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CHAPTER 11
FRACTIONAL
AUTOREGRESSIVE-MOVING AVERAGE
MODELS

11.1 INTRODUCTION

As explained in detail in Chapter 10, the well known Hurst Phenomenon defined in Section
10.3.1 stimulated extensive research in the field of stochastic hydrology. One valuable
by-product of this research was the development of long memory models (see Sections 2.5.3,
10.3.3 and 11.2.1 for a definition of long memory). In particular, the fractional Gaussian noise
(FGN) model of Section 10.4 possesses long memory and was developed within stochastic
hydrology as an attempt to explain the Hurst Phenomenon through the concept of long term per-
sistence.

The FGN model is not the only kind of stochastic model having long memory. As a matter
of fact, due to its rather inflexible design and the difficulties encountered when applying it to real
data (see Section 10.4), researchers have studied a variety of long memory models. The objec-
tive of this chapter is to present the most flexible and useful class of long memory models that
have currently been developed. More specifically, this family is called the fractional
autoregressive-moving average (FARMA) group of models (Hosking, 1981; Granger and Joyeux,
1980) because it arises as a natural extension of the ARIMA(p,d.q) models of Chapter 4. By
allowing the parameter d in an ARIMA(p,d,q) model to take on real values, the resulting
FARMA model possesses long memory for d falling within the range 0 < d < 1/2.

A sound explanation for the Hurst phenomenon is presented in Section 10.6. In particular,
by properly fitting ARMA models to a variety of geophysical time series, it is shown using
simulation that the ARMA models statistically preserve the Hurst statistics consisting of the res-
caled adjusted range (RAR) and the Hurst coefficient K. Because FARMA models are simply
extensions or generalizations of ARMA (Chapter 3) and ARIMA (Chapter 4) models, one could
also consider FARMA models in statistical experiments similar to those given in Section 10.6.
Nonetheless, from a physical viewpoint hydrologic phenomena such as annual riverflows do not
possess long memory or persistence since current flows do not depend upon annual flows that
took place hundreds or thousands of years ago. Hence, for these kinds of series, ARMA models
can adequately explain the Hurst phenomenon. However, the reader should keep in mind that
there may be series that have long term memory and for these data one can employ FARMA
models.

In the next section, the FARMA model is defined and some of its main statistical properties
are described. Within Section 11.3, it is explained how FARMA models can be fitted to time
series by following the identification, estimation and diagnostic check stages of model construc-
tion. Although good model building tools are now available, further research is required for
developing more comprehensive estimation procedures. Methods for simulating and forecasting
with FARMA models are given in Section 11.4. Before the conclusions, FARMA models are
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fitted to hydrological time series to illustrate how they are applied in practice. Parts of the
presentations provided in Sections 11.2 to 11.5 were originally given in a paper by Jimenez et al.
(1990).

11.2 DEFINITIONS AND STATISTICAL PROPERTIES

11.2.1 Long Memory

Persistence or long term memory is the term used to describe a time series that has either an
autocorrelation structure that decays to zero slowly with increasing lag or equivalently a spectral
density that is highly concentrated at frequencies close to zero. This autocorrelation structure
suggests that the present state of the process must be highly dependent on values of the time
series lying far away in the past, and, hence, to model the process the whole past should be
incorporated into the description of the process.

A variety of precise mathematical definitions for long memory are given by authors such as
Eberlein and Taqqu (1986), Davison and Cox (1989) as well as other authors cited in this chapter
and Chapter 10. A simple definition that captures the essence of persistence, is the one presented
in Sections 2.5 and 10.3.3. More specifically, a time series process can be classified according to
the behaviour of the memory of the process where memory is defined as

M= 3 Ipl, [11.2.1]
k:—.

where p, is the theoretical ACF at lag k for the process. A long term memory process is defined

as a process with M = oo, whereas a short term memory process has M < e. The M term is often
used as a mixing coefficient for stationary time series (Brillinger, 1975) to indicate the rate at
which the present values of the time series are independent of the far away past values. The
asymptotic independence between values of the time series well spaced in time where the mixing
rate is given by M < oo, has been traditionally used by time series analysts to prove results relat-
ing to normality, asymptotic behaviour of a quantity like the sample ACF, parameter estimates
obtained either by maximum likelihood estimation or by the method of moments, hypothesis
testing, and Portmanteau tests. Hence, most of the findings usually used in time series analysis
are not necessarily true for long term memory processes because these processes have an infinite
memory.

Besides hydrology, meteorology and geophysics, the classification of time series according
to short and long memory may be useful in other areas (Cox, 1984; Parzen, 1982) such as
economics (Granger, 1980; Granger and Joyeux, 1980). This classification has been used even
with other types of stochastic processes (Cox, 1984), although the memory has had other defini-
tions. An alternative definition of long term memory, essentially equivalent to the definition
given above, is to consider time series processes whose ACF decays as

pr=0(™), [11.2.2]

where a lies in the interval (0,1).

An advantage of the FARMA family of models, defined in the next subsection, is that it can
describe both short and long term memory. Furthermore, it constitutes a direct generalization of
the ARMA and ARIMA models of Chapters 3 and 4, respectively.
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11.2.2 Definition of FARMA Models

As explained in Chapter 4, a device frequently used in time series modelling is differencing
the series, if it is thought that its mean function is time dependent. A time dependent mean could
produce sample autocorrelations that, rather than decaying to zero exponentially like the ACF’s
of ARMA models, decay to zero much more slowly. In fact, if the rate of decay of the ACF
seems to depend linearly upon the lag the usual approach is to work with the first differences of
the time series. For the type of processes studied in this chapter, the ACF decays to zero at a rate
slower than exponential, but faster than linear. This suggests the use of a device similar to the
usual differencing operator, to model time series having a slowly decaying ACF with long
memory. In fact, FARMA models generalize in a natural form the concept of ARIMA time
series models containing differencing operators.

The FARMA family of models is a generalization of the ARIMA models of Chapter 4
which in turn constitute an extension of the ARMA models of Chapter 3. To define FARMA
models, the concept of differencing is generalized by means of the filter

- |d
vi@)=(1-BY=3 | |-B)
Jj=0
=1-dB -—;-d(l -d)Bz—%d(l -d)2-d)B3- --- [11.2.3]

where B is the backward shift operator. For an ARIMA model, the values of d in the filter in
[11.2.3] are restricted to be zero when the series being modelled is stationary and to be a positive
integer when the series must be differenced to remove nonstationarity. When d can be frac-
tional, and hence take on real values, the above filter becomes the one used with FARMA
models. As is explained in Section 11.2.3 on the statistical properties of FARMA models, the
value of d controls the memory of the process.

