let I = [0, 1], and T = {0, 1}. Let X be the space of real linear
functions on I. Let dx be the Lebesgue measure on I. Then this problem
is identical to the previous problem (all the arguments hold, with only slight
modification). Therefore, there is some positive measure ν on T of total mass
one so that ∫

I

f dx =

∫

T

f dν

for all f ∈ X . Using ordinary calculus, we may see that
∫ 1

0
ax + b dx = a

2 + b.

Let ν(0) = ν(1) = 1
2 . Then integration over T is simply the average of the

values at the end points. In other words,
∫

{0,1}

ax+ b dν = (a+ b)ν(1) + bν(0) =
a

2
+ b,

which is what we hoped for.
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Chapter 7

Differentiation
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Chapter 8

Integration on Product

Spaces

Theorem (Fubini’s Theorem).

∫

X

dµ(x)

∫

Y

f(x, y) dλ(y) =

∫

Y

dλ(y)

∫

X

f(x, y) dµ(x),

when X and Y are σ-finite measure spaces with measures µ and λ, respectfully.

Example 20. Let (X,M, µ) be a positive measure space, and let f ≥ 0 be a
measurable function on X . Define

g(t) = µ ({x ∈ X : f(x) ≥ t}) .

Show that ∫

X

f(x) dµ(x) =

∫ ∞

0

g(t) dt.

Proof. Define E(t) = {x ∈ X : f(x) ≥ t}. Then g(t) = µ(E(t)), and for a fixed
t,

χE(t)(x) =

{
1, if t ≤ f(x),
0, if t > f(x).

Therefore, ∫ ∞

0

g(t) dt =

∫ ∞

0

∫

X

χE(t)(x) dµ(x)dt.

Applying Fubini’s theorem to the right hand side yields

∫ ∞

0

g(t) dt =

∫

X

dµ(x)

∫ ∞

0

χE(t)(x) dt.

However, for the inner integral, we need only integrate up to t = f(x), since
beyond that point χE(t)(x) is identically zero. Furthermore, on [0, f(x)], the
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integrand is identically 1. Then we make use of the Fundamental Theorem of
Calculus:

∫ ∞

0

g(t) dt =

∫

X

dµ(x)

∫ ∞

0

χE(t)(x) dt

=

∫

X

dµ(x)

∫ f(x)

0

dt

=

∫

X

f(x) dµ(x).

The result holds.

Definition (Convolution). Let f, g ∈ L1(R). Define their convolution product,
f ∗ g by

f ∗ g(x) =

∫ ∞

−∞

f(x− ξ)g(ξ) dξ, ∀x ∈ R.

Then with ∗, L1(R) is a Banach R-algebra (‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1).
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Chapter 9

Fourier Transforms

Let dm(x) =
1√
2π
dx. This simplifies some of the formulations.

Definition (Fourier Transform). For every f ∈ L1(R) define its Fourier

transform, f̂ by

f̂(t) =

∫ ∞

−∞

f(x)e−ixt dm(x), ∀t ∈ R.

Theorem (Properties of the Fourier Transform). Let f ∈ L1(R), and
a, b ∈ R. Then

1. If g(x) = f(x)eiax then ĝ(t) = f̂(t− a),

2. If g(x) = f(x− a) then ĝ(t) = f̂(t)e−iat,

3. If g ∈ L1(R), h = f ∗ g, then ĥ = f̂ ĝ,

4. If g(x) = f(−x), then ĝ = f̂ ,

5. If g(x) = f(x/b) with b > 0, then ĝ(t) = bf̂(bt),

6. If g(x) = −ixf(x) and g ∈ L1(R), then f̂ is differentiable with
(
f̂
)′

= ĝ.

7. If f ′ ∈ L1(R), then (̂f ′)(t) = itf̂(t),

8. f̂ ∈ C0(R) and

‖f̂ ‖∞ ≤ ‖f‖1.

Theorem (Inversion Theorem). If f ∈ L1(R), f̂ ∈ L1(R), and if we define

g(x) =

∫ ∞

−∞

f̂(t)eixt dm(t), ∀x ∈ R,

then g ∈ C0 and f(x) = g(x) a.e.
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Corollary (Uniqueness Theorem). If f ∈ L1(R), f̂ ≡ 0, then f(x) = 0 a.e.

Proof. f̂ ≡ 0 =⇒ f̂ ∈ L1(R). Apply the Inversion Theorem.

We can summarize all of these results with the following.

Theorem. ̂: L1(R) −→ C0(R) is a monomorphism of Banach Algebras, where
L1(R) has the L1-norm and multiplication given by convolution, while C0(R)
has the sup-norm and multiplication given by ordinary multiplication.

Example 21. Let f be a continuous positive valued function on R, and let g be
the characteristic function of a finite nonempty open interval (a, b) in R. Show

that the function h = fg is in L1(R) but its Fourier transform ĥ is not.

Proof. Let M = max
x∈[a,b]

f(x). Note that M exists and is finite since f ∈ C(R).

Then ∫

R

|h| =
∫ b

a

f(x) dx ≤M(b− a) <∞.

Thus, h ∈ L1(R).
Conversely, choose (a, b) = (0, 1), and let g = χ(0,1) and f(x) =

√
2π, the

constant function. Then,

ĥ(t) =

∫ 1

0

e−ixt dx = −it
[
e−it − 1

]
.

Therefore, ∣∣∣ĥ(t)
∣∣∣ = |t|

∣∣1− e−it
∣∣ = |t||1 + sin t− cos t|.

Clearly, integrating
∣∣∣ĥ
∣∣∣ over R yields ∞. Thus, ĥ /∈ L1(R).

Example 22. Suppose that f ∈ L1(R) and f̂ ∈ L1(R). Show that f ∈ L1(R)∩
L2(R).

Proof. Since f and f̂ are both in L1(R), we may apply the Inversion theorem,
to obtain a function g ∈ C0(R) which agrees with f almost everywhere. Thus,
without loss of generality, it suffices to show that g ∈ L2(R).