As originally suggested independently by Hosking (1981) and Granger and Joyeux (1980),
a FARMA(p d .q) model for modelling a series z, is defined as

6(B)V?z, = 6(B)a, [11.2.4]
where ¢(B)=1-¢,B - ¢282 - = ¢pB” is the autoregressive (AR) operator of order p hav-
ing the AR parameters ¢,9,, .. ..9,; 6(B)=1-6,8 - 0,82- --- - 0,87 is the moving aver-

age (MA) operator of order ¢ having the MA parameters 6,.8,, ...,0,; V4 is the fractional dif-
ferencing operator defined in [11.2.3]; and g, is a white noise process that is identically and
independently distributed with a mean of zero and variance of 042 G.c. IID(O,G})). As is also the

case for the standard ARMA model of Chapter 3, the operators ¢(B) and 6(B) are assumed to
have all roots lying outside the unit circle and to have no common roots. Finally, no mean level,
I, is written in {11.2.4] since V/y = 0 for positive d.

One can write the FARMA process in [11.2.4] as
0(B)
¢@B)

One can interpret the short memory component of the FARMA process as being modelled by
applying the usual ARMA filter given by 8(B)/¢(B) to the a, time series that is IID(O,G}). The

vz, =

a, [11.2.5]
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fractional differencing filter V¢ handles the long memory part of the overall process.

For a nonseasonal FARMA model, the notation FARMA(p.d,9) is employed where p and
q are the orders of the AR and MA operators, respectively, and d is a parameter in the filter in
[11.2.3] and can take on real values. When d is a positive integer, the FARMA(p .d,q) model is
equivalent to an ARIMA(p.d,q) model where the acronym ARIMA stands for autoregressive
integrated moving average (see Chapter 4). If d =0, the FARMA(p.d,q) model is identical to a
short memory ARMA(p,q) model of Chapter 3. When p =q =0, the FARMA(p,d,q) model
reduces to

Vs, =a, [11.26]

which is called a fractional differencing model. The labels that can be used for the various types
of FARMA, ARIMA and ARMA models are listed in Table 11.2.1. In this table, the
FARMA(p d,q) model is the most general and it contains all the other models as subsets.

As an example of how to write a specific FARMA(p,d,q) model, consider the case of a
FARMA(0,0.3,1) for which p =0, ¢ =1 and d has a real value of 0.3. From [11.2.4] this model
is given as

(1-B)%%,=(1-6,B)q
Using [11.2.3], the fractional differencing operator is expanded as
(1-B)Y3=1-03B- -;-(0.3)(1 -0.3)B%- %0.3(1 -03)(2-0.3)B3- - --

=1-0.3B -0.1058%2 - 0.060B% - - - -

Substituting the expanded fractional differencing operator into the equation for the
FARMA(0,0.3,1) model results in

(1-0.3B -0.105B% - 0.059B3 - - - - )z, = (1 - 6,B)a,
or

Z, - 0.32,_1 - 0.1052,_2 - 0.0592,_3 - = (1 - OlB)a,

or
2,=0.3z,_; +0.105z,_, +0.059z, 3+ - - +a,~0,a,_, [11.2.7]

From this equation, one can see that the weights for the z, terms are decreasing as one goes
further into the past.

For the theoretical definition of the FARMA(p,d,q) model in [11.2.4], the g, series is
assumed to be lID(O,o}). In order to develop estimation and other model construction methods,
usually the a,’s are assumed to be normally distributed. Recall that the assumption that the g,’s
are NID(0,0'E) for application purposes is also invoked in Part III for the ARMA and ARIMA
models of Chapters 3 and 4, respectively, as well as most other models presented in this book.
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Table 11.2.1. Names of models.
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Values of d

Values of p

Values of ¢

Equivalent
Model Names

Chapters

Real value

q

FARMA(p.d,q)

11

Real value

P
0

0

FARMA(0,4,0),
Fractional
Differencing

11

Positive
Integer

ARIMA(p 4.9),
FARMA(p.d.q)
for which d
is a positive
integer

Positive
Integer

ARIMA(0.4.9),
IMA(d .q9),
FARMA(0.4,q)
for which d
is a positive
integer

ARMA(Q.q),
FARMA(p 0.9),
ARIMA(p ,0.9)

ARMA(p,0),
AR(Q),
FARMA(,0,0),
ARIMA(p,0,0)

ARMA(0,9),
MA(g),
FARMA(0,0,9),
ARIMA(0,0,9)

ARMA(0,0),
FARMA(0,0,0),
ARIMA(0,0,0),

White Noise

When the residuals of a fitted FARMA model and, hence, the original series are not nor-
mally distributed, one approach to overcome this problem is to invoke the Box-Cox transforma-
tion defined in [3.4.30]. Subsequent to this, one can estimate the parameters of all the model
parameters, including d, for the FARMA model fitted to the transformed series.

Three classes of seasonal models are given in Part VI of the book. The definition for non-
seasonal FARMA models can be easily extended to create long memory seasonal FARMA
models for each of the three kinds of seasonal models. To create a seasonal FARMA model,
which is similar to the seasonal ARIMA model of Chapter 12, one simply has to incorporate a
seasonal fractional differencing operator as well as seasonal AR and MA operators into the basic
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nonseasonal FARMA model in [11.2.4]. A deseasonalized FARMA model is formed by fitting a
nonseasonal FARMA model to a series which has been first deseasonalized using an appropriate
deseasonalization technique from Chapter 13. To obtain a periodic FARMA model that reflects
the periodic ARMA model of Chapter 14, one simply defines a separate nonseasonal FARMA
model for each season of the year. Future research could concentrate on developing comprehen-
sive model building techniques, especially for the cases of seasonal FARMA and periodic
FARMA models. Hui and Li (1988) have developed maximum likelihood estimators for use
with periodic FARMA(0,4,0) (i.e. periodic fractional differencing) and periodic FARMA(p,d,0)
models.

Another function for FARMA modelling is to allow the noise terms of transfer function-
noise (Part VII), intervention (Part VIII), and multivariate ARMA (Part IX) models to follow a
FARMA model. The definitions of these models are simple. However, the development of
model construction techniques, especially efficient estimation methods, would be a formidable
task. Hence, this should only be undertaken if practical applications using real world data indi-
cate a need for these kinds of long memory models.

Keeping in mind that FARMA modelling can be expanded in many directions, the rest of
this chapter is restricted to the case of nonseasonal FARMA models. In the next subsection,
some theoretical properties of the FARMA(p,d,q) model in [11.2.4] are given.

11.2.3 Statistical Properties of FARMA Models

As explained by Hosking (1981), the FGN model of Section 10.4 is in fact a discrete-time
analogue of continuous-time fractional noise. Another discrete time version of continuous-time
fractional noise is the fractional differencing (i.e. FARMA(0,d,0)) model in [11.2.6]. An advan-
tage of the fractional differencing model over FGN is that it can be expanded to become the
comprehensive FARMA(p,d,g) model in [11.2.4], which in turn is a generalization of the
ARIMA model.

The basic properties of FARMA processes are presented by Hosking (1981) and Granger
and Joyeux (1980). As explained by Jimenez et al. (1990), they found among other things that:

(a) For the process to be stationary, d < 0.5 and all the roots of the characteristic equation
¢(B) =0 must lie outside the unit circle.

(b) For the process to be invertible, d > —0.5 and all the roots of the characteristic equation
6(B) = 0 must lie outside the unit circle.

(©) Because of (a) and (b), if -% <d <L, the FARMA(p,d,q) process is both stationary and

2
invertible.
@ Foro<d< -;—, the process has long memory (see Section 11.2.1 for definitions of long
memory).
(e) The ACF behaves as
pp = 0(k~1¥24), [11.2.8]

(f) The process is self-similar, which means that the stochastic properties of the process are
invariant under changes of scale.
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Several probabilists (Rosenblatt, 1961, 1979, 1981; Tagqu, 1975) have studied the
behaviour of statistics derived from time series processes where the ACF behaves as in [11.2.8]
and d is positive. They found that:

(8) The sample mean times N'2*9, where N is the number of observations, converges in law to
a normal random variable.

(h) The sample autocovariances do not converge asymptotically to a normal random variable.

The result in (g) about the mean is of some interest to hydrologists because it has been
found that processes thought to possess long term memory have a sample mean that seems to
indicate slow changes in trend. This wandering of the sample mean can be explained in terms of
(g) above. This shifting level process for modelling a changing mean is referred to in Section
10.3.3 and references are provided at the end of Chapter 10. Arguments to show that persistence
in geophysical processes is due to a slowly changing trend cannot be based just on statistical
behaviour but should use geophysical insight. Note also that the above results are not restricted
to the FARMA process case but that they are valid for any time series whose ACF behaves as in
[11.2.8].

An important, although seemingly trivial extension of the original definition of FARMA
processes by Hosking (1981) and Granger and Joyeux (1980) is to relax the assumption that the
mean of the time series is zero. The extension of the model given above to the case of a nonzero
mean is straightforward. However, what is very important to note is that if a constant, in particu-
lar the mean, is passed through the filter V¥, the output, for the case of a positive d, is zero.
Hence, the mean of the process does not have to appear in the equations that define the model.
Nevertheless, it should be noted that the mean is a well defined quantity for this process when
d<0.5.

The aforementioned property is very important for determining the stochastic properties of
the estimates for the parameters. This is because the sample mean can be used as an estimate for
the mean of the time series and the slow rate of convergence of the sample mean as given in (g)
above does not affect the asymptotic rate of convergence of the estimates for the other parame-
ters to a Gaussian random variable, where this rate is the usual N-1.

Another interesting feature is that the filter V¢ can smooth some special trends as can be
seen casily for the case d =1 when the trend is a straight line. When 0 <d < 0.5 the filter V¢
smooths slowly changing trends. Hence, even if the process mean is slowly changing, FARMA
models could be used to model the time series in much the same way that ARIMA models are
employed with a deterministic drift component. '

Another consequence of the fact that
Vi -w)=Viz, d>0 [11.2.9]

where 2, is the value of the process at time ¢ with a theoretical mean M, is that the process
behaviour is independent of the mean. In the stationary ARMA process, on the other hand, the
local behaviour of the process does depend on the mean. This can be seen by considering the
value of the process conditioned on the past as given by E{z,,,lz,, s St}. In the ARMA case,
this quantity depends on p=E{z,} but in the FARMA case with d > 0, it does not. In the
remaining parts of this section, unless stated to the contrary, the mean u will be assumed equal to
zero.
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An important consequence of the slow rate of decay to zero of the ACF as given by [11.2.8]
is that Bartlett’s formula (Bartlett, 1946) for the variances and the covariances of the estimated
autocovariance function (ACVF), {4}, has to be modified accordingly. In fact, the exact for-

mula for the variance is given by

(N=k-1)
var(f)=N"1 Y " {1 = Iml+ -}% }{y}, + Vomsk Y-k } [11.2.10]
m=——N-k

Then, by [11.2.8]

0N, ifd<025
var@) = low4-2, ifd >0.25 [11.2.11]

Hence, if d < 0.25 then var(f,) =0V~ 1), which is the same order as in the case of a short
memory process. However, if 0.25 < d < 0.5 the order of var(f,) is larger than N™!. In fact as d

approaches 0.5 the variance approaches a quantity of order one. This implies that the stochastic
variability of the estimated ACVF is higher for long term memory processes with 0.25 < d < 0.5
than for short term memory processes. Moreover, the order of the variance depends on the unk-
nown quantity d. Finally, similar results are valid for the covariances of the estimated ACF.

An interesting subset of the FARMA(p,d,q) family of processes in [11.2.4] is the
FARMA(0,d,0) process in [11.2.6] which is referred to as the fractional differencing model.
This model has been studied in some detail and expressions for the ACF, partial autocorrelations
function (PACF), partial linear regression coefficients, and inverse autocorrelations are known
(Hosking, 1981, 1984, 1985). One important fact about the stochastic behaviour of a
FARMA(0,d,0) process is that all its autocorrelations are positive if d is positive, and they are
negative otherwise. Also, all the partial autocorrelations of the FARMA(0,d,0) model have the
same sign as the persistence parameter d, and their rate of decay to zero is of the same order as
the inverse of the lag. Because of these limitations of the structure of the ACF, fractionally
differenced noise is passed through an ARMA filter in order to obtain a richer autocorrelation
structure within the framework of a FARMA(p,d,q) process.

As suggested by Jiminez et al. (1990), it is possible to generalize the filter (1-B) in
another form, which is closely related to the (1 -B)d filter in [11.2.3]. In particular, this filter is
defined by (1 + B)?. Note that the associated transfer function also has a root on the unit circle
at B =-1. The coefficients of this filter are the same as those of the filter (1 — B)¢ except for the
sign and hence the process also has long term memory if d > 0, it is stationary if d < 0.5, and
invertible if d > —0.5. However, the interesting fact is that although the absolute values of the
autocorrelations are the same for both filters, the autocorrelations of the filter (1 + B)? alternate
in sign. More general autocorrelations structures could be obtained by generalizing the filters to
accommodate complex roots on the unit circle. The class of processes studied in this chapter are
particular cases of the more general processes that result by filtering white noise through the
filters defined by (1 — eB)?, where the parameter ¢ lies in the range lel £ 1. In this chapter it is
assumed thate =1, or -1.