Since g ∈ C0(R), there is a finite interval (possibly empty) [a, b] outside of
which |g(x)| < 1. Furthermore, |g| attains its maximum value M on [a, b], so
that

∫

R

|g(x)|2 dx =

∫ b

a

|g(x)|2 dx+

∫

R\[a,b]

|g(x)|2 dx

≤
∫ b

a

M2 +

∫

R\[a,b]

|g(x)| dx

≤ M2(b− a) + ‖f‖1 <∞.
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Note that by the Parseval Theorem, below, we can say that

f̂ ∈ L1(R) ∩ L2(R)

as well!

Though we cannot extend, directly, the definition of Fourier transform to
L2(R), we have the Parseval transform:

Theorem (Existence of Parseval Transform). To each f ∈ L2(R), one can

associate a function f̂ ∈ L2(R) such that:

1. If f ∈ L1(R) ∩ L2(R), then f̂ is its Fourier transform, as above,

2. ‖f̂ ‖2 ≤ ‖f‖2,

3. The mapping f 7→ f̂ is a Hilbert space isomorphism of L2(R) onto itself.
Therefore, there is an inversion!

4. If we define

ϕA(t) =

∫ A

−A

f(x)e−ixt dm(x), ∀t ∈ R,

and

ψA(x) =

∫ A

−A

f̂(t)eixt dm(t), ∀x ∈ R,

then ‖ϕA − f̂ ‖2 → 0 and ‖ψA − f‖2 → 0 as A→∞,

5. If f̂ ∈ L1(R) ∩ L2(R), and we define

g(x) =

∫ ∞

−∞

f̂(t)eixt dm(t), ∀x ∈ R,

then g = f a.e.
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Chapter 10

Elementary Properties of

Holomorphic Functions

Theorem. Let γ be a closed path, and let Ω be the complement of γ (Here
we are abusing notation, by identifying γ with its image). Define the index of γ
about the point z ∈ Ω by

Indγ(z) =
1

2πi

∫

γ

dξ

ξ − z , ∀z ∈ Ω.

Then, Indγ is an integer-valued function, constant on connected components of
Ω, and 0 on the unbounded component of Ω.

Indγ(z) is the same as the winding number of γ about z.

Theorem. If γ is a positively oriented simple closed curve, and Ω is the comple-
ment of γ, then Indγ ≡ 1 on the bounded component of Ω and (by the above the-
orem) Indγ ≡ 0 on the unbounded component. Furthermore, Ind−γ = −Indγ .

Theorem. If f ∈H (Ω) and f ′ ∈ C(Ω) then

∫

γ

f ′(z) dz = 0

for every closed path γ in Ω.

Theorem (Cauchy’s Theorem for a Triangle). Suppose ∆ is a closed tri-
angle in a plane open set Ω, p ∈ Ω, f ∈ C(Ω), and f ∈H (Ω− {p}). Then,

∫

∂∆

f(z) dz = 0.
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Theorem (Cauchy’s Theorem for a Convex Set). Suppose Ω is a convex
open set, p ∈ Ω, f ∈ C(Ω), and f ∈H (Ω r {p}). Then there exists F ∈H (Ω)
such that f = F ′, hence, ∫

γ

f(z) dz = 0,

for every closed path γ in Ω.

And we have a partial converse to Cauchy’s Theorem on Triangles:

Theorem (Morera’s Theorem). Suppose Ω is open, f ∈ C(Ω), and

∫

∂∆

f(z) dz = 0

for every closed triangle ∆ ⊆ Ω. Then f ∈H (Ω).

Example 23. Suppose f is continuous on U = {z ∈ C : |z| < 1} and holo-
morphic on the complement in U of the interval I = (−1, 1). Prove that f is
actually holomorphic on U .

Proof. By Morera’s theorem, it suffices to show that for every closed triangle ∆
in U , ∫

∂∆

f(z) dz = 0.

By Cauchy’s theorem, we need not check triangles which do not intersect I.
First we will consider triangles such as A in Figure 10.1, which meet I

in exactly one point. Then by continuity of f , the point p of intersection is a
removable singularity. Thus the integral around this triangle will be zero (again,
by Cauchy’s theorem).

U

A B

I

Figure 10.1: Triangles which meet I at a point or along an edge.

Now consider a triangle such as B in Figure 10.1, which meets I along one
of its edges. Let ∆n be a sequence of triangles all contained in U r I whose
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limit is B. Then by continuity of f ,
∫

∂B

f(z) dz = lim
n→∞

∫

∂∆n

f(z) dz = 0.

U

I

C

D

E
F

Figure 10.2: Triangles which meet I through their interior.

Lastly, we can consider triangles such as C in Figure 10.2, to be a sum of
triangles like A and B as indicated, C = D + E + F .

Theorem. Analytic is equivalent to Holomorphic

Corollary. If f ∈H (Ω) then f ′ ∈H (Ω).

Power Series Representation

Theorem. Suppose Ω is a region, f ∈H (Ω) and we define the “zero set of f”

Z(f) =
{
x ∈ Ω

∣∣ f(z) = 0
}
.

Then either

1. Z(f) = Ω (f ≡ 0), or

2. Z(f) has no limit point in Ω.

In the second case, there corresponds to each a ∈ Z(f) a unique positive integer
m = m(a) such that

f(z) = (z − a)mg(z)

where g ∈H (Ω) and g(a) 6= 0; furthermore, Z(f) is at most countable.

Corollary. If f, g ∈ H (Ω) and f(z) = g(z) for all z ∈ S ⊆ Ω where S has a
limit point in Ω, then f ≡ g on all Ω.

Proof. Apply the above theorem to h = f − g.
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Definition (Singularities). If p ∈ Ω, f ∈ H (Ω r {p}), then f has an iso-
lated singularity at p. If f can be so defined at p that the extended function is
holomorphic on Ω, then p is called a removable singularity.