FARMA Models 397

11.3 CONSTRUCTING FARMA MODELS

11.3.1 Overview

To fit a FARMA(p,d g) model to a given time series, one can follow the usual identifica-
tion, estimation and diagnostic check stages of model construction. Model building procedures
are fairly well developed for the case of the fractional differencing (i.e. FARMA(0,4,0) model in
{11.2.6]). However, further research is required for obtaining a comprehensive set of tools for
building the FARMA(p.d,q) models in [11.2.4). Of particular importance is the need for good
estimation techniques that are both computationally and statistically efficient, as well as capable
of estimating the mean level along with the other FARMA model parameters. Unlike
ARIMA(p,d,q) models where d is fixed at zero or some positive integer value prior to estimat-
ing the other model parameters for the differenced series, one must, of course, estimate d in the
FARMA(p d,q) model simultaneously with the other model parameters.

11.3.2 Identification

To identify a suitable ARMA model (Chapter 3) or ARIMA model (Chapter 4) to fit to a
given time series, one can examine the characteristics of graphs of the sample ACF, PACF,
IACF and IPACF (Chapter 5). By knowing the behaviour of the theoretical ACF, PACF, IACF
and IPACF for ARMA or ARIMA models, one can determine from the sample plots which
parameters to include in the model. If more than one model is fitted to the series, an automatic
selection criterion such as the AIC (see Section 6.3) can be used to select the best one.

The sample ACF, PACF, IACF and IPACF can also be used to identify a FARMA(p.d,q)
model for fitting to a series. If the series is stationary and the sample ACF dies off slowly, then
d should be estimated to account for this long term persistence. Hosking (1981) gives formulae
for the theoretical ACF, PACF and IACF for the case of the fractional differencing model in
[11.2.6]. Further research is required to obtain formulae for the theoretical PACEF, IACF and
IPACF for FARMA(p.d,q) models. By comparing the behaviour of the sample graphs to the
theoretical findings one can decide upon which parameters to include in the FARMA(p.dq)
model. Additional procedures for model identification are presented in Section 11.5 with the
applications.

11.3.3 Estimation

This section follows the research findings of Jimenez et al. (1990). However, the reader
may also wish to refer to the FARMA estimation procedures presented by Boes et al. (1989),
and by Brockwell and Davis (1987, pp. 464-478), as well. As noted earlier in Section 11.2.3,
the coefficients of the filter (1-B)? and (1 +B)? only differ in sign. Because the estimation
results of this section are valid for both filters, everything is described only for the filter
Vi=(1-BYy.

There are several estimation procedures available in the literature. Frequency domain
methods do not seem to be as efficient as estimators based on the time domain representation.
Hence, only time domain methods are considered here.

Because of the slow rate of convergence of the sample mean to the true mean as can be
seen in (g) in Section 11.2.3, it is of utmost importance to find a more efficient estimator of the
mean. The most obvious candidate is the maximum likelihood estimate of the mean (McLeod
and Hipel, 1978a), which is given by
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p=znpa’s [11.3.1]

where z7=(z,,2,, . . ., zy) is the 1N vector of observations, I is the autocorrelation matrix of the

time series, and 1 represents a column vector of ones. However, it can be shown that the sample
mean is efficient for the case when the persistence parameter d is nonnegative, and it is not effi-
cient when the persistence parameter is negative. This agrees with the common knowledge that
overdifferencing can lead to inefficient estimates. Although it is difficult to give a physical
meaning to antipersistence, a negative value of d can be useful from a purely fitting point of
view as it has been observed that sometimes FARMA models with negative d arise while fitting
them to a time series, and, therefore, it is important in these cases to estimate the mean of the
process using the maximum likelihood estimate as given by the above formula. The evaluation
of the above formula can be performed efficiently using either Cholesky decomposition (Healy,
1968) of the inverse of I given by the partial linear regression coefficients, {¢;,} (Which can be
obtained easily by the Levison-Durbin algorithm (Durbin, 1960)), or by the Trench algorithm for
the inverse of a Toeplitz matrix (Trench, 1964). For the particular case of fractionally differ-
enced noise, Hosking (1981) gives a closed expression for the reflection coefficients or partial
linear regression coefficients. Hence, in this case a closed expression for the maximum likeli-
hood estimate of the mean is known. For the situation where € =1 in the filter, mentioned at
the end of Section 11.2.3, this closed expression is still valid with appropriate sign changes. In
terms of the partial linear regression coefficients, the following expression could be used to
evaluate the maximum likelihood estimate ji

N-1

Y020z = O2,)
1 =0

N-1

(=0 == o =)
=0

h=N"

[11.3.2]

In this section, it is assumed that the persistence parameter d is nonnegative, the sample mean is
used as the estimate of the mean, and the sample mean has been subtracted from each observa-
tion.

There are two methods available to estimate the remaining parameters in the time domain:
exact maximum likelihood estimation or an approximation of the filter V4. Most of the max-
imum likelihood estimation algorithms depend on computing the one step ahead prediction
errors, a,, which can be computed in terms of the partial linear regression coefficients. These
coefficients can be computed efficiently by the Durbin-Levinson algorithm. Finally, with these
values of e, the estimates of the parameters are obtained by minimizing the modified sum of

squares function given by:

Y 29, w22 |
Inl=YWN -t+Din(l -¢)+ Ya’/o. [11.3.3]
1=1 =1
Although the computation of estimates by maximum likelihood is statistically attractive, the
amount of computations involved in the above scheme makes algorithms having fewer numbers
of computations competitive alternatives.
The algorithm proposed by Li and McLeod (1986) is computationally economical and is

presented in Appendix A11.1. The algorithm consists of approximating the filter V4 by the filter
V, where V, is defined as the filter resulting by taking the first M terms of the filter V¢, i.c. by
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approximating the process by a ‘‘long’’ autoregression. Then the algorithm minimizes the sum
of the squared residuals, where the residuals are obtained as the output of the filters V{ and the

ARMA filter. To compute the residuals, an algorithm such as the one given by McLeod and
Sales (1983) could be used. Also, as recommended by Box and Jenkins (1976) the sum of
squared residuals could be extended back in time by backforecasting. Note that the approxima-
tion of V¢ by Vf, is not the optimal approximation in a least squares sense. However, since the

order to M is comparable with N, it has to be very close to the optimal approximation. The order
of approximation necessary to obtain consistence estimates has been found to be of the order of
N2 and an ad hoc rule is to fit time series with at least 50 observations. The order of truncation
M is chosen as a number of between N/4 and N'2, by trying to balance the degree of approxima-
tion of the filter Vf, to the filter V¢ and the amount of computations involved. Nonetheless, for

N close to 50, M is taken as half the number of observations. The amount of computations using
this algorithm is much smaller than that for the maximum likelihood approach. Moreover, esti-
mates obtained in this form are asymptotically equivalent to the maximum likelihood estimates
and it seems that the finite sample estimates are generally close enough to the maximum likeli-
hood estimates. Li and McLeod (1986) studied the asymptotical distributions of the estimates
when the mean of the time series is known. They derived closed form expressions for the vari-
ances of the asymptotically normal distributions of the estimates. It can be demonstrated that the
estimation of the mean by the sample mean does not affect the above asymptotic results. How-
ever, these results are not likely to hold for a finite sample size because of the long term per-
sistence and the parameter d is constrained to lie in the open interval (-0.5, 0.5). In practice, the
interval is closed and it can be observed using simulation that if the persistence parameter is
close to 0.5, there is a high probability for the estimate of d to be equal to 0.5. A similar
phenomenon was observed for the ARMA(0,1) model by Cryer and Ledolter (1981). Hence, the
rate of convergence of the estimates depends on the parameters even for relatively large sample
sizes of more than 200. Additionally, it should be noted that the above method is very similar to
fitting an autoregressive process of order one if d is not close to 0.5, say less than 0.3.