Theorem. Let p ∈ Ω, f ∈H (Ω r {p}). Then one of the following must occur:

1. p is a removable singularity.

2. p is a pole of order m:
There exists m ∈ N, {c1, . . . , cm} ⊆ C, cm 6= 0, such that

f(z)−
m∑

k=1

ck
(z − p)k

has a removable singularity at p.

3. p is an essential singularity: For every w ∈ C, there exists a sequence
(zn) ⊆ C such that zn → p and f(zn)→ w as n→∞.

Theorem (Liouville Theorem). Every bounded entire function is constant

Theorem (Maximum Modulus Principle). Suppose Ω is a region,
f ∈H (Ω), and D(a, r) ⊆ Ω. Then

|f(a)| ≤ max
θ

∣∣f
(
a+ reiθ

)∣∣ .

Equality occurs if and only if f is constant.

Theorem (Minimum Modulus Principle). Moreover, if f has no zeros in
D(a, r), then

|f(a)| ≥ min
θ

∣∣f
(
a+ reiθ

)∣∣ .

Theorem (Cauchy Estimates). If f ∈ H (D(a,R)) and |f(z)| ≤ M for all
z ∈ D(a,R), then ∣∣∣f (n)(a)

∣∣∣ ≤ n!M

Rn
, ∀n ∈ N.

Lemma. If f ∈H (Ω) and g is defined on Ω× Ω by

g(z, w) =





f(z)− f(w)

z − w , if z 6= w

f ′(z), if z = w,

then g is continuous on Ω× Ω.

Proof. Obviously we need only check this on the diagonal. Let a ∈ Ω, and let
ε > 0. Then there exists an r > 0 such that D(a, r) ⊆ Ω and

|f ′(ζ)− f ′(a)| < ε,
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for all ζ ∈ D(a, r). If z, w ∈ D(a, r), then the line segment

ζ(t) = tw + (1− t)z

for t ∈ [0, 1] is also in D(a, r). Now

g(z, w)− g(a, a) =
f(z)− f(w)

z − w − f ′(a)

=

∫ 1

0

f ′ (ζ(t)) dt− f ′(a)

∫ 1

0

dt

=

∫ 1

0

[f ′ (ζ(t))− f ′(a)] dt.

Since the integrand is less than ε in absolute value, we may conclude that

|g(z, w)− g(a, a)| < ε.

Theorem. Suppose ϕ ∈ H (Ω), z0 ∈ Ω, and ϕ′(z0) 6= 0. Then Ω contains an
open neighborhood V of z0 such that

1. ϕ is injective in V ,

2. W := ϕ(V ) is open, and

3. If ψ : W −→ V is defined by ψ(ϕ(z)) = z, then ψ ∈H (W ).

(Thus, ϕ locally has a holomorphic inverse).

Theorem. Suppose Ω is a region, f ∈ H (Ω), f is not constant, z0 ∈ Ω and
w0 = f(z0). Let m be the order of the zero that the function f(z)− w0 has at
the point z0.

Then there is an open neighborhood V ⊆ Ω of z0 and ϕ ∈H (V ), such that

1. f(z) = w0 + [ϕ(z)]
m

, for all z ∈ V , and

2. ϕ′ has no zero in V , and ϕ is an invertible mapping from V onto a disk
D(0, r).

It follows that f is an m-to-one mapping of V r {z0} onto D∗(w0, r
m), and

that each w0 is an interior point. Thus f(Ω) is a region. This is a strong
restatement of:

Theorem (The Open Mapping Theorem). If Ω is a region and f ∈H (Ω),
then f(Ω) is either a region or a point.

Theorem. Suppose Ω is a region, f ∈H (Ω), and f is injective in Ω. Then f ′

is nowhere zero in Ω and the inverse of f is holomorphic.

32



The Global Cauchy Theorem

Theorem. Suppose f ∈H (Ω) where Ω is an arbitrary open set in the complex
plane. If Γ is a cycle in Ω which satisfies

IndΓ(α) = 0, for every α not in Ω,

then

f(z) · IndΓ(z) =
1

2πi

∫

Γ

f(ξ)

ξ − z dξ, for z ∈ Ω r Γ,

and ∫

Γ

f(z) dz = 0.

Furthermore, if Γ1 and Γ2 are cycles with

IndΓ1
(α) = IndΓ2

(α), for every α not in Ω,

then ∫

Γ1

f(z) dz =

∫

Γ1

f(z) dz.

Calculus of Residues

Definition. A function f is said to be meromorphic in an open set Ω if there is
a set A ⊆ Ω such that

1. A has no limit point in Ω,

2. f ∈H (Ω rA), and

3. f has a pole at each point in A.

Note that A is possibly empty.

Definition. If f has a pole of order m at a ∈ A, then the function

Q(z) =
m∑

k=1

ck
(z − a)m

,

for which f −Q has a removable singularity at a, is called the principle part of
f at a. The complex number c1 is called the residue of f at a, and is denoted
Res(f, a).

Theorem (The Residue Theorem). Let f be meromorphic in Ω, and let A
be the set of poles of f in Ω. If Γ is a cycle in Ω rA such that

IndΓ(α) = 0, for every α not in Ω,

then ∫

Γ

f(z) dz = 2πi
∑

a∈A

Res(f, a) · IndΓ(a).
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Theorem (Rouché’s Theorem). Suppose Γ is a closed path in a region Ω,
such that IndΓ(α) = 0 for all α not in Ω. Suppose also that IndΓ(α) is either 0
or 1 for all α ∈ Ω r Γ; and let Ω1 =

{
α ∈ Ω r Γ

∣∣ IndΓ(α) = 1
}
.

For any f ∈ H (Ω) let Nf denote the number of zeros of f in Ω1, counting
multiplicity. Then,

1. If f ∈H (Ω) and f has no zeros along Γ, then

Nf =
1

2πi

∫

Γ

f ′(z)

f(z)
dz = IndΛ(0),

where Λ = f ◦ Γ.

2. If also g ∈H (Ω) and

|f(z)− g(z)| < |f(z)|, for all z ∈ Γ,

then Ng = Nf .1

Example 24. Determine how many zeros, counting multiplicity, the polynomial

f(z) = z5 − 6z4 + z3 + 2z − 1

has in the open unit disk U = {z ∈ C : |z| < 1}.

Solution. Let g(z) = −6z4. Then g has a zero of degree 4 at the origin. On the
boundary of U , |g| = 6, while |f − g| ≤ 5. Thus, by Rouché’s theorem, f also
has 4 zeros, counting multiplicity, on U .

Example 25. Determine the number of zeros the polynomial

f(z) = z5 + 4z2 + 2z + 1

has in the region U = {z ∈ C : |z| ≤ 1}

Solution. This one is a bit trickier than the last one. We cannot simply subtract
off a single term. If we try g(z) = 4z2, then at z = 1, |f − g| = |g|, and
Rouché requires strict inequality. The other terms are even worse (try it).
So we shall try two terms. Either g(z) = z5 + 4z2 or h(z) = 4z2 + 2z will
work. We will demonstrate how to use g(z). Certainly, on T = ∂U , we have
|f − g| = |2z + 1| ≤ 3 and 3 ≤ |z5 + 4z2|. There are two ways of looking at
this: the first inequality is only equality at z = 1, in which case |g| = 5; or, just
as useful, the second inequality is only equality at z = −1, where |f − g| = 1.
Either way, we may conclude that |f − g| < |g|, apply Rouché, to get that f has
two zeros on U (since g(z) = z2(z3 + 4) has a double root at z = 0 and the rest
outside of U).

Example 26. Show that all zeros of f(z) = z4 − 6z − 3 lie inside the circle
Γ = {z ∈ C : |z| = 2}.

1Note that we could equivalently use the condition that |f(z)− g(z)| < |g(z)| for all z ∈ Γ.
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Proof. Let g(z) = z4. Then on Γ, |g| = 16, while |f − g| ≤ 15. Thus, by
Rouché’s theorem, the number of zeros of f inside of Γ is the same as for g.
Namely, four. But these are all the zeros of f by the Fundamental Theorem of
Algebra.

Example 27. Let λ > 1. Show that the equation λ − z − e−z = 0 has one
solution for ℜ(z) > 0.

Proof. Let f(z) = λ− z − e−z. If f(z) = 0 has any solutions for ℜ(z) > 0 then

|λ− z| = |e−z| < 1.

So we will look at D = D(λ, 1). Since λ > 1, D ⊆ Ω = {z : ℜ(z) > 0}. Let
g(z) = λ− z. Then g has exactly one solution on D, namely z = λ. Consider

|f(z)− g(z)| = |e−z| < 1

for all z ∈ ∂D, and
|g(z)| = |λ− z| = 1

for all z ∈ ∂D. Thus, by Rouché’s theorem, f and g have the same number of
zeros in D. Thus f has one zero for ℜ(z) > 0.
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Techniques for Finding Residues

In the Table 10.1, g and h are holomorphic at p, and f has an isolated singularity
there.

Function Test Singularity Residue at p

f(z) lim
z→p

(z − p)f(z) = 0 removable 0

f(z) lim
z→p

(z − p)f(z) = L 6= 0

(exists, and is nonzero)

simple pole L

g(z)

h(z)
g and h have zeros at p of
the same order

removable 0

g(z)

h(z)
g has zero at p of order k,
h has zero of order k + m

pole of order m lim
z→p

φ(m−1)(z)

(m − 1)!
, where

φ(z) = (z − p)m
g(z)

h(z)

1

h(z)
h has a simple zero at p simple pole

1

h′(p)

g(z)

h(z)
g has zero at p of finite or-
der, all derivatives of h at
p are zero.

essential Usually tricky. We must
find the Laurent expan-
sion.

Table 10.1: Summary of Tests and Residues at Isolated Singularities.

Example 28. We will prove a variation of one of the statements in Table 10.1.
Let Ω be open in C, b ∈ Ω, f ∈H (Ω), and assume that f ′(b) 6= 0. Show that

2πi

f ′(b)
=

∫

C

1

f(z)− f(b)
dz

for sufficiently small positively oriented circles centered at b.

Proof. Let h(z) = f(z) − f(b). Then h′(b) = f ′(b) 6= 0. Thus h has a simple

zero at b. Let g =
1

h
. We wish to show that Res(g, b) =

1

h′(b)
. Using the second

statement in Table 10.1, we have

Res(g, b) = lim
z→b

z − b
h(z)

=
1

h′(b)
,

by l’Hôpital’s rule.
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Example 29. Let f(z) =
1

z2
ez. Then f has an isolated singularity at 0.

Furthermore, f looks like f = g
h where g(z) = ez and h(z) = z2. We see that g

has no zero at 0, while h has a zero of degree 2. Thus, z = 0 is a pole of order
2 for f . Furthermore, Res(f, 0) = lim

z→0
g′(z) = 1. Thus, if C is the unit circle,

we conclude via the Residue Theorem, that

∫

C

f(z) dz = 2πi.

Example 30. Suppose we want to find the singularities and their types of the
function

f(z) =
1

ez − 1
− 1

z
.

First we can rewrite f so that it looks like
g

h
with g and h holomorphic:

f(z) =
z − ez + 1

z (ez + 1)
.

Thus we see that the singularities of f are at the zeros of h. Namely they occur
at p = 2nπi, where n ∈ Z. We will consider p = 0 and p 6= 0 as separate cases.

If p 6= 0 then we have h′(p) = p 6= 0. Furthermore g(p) = p 6= 0. Thus, all
of the poles of this type are simple.

Now consider p = 0. Then g(0) = g′(0) = 0, g′′(0) = −1; and h(0) = h′(0),
h′′(0) = 3. Thus since g and h both have a degree 2 zero at p = 0 we conclude

that p = 0 is a removable singularity. Furthermore, lim
z→0

f(z) =
g′′(z)

h′′(z)
= −1

3
,

by l’Hôpital’s Rule.