Bootstrapping a Time Series Model

Because the FARMA model is an infinite autoregression and, moreover, is nonstationary
when d 2 0.5, it is expected that finite sample properties of the estimates are different than the
large sample approximations. Consequently, it is interesting to obtain further information about
these finite sample distributions. One interesting possibility to increase one’s knowledge of the
finite sample distribution of the estimates is by using the bootstrapping technique proposed by
Cover and Unny (1986).

Since Efron (1979) proposed the bootstrap, there have been several proposals to extend the
original technique to time series analysis. However, most of them have used a straightforward
generalization of the original bootstrap with the consequence that what they did was to use dis-
torted models. The idea of Cover and Unny (1986) is to inject randomness into the loss function
by resampling the positions of the residuals and not the observations themselves (i.c. the time
lags are resampled with replacement and with the same probability). This resampling of the time
lags is interesting because of the nature of data that depends strongly on the time coordinates.
Note also that unlike other resampling plans, the assumption that the fitted model is the true
model is not crucial. Also, it can be applied to any time series model and not just to a FARMA
model. Moreover, the idea is valid for other stochastic processes.
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The technique can then be described as follows:
(@) Draw a random sample of size N with replacements from the integers between 1 and N;

(b) Obtain estimates of the parameters by minimizing the sum of the squared residuals a,2 with
weights equal to the number of times that the number ¢ appeared in the random sample in
(@)

() Repeat (a) and (b) a large enough number of times to obtain reliable estimates of the distri-
bution characteristics of the estimated parameters.

This technique can greatly increase one’s information about the parameter estimates as can
be seen in the applications. However, further theoretical results are required to confirm theoreti-
cally the finite sample validity of the bootstrap approach.

11.3.4 Diagnostic Checks

To ascertain if a calibrated FARMA (p,d,q) model adequately fits a given series, one can
employ diagnostic checks similar to those given in Chapter 7 for ARMA and ARIMA models.
The innovations of the FARMA model in [11.2.4] are assumed to be Gaussian, homoscedastic
(i.c. have constant variance) and white. When, in practice, the residuals of the fitted model are
not always normal/homoscedastic, this can often be overcome by transforming the data using the
Box-Cox transformation of [3.4.30]. The parameters of the FARMA(p,d,q) model can then be
estimated for the transformed series and the residuals once again subjected to diagnostic checks.

The most important innovation assumption is independence. If the residuals of the fitted
model are correlated and not white, then a different FARMA model or, perhaps, some other type
of model, should be fitted to the series. The best check for whiteness is to examine the residual
autocorrelation function (RACF) for the calibrated model, as is also the case for ARMA and
ARIMA models (see Chapter 7). The large-sample distribution of the RACF for a FARMA
model is given by Li and McLeod (1986) who also present a modified Portmanteau test statistic
to check for whiteness.

11.4 SIMULATION AND FORECASTING

11.4.1 Introduction

After a FARMA(p,d,g) model has been fitted to a given series, the calibrated model can be
employed for applications such as simulation and forecasting. The purpose of this section is to
present simulation and forecasting procedures for use with FARMA models. Techniques for
simulating and forecasting with ARMA and ARIMA models are presented in Part IV of the
book. Finally, forecasting experiments in which fractional differencing models are used, in addi-
tion to other kinds of models, are given in Section 8.3.

11.4.2 Simulating with FARMA Models

Based upon a knowledge of closed expressions for the partial linear regression coefficients,
4 fast algorithms for generating synthetic sequences from FARMA models can be given. Par-

tial linear regression coefficients are defined as the values of o, that minimize
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Ef{z -0z - -+ =20} (11.4.1]

where E is the expectation operator. Thus, they are the values that minimize the one step ahead
forecast errors. As is well known, the time series process can be written in terms of the innova-
tions as:

2, =d‘ + ¢1-’z‘_l + A + ¢uZo, [11-4.2]

where the innovations {a,} are a sequence of independent Gaussian random variables with mean
!

0 and variance 6,2 = l'll(l - ¢,-2J). First consider the case of simulating fractionally differenced
J=

noise. Expressions for ¢, , arc presented by Hosking (1981), and recursive expressions are given
by:

6, =d/(t - d)

®js =941, G+ D¢ = j = d)(G - 1-d)t - j)), [11.4.3]

Consequently, to simulate a FARMA(0,d,0) noise model it is only necessary to compute recur-
sively ¢, ;, generate a normal random variable and then use [11.4.2].

To simulate using a FARMA(0,d,q) model, the fractionally differenced noise is generated
and then passed through the moving average filter. When generating synthetic data using a
FARMA(p.d,0) model, one possible approach is to simulate the FARMA(0,d,0) model using
above algorithm and after choosing p initial values, which can be done using the method in
McLeod and Hipel (1978b), as explained below, generate recursively the other simulated values.
Finally, the general FARMA(p.d,q) case can be obtained by a combination of the above
methods.

Another possible method to generate synthetic sequences (McLeod and Hipel, 1978a,b) is
to obtain the Cholesky decomposition of the matrix of the theoretical autocorrelations, X, and to
multiply this decomposition matrix by a vector of independent Gaussian variables with mean
zero and desired variance (see Section 9.4 for the case of ARMA models). Finally, a mean
correction is added to the series. However, although this method is attractive for other models, it
may be less desirable than the method described above because it involves the computation of
the matrix of autocorrelations and the theoretical autocorrelations are given in terms of hyper-
geometric functions (Hosking, 1981). Thus, the computation task time necessary to compute the
autocorrelations is much bigger than the computation time necessary to pass FARMA(0,4,0)
noise through the different filters. However, once the ACF has been calculated and the required
Cholesky decomposition obtained, this method is useful if many independent realizations of the
process are to be simulated. Finally, both methods are equivalent in the case of the
FARMA(0,4,0) model.

11.4.3 Forecasting with FARMA Models

Forecasting by using ARMA models is generally most useful when the forecaster is just
interested in one step ahead or two steps ahead forecasts. This is because the forecast functions
produced by ARMA models converge exponentially fast to the mean of the time series. Hence,
in ARMA models long term forecasts are given by the mean |1 or some estimate of it. This is not
the case when the process has a long term memory, as is clear from the definition of persistence.
For the case of a long memory process, the forecasting functions still converge to the mean y;
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however, the rate of convergence is not exponential but slower. For persistent time series, the
rate of decay of the forecast function depends on the degree of persistence that the process
possesses.