Example 31. Suppose a > 1. Compute

I =

∫ 2π

0

dθ

a+ sin θ
.

Solution. First, we make the change of variables z = eiθ. Then dz = iθ dθ, and

sin θ =
z − z−1

2i
. Thus, the integral becomes

I =

∫

T

2z2

2aiz + z2 − 1
dz,

where T is the unit circle. Let f(z) = 2aiz+ z2 − 1, and let g = 2
f . Then g has

a pole whenever f has a zero. Using the Quadratic Formula, we see that the
zeros of f are

p1,2 =
−2ai±

√
−4a2 + 4

2
= i
(
a±

√
a2 − 1

)
.
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Only p = p2 = i
(
a−
√
a2 − 1

)
lies within the unit disk, and this pole is of order

1. The residue of g at this pole is

Res(g, p) =
2

f ′(p)
.

Calculate f ′(z) = (z− p1) + (z − p2). Therefore f ′(p) = p2− p1 = −2i
√
a2 − 1.

The residue at p then becomes

Res(g, p) =
2

f ′(p)
=

i√
a2 − 1

.

We can now calculate that the integral is

I = 2πi ·Res(g, p) = − 2π√
a2 − 1

One trick that may be useful is a change of variables. Consider the integral

I =

∫

Γ

f(z) dz.

If f has only poles or removable singularities inside of Γ, we simply apply the
Residue Theorem. Otherwise we may use the following:

Lemma. Let Γ be a closed simple curve in the plane. Let φ(z) = 1/z be the
inversion map. Denote by 1/Γ the composition φ◦Γ. Then we have the following
change of coordinates:

∫

Γ

f(z) dz =

∫

1/Γ

1

y2
f

(
1

y

)
dy.

Proof. Let z =
1

y
.

Example 32. Let f(z) = e1/z. Then f has an essential singularity at 0. Let
C be the unit circle, then C = 1/C. Therefore,

I =

∫

C

f(z) dz =

∫

C

1

z2
f

(
1

z

)
dz

=

∫

C

1

z2
ez dz

= 2πi

A common category of problems is that which contains the following two
examples:
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Example 33. Evaluate the integral,

I =

∫ ∞

−∞

dx

x4 + 1
.

Solution. Let f(z) =
1

z4 + 1
. We first note that the poles of f are ζ, ζ3, ζ5, and

ζ7, where ζ = eπi/4 is a principal eighth root of unity. Next we will employ
a trick. Let CR be the positively oriented semi-circle in the upper half plane.
Then ΓR = CR ∪ [−R,R] form a positively oriented cycle which, when R is
sufficiently large, bounds ζ and ζ3. See Figure 10.3. Therefore, by the residue

3ζ

CR

ζ

-R R

Figure 10.3: The cycle ΓR = CR ∪ [−R,R] bounds ζ and ζ3.

theorem,

∫

ΓR

f(z) dz =

∫ R

−R

f(x) dx +

∫

CR

f(z) dz = 2πi
(
Res(f, ζ) + Res(f, ζ3)

)
.

Let g(z) = z4 + 1. Then

Res(f, ζ) =
1

g′(ζ)
,

and

Res(f, ζ3) =
1

g′(ζ3)
.

A simple calculation gives g′(ζ) = 4iζ, and g′(ζ3) = −4iζ3. Thus,

∫

ΓR

f(z) dz =
π√
2
.

Now we claim that the line integral along CR goes to zero as R → ∞. This is
easy to see, since f(z) → 0 as |z| → ∞ in the upper half plane. Therefore we
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conclude, ∫ ∞

−∞

dx

x4 + 1
=

π√
2

Example 34. Evaluate the integral,

I =

∫ ∞

0

dx

1 + x3
.

Solution. For this one, we will use a similar trick. We let f(z) =
1

x3 + 1
and

note that the poles of f are at ζ, ζ3, and ζ5, where ζ = eπi/3 is a principal sixth
root of unity. We will integrate around a cycle ΓR, similar to that in Example 33.
See Figure 10.4. Note that ΓR is composed of CR, the line segment [0, R] and

CR

R

ζ

Figure 10.4: The cycle ΓR bounds ζ.

the line segment of length R along θ = 2π
3 , which we will call ℓR. Thus, by the

residue theorem,
∫

ΓR

f(z) dz =

∫ R

0

f(x) dx +

∫

ℓR

f(z) dz +

∫

CR

f(z) dz.

= 2πiRes(f, ζ).

We then note that we can make the substitution z = xe2πi/3 into the integral
along ℓR. Thus we obtain

∫

ℓR

f(z) dz = e2πi/3

∫ R

0

f(x) dx.

Again, we have that as R → ∞, the integral along CR goes to zero. Thus, we
have

(1− ζ2)

∫ R

0

dx

x3 + 1
= 2πiRes(f, ζ).
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A quick calculation yields

Res(f, ζ) =
1

3ζ2
.

Therefore, ∫ ∞

0

dx

1 + x3
=

2π

3
√

3

Example 35. Let Γ be a closed path in C r [0, 1]. Show that

∫

Γ

1

z(1− z) dz = 0.

Proof. Let f(z) = z(1−z). Then the only poles of
1

f
are 0 and 1. Furthermore,

IndΓ(0) = IndΓ(1) = ±k

depending on orientation. A quick calculation yields

Res

(
1

f
, 0

)
=

1

f ′(0)
= 1,

and

Res

(
1

f
, 1

)
=

1

f ′(1)
= −1.

Therefore, ∫

Γ

1

z(1− z) dz = ±k · 2πi (1 + (−1)) = 0.
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Chapter 11

Harmonic Functions

The Cauchy-Riemann Equations

Definition (The Operators ∂ and ∂). Define the differential operators ∂
and ∂ by

∂ =
1

2

(
∂

∂x
− i ∂

∂y

)
, ∂ =

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Theorem. Suppose f is a complex function in Ω that has a differential at every
point in Ω. Then f ∈H (Ω) if and only if the Cauchy-Riemann equation

(∂f)(z) ≡ 0

holds for every z ∈ Ω. In this case, we have

f ′(z) = (∂f)(z).