Another consequence of persistence in forecasting is that the variance of the forecast func-
tion of a persistent process decays to the variance of the process, 62 at a rate that could be sub-

stantially slower than exponential, depending on the degree of persistence. Therefore, confi-
dence bounds for the /-step ahead forecasts of persistent processes are smaller than those of short
term memory processes, if [ is bigger than two or three. .This can be seen if the time series
model is written as a linear process (Box and Jenkins, 1976)

2, =Y aa.,. [11.4.4]
k=0
Then, the /-step ahead forecast, 7,[/], is given by

Z:[I] = Z Ol 1y [11.4.5]
k=0

but, for a FARMA model, o, = k™1™, Therefore,
var{4[I]} = 62 = 0(~*%) [11.4.6]

Equation [11.4.5] is most helpful for forecasting if estimates of g, are available and if the
coefficients o, decay to zero fast enough so that the necessary truncation involved in the compu-
tation of Z[/] as given in [11.4.5] produces a negligible error. However, for FARMA models

these coefficients do not decay fast enough, and, hence, expressions for the forecast function
Z,{!] that do not involve approximations could be useful. The method proposed is based on the

AR form of the time series as given by [11.4.2]. The forecast function is given by
N =0 ,(Nz, + 0y, Nz + -+ +0,,(D)zp [11.4.7]

where
-1
¢ (D=0 + _Zl‘bj;u-l%.z(i). [11.4.8])
Jj=

This expression has advantages over the formula given in [11.4.5] because it does not involve
approximation either by truncation of an infinite series or in the computation of the residuals.
Moreover, by using [11.4.7] it is possible to show that

LU=z + -0 + Opui2o- [11.4.9]

Hence, as discussed above the forecast function decays to the theoretical mean i at a rate slower
than exponential. For example, for the FARMA(0,d,0) model

I 7R R X (R ) R ™
L) = " : [11.4.10]
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11.5 FITTING FARMA MODELS TO ANNUAL HYDROLOGICAL TIME SERIES

To demonstrate how FARMA models are applied in practice, FARMA models are fitted to
the fourteen hydrological time series listed in Table 11.5.1. The data consists of eleven annual
river flows in m* /s from different parts of the world, two records of average annual rainfall in
mm, and an annual temperature series in degrees Celsius. Because efficient estimation pro-
cedures are available for use with FARMA(0,d,0) (i.e. fractional differencing) and
FARMA(p,0,q) (i.e. ARMA(p,q)) models, these are the models which are considered for fitting
to the series. Estimation methods for use with FARM(0,4,0) and ARMA(p,g) models are
presented in Sections 11.3.3 and Chapter 5, respectively.

Table 11.5.1. Annual time series used in the applications of FARMA models.

Descriptions Geographical Locations Time Spans | Lengths
a Saugeen River Walkerton, Ontario, Canada 1915-1976 62
) Dal River near Norslund, Sweden 1852-1922 70
3) Danube River Orshava, Romania 1837-1957 120
¢ French Broad River Asheville, N. Carolina 1880-1900 70
&) Gota River near Sjotop-Vannersburg, Sweden | 1807-1957 150
©6) McKenzie River McKenzie Bridge, Oregon 1900-1956 56
@) Mississippi River St. Louis, Missouri 1861-1957 96
)] Neumunas River Smalininkai, Lithuania 1811-1943 132
) Rhine River Basle, Switzerland 1807-1957 150
(10)  St. Lawrence River Ogdensburg, New York 1800-1930 131
(11) Thames River Teddington, England 1883-1954 71
(12)  Rainfall Fortaleza, Brasil 1849-1979 131
(13) Rainfall Philadelphia 1800-1898 99
(14)  Average temperature | Central England 1723-1970 248

In practice, the definition of long term memory in terms of M = = in [11.2.1] is difficult to
check and instead the persistence criterion given in [11.2.8] is used. Hence, a sample ACF that
decays slowly to zero could indicate that the time series has long termn memory. For those time
series whose sample ACF decays to zero at a hyperbolic rate, the possibility of modelling them
by FARMA models is considered. Within the fourteen data sets, the St. Lawrence Riverflows
and the Philadelphia Rainfall series show an estimated ACF that seems to decay to zero hyper-
bolically. Therefore, these two data sets present evidence that suggests the use of FARMA
models to fit them. The graph of the St. Lawrence Riverflow series against time and its sample
ACEF are shown in Figures II.1 and 3.2.1, respectively. For other records such as the Saugeen
Riverflows and Rainfall at Fortaleza, the evidence, as given by the estimated ACF’s, in favour of
a persistence parameter is not so strong but it is a possibility. However, it should be remarked
that if the persistence parameter d is close to zero and, hence, between 0 and 0.2, detection of
long term memory by visual inspection of the autocorrelations can be difficult. Moreover,
because Bartlett’s formula needs to be multiplied by a factor of order N~*4 (d 2 0.25), for the
case of a FARMA(p,d,q) process, visual inspection of the sample ACF should be used with care
when it is suspected that the process under analysis could have long term memory.
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If the process belongs to the FARMA family of models, the PACF should decay to zero ata
hyperbolic rate. This rate is independent of the degree of persistence. However, for the case of a
FARMA(0,4,0) process, long term memory implies that all the values of the PACF should be
positive. This behaviour of the PACF for the FARMA(0,d,0) process suggests that to detect per-
sistence, not only a hyperbolic decay of the PACF is of interest, but also the behaviour of the
signs of the PACF. This suggests the use of a nonparametric sign test to test the signs of the
estimated PACF. None of the estimated PACF’s of the fourteen data sets show strong evidence
of a hyperbolic rate of decay to zero. However, some of them like those for the St. Lawrence
Riverflows and Philadelphia Rainfall series show PACF structures that are generally positive. A
sign test of these PACF’s gives further support for the conjecture that these time series demon-
strate signs of persistence.

Another characteristic of a time series that could indicate the presence of persistence is the
behaviour of the partial sample means, Z;, of the process that are defined as
(zk—l +Zp o+ 0 + Zo)

z, = p . [11.5.1]

For a short memory time series, a plot of Z; against k should show great stochastic variability for

the first values of k, but after k reaches a moderate value the graph should decay to an almost
constant value and should show small stochastic variability. However, for the case of a long
memory time series, the plot of Z, against k should display great stochastic variability for the

first few values of k. For moderate values of k the graph should show a gentle trend that should
oscillate around a constant value as k increases, and after k reaches a very large value, which
depends on the degree of persistence, Z; should reach a constant value. Furthermore, because the

present values of the time series are correlated with the past, the current values of Z, are highly
correlated with the past and, therefore, a plot of Z, against k could show local trends. To detect

persistence, the rate of decay towards a constant value of the local trends is of interest, as is also
the presence of an overall gentle trend. However, the presence of local trends in the plot of Z,

against k by itself does not indicate the presence of persistence. Within the fourteen data sets,
the St. Lawrence Riverflows have an overall decreasing trend. This trend is gentle enough to
assume that it could be due to the presence of persistence in the time series and not due to non-
stationarity. The graph of Z, against k of the St. Lawrence Riverflows is displayed in Figure
11.5.1. For some of the other data sets, local trends in Z; seemed to be present even at the end of

the series. Finally, for most of the data sets the behaviour of the partial means is consistent with
what could be expected in time series having a short term memory, consisting of a rapid decay of
the graph to a constant value.