If f = u+ iv where u, v are real-valued functions, then the Cauchy-Riemann
equation is

ux = vy, uy = −vx.

Example 36. Let f be a complex valued function on Ω. Suppose that as a
mapping of R2 to R2, f = u+ iv is twice differentiable, and that the Jacobian

J =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

is everywhere, as a linear transformation, a composition of a dilation and a
rotation. Prove that f ∈H (Ω).

Proof. Since, at each z ∈ Ω, J is the composition of a dilation and a rotation,
there are real numbers a > 0 and θ ∈ [0, 2π), such that

J =

(
a 0
0 a

)(
cos θ sin θ
− sin θ cos θ

)
.
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Therefore, ∂u
∂x = a cos θ = ∂v

∂y , and ∂u
∂y = a sin θ = − ∂v

∂x . The Cauchy-Riemann
equations hold for f , and thus f is holomorphic.

Definition (Laplacian, Harmonic). Let f be a complex function in a plane
open set Ω such that fxx and fyy exist at every point in Ω. Then we define the
Laplacian of f to be

∆f = fxx + fyy.

If ∆f is continuous on Ω and ∆f ≡ 0 on Ω, then f is said to be harmonic in Ω.

Remark. Since the Laplacian of a real-valued function is real, it is clear that
a complex function is harmonic if and only if both its real and imaginary parts
are harmonic. Furthermore, if f has continuous second-order derivatives, then
fxy = fyx and ∆f = 4∂∂f .

Theorem. Holomorphic functions are harmonic.

Corollary (A partial converse). If f is harmonic, then ∂f is holomorphic.

Theorem. Every real harmonic function is locally the real part of a holomor-
phic function.

The Mean Value Property

Definition. We say that a continuous function u in an open set Ω has the mean
value property if u(z) is equal to the mean value of u on any circle centered at
z. In other words, if C is a circle in Ω whose center is at z, then

u(z) =
1

2π

∫

C

u(θ) dθ.

Theorem. If a continuous function u has the mean value property in an open
set Ω, then u is harmonic in Ω.

Theorem (The Schwarz Reflection Principle). Suppose L is a segment
of R, Ω+ a region in the upper half plane, and every t ∈ L is the center of a
disc, Dt whose upper half is contained in Ω+. Let Ω− be the reflection of Ω+.
Suppose f = u+ iv is holomorphic in Ω+, and

lim
n→∞

v(zn) = 0

if zn → L (converges to a point in L).
Then there is an extention F which is holomorphic in Ω = Ω+ ∪ L ∪ Ω−,

such that F
∣∣
Ω+ = f . Furthermore, F (z) = F (z) for all z ∈ Ω.
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Chapter 12

The Maximum Modulus

Principle

Definition. Define H ∞ to be the space of all bounded holomorphic functions
in the unit disc U . The norm

‖f‖∞ = sup
z∈U
|f(z)|

makes H ∞ Banach.

Theorem (The Schwarz Lemma). Suppose f ∈H ∞, ‖f‖∞ ≤ 1, and
f(0) = 0. Then

|f(z)| ≤ |z|, ∀z ∈ U,
|f ′(0)| ≤ 1;

if equality holds in the first inequality somewhere away from 0, or if equality
holds in the second inequality, then f(z) = λz where λ is a constant with |λ| = 1.

Example 37. Suppose that f and g are injective holomorphic functions of
the open disk U = {z ∈ C : |z| < 1} onto some domain Ω. Suppose that
f(0) = g(0), and f ′(0) = g′(0) 6= 0. Show that f ≡ g.

Proof. Since f is a bijection, f−1 exists and, by the inverse function theorem,
is differentiable at all y such that f(x) = y and f ′(x) 6= 0.

Let h = f−1 ◦ g : U −→ U . Then h ∈ H ∞ and h(0) = 0. Furthermore, by
the chain rule,

h′(0) =
(
f−1

)′
(g(0)) · g′(0)

=
(
f−1

)′
(f(0)) · f ′(0)

=
1

f ′(0)
· f ′(0)

= 1.
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Therefore, by Schwarz’s lemma, h = λz, where |λ| = 1. Apply f to both sides
of the equation (f−1 ◦ g)(z) = λz to get g(z) = f(λz). Differentiate to get
g′(z) = λ f ′(λz). But since g′(0) = f ′(0) 6= 0, we may conclude that λ = 1.
Thus, h is the identity function and f ≡ g.

Definition. For any α ∈ U define

ϕα(z) =
z − α
1− αz .

Theorem. Fix α ∈ U . Then ϕα is a bijection U ←→ U whose restriction to T ,
the unit circle, is a bijection T ←→ T , and whose inverse is ϕ−α. Furthermore,

ϕα(α) = 0, ϕα(0) = −α,

and

ϕ′
α(0) = 1− |α|2, ϕ′

α(α) =
1

1− |α|2 .

Example 38. Let f : U −→ U be holomorphic. We will show that

|f(z)− f(0)| ≤
∣∣∣z
(
1− f(0)f(z)

)∣∣∣

for all z ∈ U .

Proof. Let α = f(0). Define ϕα as above, and let g = ϕα ◦ f . Then g : U → U
is holomorphic, and g(0) = 0. Since ϕα is bounded, then g is bounded. Thus
by the Schwarz Lemma,

|g(z)| ≤ |z|
for all z ∈ U . Therefore, ∣∣∣∣∣

f(z)− f(0)

1− f(0)f(z)

∣∣∣∣∣ ≤ |z|.

The result follows.

Theorem. Suppose f ∈ H (U), f is injective, f(U) = U , and f(α) = 0 for
some α ∈ U . Then there is a constant, λ, with |λ| = 1, such that

f(z) = λϕα(z), ∀z ∈ U.

Example 39. Let f be an automorphism of the unit disk, U . Assume that f
fixes two points α, β ∈ U . Show that f(z) = z for all z ∈ U .

Proof. Consider ϕα as defined above. Then ϕα(α) = 0. Let g = ϕα ◦ f . Then
g : U −→ U is an automorphism and g(α) = 0. Thus there exists a λ with
|λ| = 1 such that g(z) = λϕα(z). But

ϕα(β) = (ϕα ◦ f)(β) = g(β) = λϕα(β).

Since ϕα(β) 6= 0, we conclude that λ = 1. Thus, ϕα ◦ f = ϕα implies that f is
the identity function.
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Chapter 13

Approximation by Rational

Functions

Theorem (Cauchy Formula). If K is a compact subset of a plane open set
Ω, then there is a cycle Γ ⊆ Ω rK such that the Cauchy Formula

f(z) =
1

2πi

∫

Γ

f(ξ)

ξ − z dξ

holds for every f ∈H (Ω) and for every z ∈ K.

Theorem (Runge’s Theorem). Let Ω be an open set in the plane, let A be a
set consisting of one point in each component of S2rΩ, and suppose f ∈H (Ω).
Then there is a sequence {Rn} of rational functions, with poles only in A, such
that Rn → f uniformly on compact subsets of Ω.

In the special case where S2 r Ω is connected, we may take A = {∞}, and
thus obtain polynomials {Pn} with Pn → f uniformly on compact subsets of Ω.

Theorem (Mittag-Leffler Theorem). Suppose Ω is a plane open set, A ⊆ Ω,
A has no limit point in Ω, and to each p ∈ A there are associated positive
integers, m(p) (the orders of the poles), and a rational function

Qp(z) =

m(p)∑

k=1

ck,p

(z − p)k
.

Then there exists a meromorphic function f in Ω, whose principal part at each
p ∈ A is Qp, and which has no other poles in Ω.

Essentially, this says that we can construct a meromorphic function f with
arbitrary preassigned poles, including orders.
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Simply Connected Regions

Theorem. For a plane region Ω, the following (nine) are equivalent:

1. Ω is homeomorphic to the open unit disc U .

2. Ω is simply connected.

3. Indγ(α) = 0 for every closed path γ in Ω and for every α ∈ S2 r Ω.

4. S2 r Ω is connected.

5. Every f ∈ H (Ω) can be approximated by polynomials, uniformly on
compact subsets of Ω.

6. For every f ∈H (Ω) and every closed path γ in Ω,

∫

γ

f(z) dz = 0.

7. To every f ∈H (Ω) corresponds an F ∈H (Ω) such that F ′ = f .

8. If f ∈ H (Ω) and
1

f
∈ H (Ω), then there exists a g ∈ H (Ω) such that

f = exp(g).

9. If f ∈ H (Ω) and
1

f
∈ H (Ω), then there exists a ϕ ∈ H (Ω) such that

f = ϕ2.

Corollary. If f ∈H (Ω), where Ω is any plane open set, and f has no zeros in
Ω then log |f | is harmonic in Ω.
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Chapter 14

Conformal Mapping

Definition. A function f which is analytic at z0 such that f ′(z0) 6= 0 is said
to be conformal.

Conformal maps are those which preserve angles.

Linear Fractional Transformations

Definition. If a, b, c, and d are complex numbers such that ad − bc 6= 0, the
mapping

z 7→ az + b

cz + d

is called a linear fractional transformation.

It is convenient to regard this as a mapping from S2 into itself. It is then easy
to see that every linear fractional transformation is in fact a bijection S2 −→ S2.
Furthermore, it is obtained by superposition of transformations of the following
types:

1. Translations: z 7→ z + b.

2. Rotations: z 7→ az, |a| = 1.

3. Dilations: z 7→ rz, r > 0.

4. Inversion: z 7→ 1

z
.

Theorem (The Riemann Mapping Theorem). Every simply connected
region in the plane (other than the entire plane itself) is conformally equivalent
to the unit disk U .
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Chapter 15

Zeros of Holomorphic

Functions

Theorem (Weierstrass Factorization Theorem). Let Ω be a proper open
set in S2. Suppose A ⊆ Ω and A has no limit point in Ω. With each a ∈ A
associate a positive integer m(a). Then there exists an f ∈ H (Ω) all of whose
zeros are in A, and such that f has a zero of degree m(a) at each a ∈ A.

Theorem. Every meromorphic function in an open set Ω is the quotient of two
functions which are holomorphic in Ω.

Algebraically, we are saying that H (Ω) is a ring whose field of fractions isM (Ω), the set of meromorphic functions on Ω.

An Interpolation Problem

Theorem. Suppose Ω is an open set in the plane, A ⊆ Ω with no limit point
in Ω. To each a ∈ A there is prescribed an integer m(a) and complex numbers
wn,a for 0 ≤ n ≤ m(a). Then there exists an f ∈H (Ω) such that

f (n)(a) = n!wn,a,

for all a ∈ A.

This means that we can prescribe the values for f at each point a ∈ A, as
well as finitely many derivatives.

Definition. Let g1, . . . , gn ∈H (Ω). Then the ideal [g1, . . . , gn] is the set of all
functions of the form

∑
figi, where fi ∈ H (Ω). A principal ideal is one that is

generated by a single function g. Note that [1] =H (Ω).

Theorem. Every finitely generated ideal in H (Ω) is principal.

Algebraists recognize this as “H (Ω) is a PID” (thus a UFD).
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Chapter 16

Analytic Continuation

Definition. A function element is an ordered pair (f,D), where D is an open
circular disk and f ∈ H (D). Two function elements (f1, D1) and (f2, D2) are
direct continuations of one another if two conditions hold: D1 ∩ D2 6= ?, and
f1(z) = f2(z) for all z ∈ D1 ∩D2. In this case, we write

(f1, D) ∼ (f2, D).