All of the FARMA models considered for fitting to the series in Table 11.5.1 are subsets of
the FARMA(2,d,1) model given by
a- ¢,B' - ¢282)V”’(B)(z, -u)=(1-6,B)a, [11.5.2]

where ¢; is the ith AR parameter, 0, is the first MA parameter, and W is not present in [11.5.2)
for positive d. For the St. Lawrence Riverflows the additional constrained AR(3) model given
by
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Figure 11.5.1. Partial sums of the St. Lawrence at
Ogdensburg, New York from 1860-1957.
(1- 6,8 - $:8°)z, - W) =a,, [11.5.3]

was considered, because this is the model used in Chapter 3 and Part III, within the class of
ARMA models. The most appropriate FARMA model from [11.2.4] to fit each series was
selected according to the minimum AIC (see Section 6.3), considering only those models that
passed tests for whiteness of the fitted model residuals. The maximum likelihood estimates
(MLE’s) of the model parameters for each series along with the standard errors (SE’s) given in
brackets are displayed in Table 11.5.2. Those time series for which the estimates of d given in
Table 11.5.2 are positive, portray persistent behaviour. Also, because the degree of persistence
depends on the magnitude of d, those series having higher values of d possess greater degrees of
persistence. For example, the model for the St. Lawrence River was estimated as a
FARMA(0,4,0) with d =0.4999. This indicates that the flows of the St. Lawrence are highly
persistent, and, hence the far away past strongly influences the present. A consequence of this
influence is the slow rate of convergence of the sample mean to the true value. For the case of
the St. Lawrence River this rate of decay is of order OV 9%%!) where N is the number of
observations. This order of convergence is also true for the forecasting function and the
estimated ACF of the St. Lawrence Riverflows. An interesting feature of the St. Lawrence
River is that it is associated with great masses of water which perhaps suggests a model having a
reservoir term whose time step is larger than the time step used to measure the series. All the
models that exhibit persistence in Table 11.5.2 are FARMA(0,d,0). The data sets for which it
was appropriate to fit a FARMA(0,4,0) model are the Mckenzie, St. Lawrence and Thames
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annual riverflows plus the Philadelphia rainfall series. There were other data sets for which the
AIC selected ARMA models but the differences between minimum AIC’s for the ARMA models
and the AIC’s for FARMA(0,d,0) models were very small. Finally, note that some rivers do not
show any sign of second order correlation structure, as the optimal model according to the AIC
was simply the mean. These data sets are the Dal, Danube and Rhine Rivers. Keep in mind that
most of these findings are consistent with the models suggested by the sample ACF, sample
PACEF and behaviour of the partial means.
Table 11.5.2. Parameter estimates and standard errors in brackets for FARMA
models fitted to the hydrological time series.

Series Parameter Estimates and SE’s

¢ 73 d 0,

Saugeen - - - -
Dal - - - -
Danube - - - -
French -0.234 - - -
0.12)
Gota 0.59 0.27 - -
(0.08) (0.08)
Mckenzie - - 0.27 -
(0.10)
Mississippi 0.29 - - -
0.10)
Neumunas - - - -0.19
(0.08)
Rhine - - - -
St. Lawrence - - 0.499 -
(0.08)
Thames - - 0.12 -
(0.10)
Fortaleza 0.24 - - -
(0.08)
Philadelphia - - 0.23 -
(0.08)

Temperature 0.12 0.2 - -
0.06) (0.06)

The bootstrapping technique of Cover and Unny (1986) was used to increase the finite sam-
ple information about the estimates of the persistence parameter d. For some data sets, the AIC
does not provide a clear cut separation between models with and without the persistence parame-
ter d. Also, most of the time the best FARMA model with a persistent parameter was the
FARMA(0,d,0) model. Because of these two remarks, it is interesting to obtain information on
how reliable are the estimates of d and the estimates of its SE. For these reasons, the bootstrap
technique proposed by Cover and Unny was used with the FARMA (0,d,0) model for all the data
sets. Although this model is not appropriate for some data sets, the information about the
behaviour of the estimates of d is valuable. The information given by the bootstrap was
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summarized by two methods. First, the sample mean and standard deviation of the estimates of
d using the bootstrap technique for each data set were computed. Second, the distribution of the
estimates of d for each data set was estimated using a nonparametric kernel estimate (Fryer,
1977). Using these two pieces of information, it is possible to decide if the data set exhibits any
evidence of persistence. The means and standard deviations are given in Table 11.5.3, together
with the estimates of d obtained using the approximate maximum likelihood method. Plots of
the density of the estimates of d for the St. Lawrence riverflows and for rainfall at Philadelphia
are given in Figures 11.5.2 and 11.5.3, respectively. From these tables and graphs, one can draw
a number of conclusions:

(a) The large sample approximations are not necessarily valid for finite sample sizes. For
example, the distribution of the estimate of the parameter d for the St. Lawrence seems not
to have tails, and the density seems to be concentrated on the interval 0.4 to 0.54. More-
over, the density seems somewhat skewed.

(b) It appears that the asymptotic standard deviations are smaller than the bootstrap estimates
for values of d not very close to 0.5, and this behaviour is reversed for values of d close to
0.5.

(c) Note also that the means of the estimates of the parameter d obtained by resampling and
the standard deviations of these estimates do not necessarily represent the data.

If the threshold a is assumed known, the estimate of a by least squares can be easily found,
and it can be shown using standard techniques that it has an asymptotic normal distribution with
the inverse of the information matrix as the asymptotic variance. This information matrix is
given by the expected value of the truncated variable z,z{ 1z,] > a}. If the threshold a is unk-

nown, the usual techniques cannot be used because of the nondifferentiability of the sum of
squares function with respect to a.