A chain is a finite sequence C of discs, C = {D0, D1, . . . , Dn} such thatDi−1∩Di

is non-empty. If (f0, D0) is given and if there exists elements (fi, Di) so that
(fi−1, Di−1) ∼ (fi, Di), then (fn, Dn) is said to be the analytic continuation of
(f0, D0) along C .

Theorem. Analytic continuations along a curve, when they exist, are unique.

Theorem (Monodromy). Suppose Ω is a simply connected region, (f,D) is a
function element, D ⊆ Ω, and (f,D) can be analytically continued along every
curve in Ω that starts at the center of D. Then there exists a g ∈ H (Ω) such
that g

∣∣
D

= f .

Definition. The modular group, G, is the set of all linear fractional transfor-
mations ϕ of the form

ϕ(z) =
az + b

cz + d
,

where a, b, c, d ∈ Z, and ad− bc = 1 (as matrices, they have determinant 1). G
is generated by the transformations t1(z) = z + 1, and −inv(z) = − 1

z .
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Theorem (Picard’s Little Theorem). If f is entire and the image of f misses
two distinct values, then f is constant.

Example 40. Let f be an entire function such that f(C) ⊆ C r S1, where S1

is the unit circle. Show that f is a constant.

Proof. f misses 1 and i. Thus, since it misses two points, f is constant.

Example 41. Let W =
{
z = x+ iy ∈ C : y2 − x2 < 1

}
be the region bounded

by a hyperbola. Let f be an entire function such that f(C) ⊆W . Show that f
is a constant function.

Proof. There are many points outside of W . In particular, ±2i /∈ W . Thus,
since f misses two points, it must be a constant.

Example 42. Let f be an entire function such that |ℜf(z)|+ |ℑf(z)| ≥ 1 for
each z ∈ C. Prove that f is a constant function.

Proof. There are many values missed by f : 0 and 1
2 are two examples. There-

fore, by Picard’s little theorem, f is constant.

Example 43. Let f be a nonconstant entire function. Show that for every
constant k ∈ R, there exists a z ∈ C such that ℑf(z) = k · ℜf(z).

Proof. Let k ∈ R. Consider the line in C given by

ℓ = {t+ kt i : t ∈ R}.

Since f is entire and nonconstant, C r f(C) consists of at most one point.
Therefore, there is at least some t0 ∈ R so that t0 + kt0i ∈ f(C). Thus,
t0 + kt0i = f(z0) for some z0 ∈ C. This is the point we seek.
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Theorem (Picard’s Theorem). Every entire function which is not a polyno-
mial attains each value infinitely many times, with one possible exception.

To see that the exceptional value may be taken a nonzero finite number
of times, let p(z) be a polynomial of degree n with only simple zeros. Then
f(z) = p(z)ez attains the value zero exactly n times.

Example 44. Let f be an injective entire function. Put g(z) = f(1/z). Show
that g does not have an essential singularity at 0. In particular, it follows that
f(z) = az + b.

Proof. By Picard’s theorem, if f is injective and entire, then f is polynomial.
First we note that f cannot be constant, since it is injective. Second, if f is
polynomial and deg f = n ≥ 2, then we will arrive at a contradiction, as follows.

By the Fundamental Theorem of Algebra, f can be factored uniquely as a
product of irreducible linear factors. If f has two or more distinct linear factors,
say

(z − α), and (z − β),

where α 6= β, then f is not injective on f−1({0}).
On the other hand, if f has only a repeated factor, then

f(z) = a(z − α)n.

Now choose z so that z − α is an nth root of unity (there are n such values for
z). Then, since n ≥ 2, f is not injective on f−1({a}). We conclude that f must
be a polynomial of degree one. Hence f is linear, and g has a simple pole at
0.

Example 45. Suppose that f is meromorphic on the plane, is never zero on
the plane, and that

lim
z→∞

|f(z)| = 0.

Show that f is the inverse of a polynomial.

Proof. Let A be the set of poles of f . If A is infinite then we claim that A
has a limit point at ∞. Indeed, S2 is compact, so by Bolzano-Weierstrass, A
must have a limit point somewhere on the sphere. However, by definition of
meromorphic, A cannot have a limit point in S2 r {∞}. But if ∞ is a limit
point for the set of poles, we arrive at a contradiction since

lim
z→∞

|f(z)| = 0.

Therefore, we conclude that A is finite, and
1

f
has only finitely many zeros in

the plane, and has a singularity at ∞. Therefore,
1

f
is a polynomial.
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Rouché’s theorem, 34
Runge’s theorem, 46

Schwarz
inequality, 6, 9
lemma, 44
reflection principle, 43

self-adjoint, 12
semicontinuous, 5
simply connected, 47
singularities, 31

essential, 31
isolated, 31
removable, 31

skew symmetric, 9

translation, 48
triangle inequality, 6, 9

unit disk, 47
upper semicontinuous, 5
Urysohn’s lemma, 5

Weierstrass factorization theorem, 49
winding number, 28

54



Index of Exam Problems

1994.B4, 44
1994.B5, 39
1996.B2, 51
1997.A1, 8
1997.A2, 7
1997.A3, 26
1997.A4, 11
1997.B2, 51
1998.B2, 51
1998.B4, 34
1999.A2, 23
1999.A3, 20
1999.A4, 15
1999.B2, 35
1999.B4, 52
2000.A1, 1
2000.A2, 10
2000.A3, 20
2000.A5, 26
2000.B1, 45
2000.B3, 41
2000.B5, 37
2001.B3, 34
2002.A1, 15
2002.A2, 12
2002.A4, 7
2002.A5, 10
2002.B1, 40
2002.B3, 42
2002.B5, 52
2003.A2, 4
2003.A5, 12
2003.B1, 31
2003.B3, 29
2003.B4, 34
2003.B5, 37
2004.A1, 3
2004.A3, 20
2004.A4, 23
2004.A5, 17
2004.B1, 45
2004.B2, 51
2004.B4, 36
2004.B5, 37

55