11.6 CONCLUSIONS

As a direct result of research on long memory modelling motivated by the controversy sur-
rounding the Hurst phenomenon defined in Section 10.3.1, Hosking (1981) originally proposed
the generalization of ARIMA models so that long term persistence could be effectively
modelled. In particular, Hosking (1981) and independently, Granger and Joyeux (1980), sug-
gested the FARMA(p 4,q) model in [11.2.4] as a flexible approach for describing persistence.
The FARMA model is especially appealing to researchers and practitioners in hydrology,
economics and elsewhere, because it can model both long and short term behaviour within the
confines of a single model. Bloomfield (1992), for example, employs FARMA models for inves-
tigating trends in annual global temperature data. The fractional differencing filter in [11.2.3]
can account for long term behaviour or persistence while the ARMA component of the overall
FARMA model in [11.2.4] takes care of the short memory aspects of the series being modelled.
Because of these and other reasons, the FARMA(p,d,g) model of this chapter constitutes a more
flexible approach to modelling persistence than the FGN model of Section 10.4.

Model construction techniques are available for fitting FARMA(p,d,q) models to data sets.
However, as noted in Section 11.3 improved estimation techniques should be developed and
further contributions to model identification could be made. An approximate maximum likeli-
hood estimation algorithm is presented in Appendix Al1.1. The applications of Section 11.5
demonstrate how FARMA(0,d,0) models can be fitted in practice to yearly time series. After
obtaining MLE’s for the model parameters and subjecting the fitted model to diagnostic checks
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Table 11.5.3. Estimation of the parameter d using bootstrapping.

Data Set Identification | Means of d | St. Deviations d St. Deviations
(1) Saugeen 0.110 0.212 0.108 0.100
(2) Dal 0.028 0.177 0.024 0.093
(3) Danube 0.069 0.157 0.059 0.072
(4) French 0.148 0.168 0.134 0.093
(5) Gota 0.365 0.245 0.388 0.634
(6) Mckenzie 0.234 0.142 0.274 0.105
(9) Neumunas 0.105 0.137 0.103 0.068
(10) Rain Phil. 0.210 0.110 0.229 0.078
(12) St. Lawrence 0.475 0.055 0.499 0.079
(13) Thames 0.139 0.149 0.120 0.093
(14) Temperature 0.153 0.079 0.151 0.050

Using the bootstrapping technique described in Section 11.3.3, the value of the persistence parameter d in the model
V4B )z,=a, was estimated by the mean value of the estimates obtained using the bootstrap, and is given in the
second column. The third column gives the standard deviation of the estimate obtained by bootstrapping. The
fourth column lists d which is the estimate of d obtained by the appropriate maximum likelihood method described
in the Section 11.3.3 and the last column gives the asymptotic standard deviation of d.

(Section 11.3.4), the calibrated model can be used for simulation and forecasting. Techniques
for simulating and forecasting with a FARMA(p,d,q) model are presented in Section 11.4.

APPENDIX Al11.1
ESTIMATION ALGORITHM FOR FARMA MODELS

This appendix presents an algorithm for obtaining approximate MLE's for the parameters
of a FARMA(p,d,q) model. This estimation algorithm was originally presented by Jimenez et
al. (1990) and constitutes an extension of the estimation algorithm of Li and McLeod (1986). In
the algorithm, it is assumed that the estimated mean of the series has been subtracted from each
observation in order to produce a series having a zero mean. The mean can be estimated using
[11.3.2] or some other appropriate technique.

To compute the unconditional sum of squares of the residuals obtained assuming that the
model can be represented by a long autoregressive approximation of
0BV (B)z, =6(B)a;, [AlLL1]

a backforecasting algorithm similar to the one used by McLeod and Sales (1983) to compute the
unconditional residual sum of squares for seasonal ARMA models, can be used. The uncondi-
tional sum of squares of the residuals is given by
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N
S= Y g [A11.1.2]

=

where [-] denotes expectation with respect to the observations is approximated by

S= f'; (a1 [A11.1.3]
1=1-Q

where Q is a fairly large truncation point. The conditional form of [A11.1.1] is given by

$B)ViB)z] =6(B)a,), [Al1.1.4]
where [g,] =0, t > N. This can be expressed by a two stage model

ViB)z1=1c,], [A11.1.5])
and

¢(B)lc,1=0(B)la,] [A11.1.6]

The Box-Jenkins backforecasting approach needs also the forward form of [A11.1.1] such that
OF)Vig(F)z, = 8(F)e,, [A1L.L7]

where F is the forward time shift operator such that Fz, =z, and ¢, is a sequence of normal

independent random variables with mean 0. The method uses the conditional form of [A1l 1.1.7]
given by

ViP)z)=1b), [A11.1.8]
and ‘

¢(F)(b] =8(F)le,] [A11.1.9]
where [¢,]1=0,¢ < 1.

In summary, the unconditional sum of squares can be obtained iteratively through the fol-
lowing steps.

Step 0. Select Q and M.
Step 1. Compute the autoregressive coefficients of V.

Step 2. Compute [b,], using [A11.19] fort =N +Q, ..., 1. Initially set [5,] =0.

Step 3. Backforecast the [b,] series using [A11.1.9]. This can be accomplished using the SAR-
MAS algorithm of McLeod and Sales (1983).

Step 4. Backforecast the [z,] series using [A11.1.8].

Step 5. Compute the [c,] fort=1-0,...,N series using [A11.1.5].
Step 6. Compute the [a,] fort=1-0,...,N series using [A11.1.6].
Step 7. Compute S using [A11.1.2].
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Steps 1 to 7 can be repeated until a previously specified tolerance limit is achieved. The parame-
ters are obtained by minimizing S as given in [A11.1.2]). The minimization algorithm given by
Powell (1964) can be employed to minimize S.

11.1

11.2

11.3

114

1.5

11.6

PROBLEMS

By referring to appropriate literature cited in Chapters 10 and 11, make a list of the
range of related definitions for long memory, or persistence. Compare the similari-
ties and differences among these definitions. Which definition is most clear to you?

The definition for a FARMA(p,d,q) model is presented in [11.2.4). Employ [11.2.3]
to write the expanded forms of the following FARMA models:

a) FARMA(1,04,1),
b) FARMA(0,-0.3,2),
¢) FARMA(1,0.8,1).

Long memory models have been applied to time series in a variety of different
fields. Find three different applications of long memory models by referring to pub-
lications in fields of your choice. For each application, write down the complete
reference and provide a brief summary. Do not use applications from references
given in Chapters 10 and 11.

By referring to the paper by Hosking (1981), write down the formula for the theoret-
ical ACF of a fractional differencing model and comment upon the general proper-
ties of the ACF.

Outline the purposes of bootstrapping and how it is implemented in practice.
Describe in some detail how the bootstrapping technique of Cover and Unny (1986)
can be employed when estimating parameters in ARMA, ARIMA and FARMA
models.

Select an annual time series which you think may possess long term memory.
Explain reasons for suspecting persistence based upon your physical understanding
of the problem. Following the approaches suggested in Sections 11.3 and 11.5, use
statistical identification methods to justify your suspicions. Fit a fractional dif-
ferencing or FARMA(0,d4,0) as well as the most appropriate ARMA model to the
series. Comment upon your findings.
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