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PART VI
SEASONAL MODELS

At a given location on the earth’s surface, hydrologic phenomena, as well as other natural
occurrences tend to vary from one season to another. In many cases, the change in behaviour of
a specified phenomenon can be quite spectacular. For example, in Northern Canada the winters
are extremely cold whereas the summer temperatures are quite moderate. In addition, due to the
melting of snow during the early springtime, the spring flows of northern rivers tend to be quite
high while the winter flows are much less. The foregoing and other kinds of hydrologic changes
across scasons, are largely dependent upon the rotation of the earth about the sun along with the
accompanying changes in tilt of the earth’s axis. Local conditions such as mountain ranges,
large bodies of water and continental land masses, also influence the hydrologic characteristics
of a region.

Seasonal hydrological data are available as time series for which the time intervals
between adjacent observations are less than one year. For instance, natural time series are com-
monly available as average daily, weekly, and monthly sequences. As an illustration of an aver-
age monthly time series consider Figure VI.1 which shows the last ten years of the average
monthly flows of the Saugeen River at Walkerton, Ontario, which are available from January
1915 until December 1976 (Environment Canada, 1977). The sinusoidal shape of this graph is
caused by the seasonal changes of the flows throughout the year. As can be seen, the riverflows
are high during the spring months and much lower in the winter time. Because the flows vary
across the seasons or periods in a cyclic manner, the time series in Figure VI.1 is often referred
to as a periodic series.

Except for some random variation, the flows within a given season in Figure VI.1 tend to
be stationary across the years. For example, the individual April flows of the Saugeen River
vary about the April mean across all of the years from 1915 to 1976. There appears to be no
upward or downward trend across the years in the April flows. However, not all periodic series
are stationary within each season. Often series which are dependent upon social and economic
behaviour possess statistical characteristics which vary across the years within each season.
Consider, for example, the graph in Figure V1.2 of the average monthly water consumption in
millions of litres per day from 1966 to 1988 for the city of London, Ontario, Canada. These
observations are available from the Public Utilities Commission (1989) of London. Like other
prosperous cities in North America, the city of London has grown dramatically in size since
World War II to a 1991 population of about 300,000 people. This increasing population growth,
in conjunction with other socio-economic factors have caused the water demand to increase
greatly with time, as portrayed by the obvious upward trend in Figure VI.2. Moreover, the
scasonality is clearly visible as a sinusoidal pattern wrapped around the trend.

The greenhouse effect is referred to in Section 1.2.1. One of the principal greenhouse
gases is carbon dioxide (CO,) which could in conjunction with other gases lead to serious global

warning. Figure V1.3 displays a graph of the average monthly concentrations of atmospheric
CO, measured at the Mauna Loa Observatory located at 3397 meters above sea level on the

shoulder of Mauna Loa on the Island of Hawaii. Because the Mauna Loa Observatory is remote
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from industrial and other man-made sources of CO,, the CO, observations collected there are
believed to be a reliable indicator of the regional trend in the concentration of atmospheric CO,
in the middle layers of the troposphere. Moreover, the Mauna Loa CO, program constitutes the
first continuous station anywhere to produce reliable CO, data which are listed by both Keeling

et al. (1982) and Bacastow and Keeling (1981). As depicted in Figure V1.3 there is a distinct
upward trend in the CO, data which is probably caused by man-induced interventions such as the

large-scale burning of fossil fuels and the massive destruction of forests throughout the world.
Consequently, this series provides a vivid illustration of how a natural phenomena can be signifi-
cantly altered by civilization. One can also see in Figure V1.3 the periodic nature of the CO,

data which fluctuate in a sinusoidal manner about the trend.

Within section VI, the following three families of seasonal models are presented for model-
ling seasonal data:

1. seasonal autoregressive integrated moving average (SARIMA) models (Chapter 12);
2.  deseasonalized models (Chapter 13); ‘
3. periodic models (Chapter 14).

The deseasonalized and periodic models are used for describing data such as the average
monthly flows shown in Figure VI.1, which possess stationarity within each season. The SAR-
IMA family of models can be fitted to data such as those shown in Figures V1.2 and V1.3 where
the level and perhaps other statistics change within each season across the years.

The designs of all three classes of seasonal models constitute direct extensions of nonsea-
sonal models to the seasonal or periodic cases. More specifically, the SARIMA family of
models is a seasonal version of the ARIMA class of models described in Chapters 3 and 4 of Part
II. For a given series such as the one in Figure V1.2 or V1.3, nonseasonal and seasonal nonsta-
tionarities are removed using nonseasonal and seasonal differencing operators, respectively,
before fitting a stationary seasonal ARMA model to the series. To fit a deseasonalized model to
a periodic series like the one in Figure VI.1, each observation in the series is first deseasonalized
by subtracting out the seasonal mean and then dividing this by the seasonal standard deviation.
A nonseasonal ARMA model from Chapter 3 can then be fitted to the resulting nonseasonal
series. Finally, a periodic model is formed by fitting a separate PAR or AR model to each sea-
son of the year to form what are called periodic autoregressive (PAR) models or periodic
autoregressive-moving average (PARMA) models, respectively. In this way, the varying
correlation structure across the seasons in a series such as in the one shown in Figure V1.1 can be
directly modelled.

In the next three chapters, each of the three types of seasonal models is defined and model
construction procedures are presented. Hydrologic and other kinds of applications are
employed for demonstrating how the models can be conveniently applied in practice to seasonal
data. Because the desecasonalized and periodic models possess quite a few model parameters,
procedures are given for reducing the number of model parameters. Forecasting experiments in
Chapter 15, demonstrate that a certain type of PAR model forecasts seasonal hydrologic time
series better than other kinds of competing seasonal models. Consequently, when sufficient data
are available, periodic models are the best type of models to use for describing hydrologic and
other kinds of natural time series.
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(molefraction in ppm) measured at Mauna Loa Observatory
in Hawaii from January, 1965, to December, 1980.

Although all three seasonal families of models can be used for forecasting hydrologic
series, only the deseasonalized and periodic models are properly designed for simulating the sea-
sonally stationary type of data such as the time series shown in Figure VI.1. Additionally, only
the SARIMA model contains the appropriate model parameters for describing the nonstationary
scasonal data of Figures V1.2 and V1.3. If, for example, the residuals of a SARIMA model fitted
to a seasonal series possess correlation which varies from season to season, a PAR model could
be fitted to the residuals to capture this behaviour.
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CHAPTER 12
SEASONAL
AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
MODELS

12.1 INTRODUCTION

Seasonal autoregressive integrated moving average (SARIMA) models are useful for
modelling seasonal time series in which the mean and other statistics for a given season are not
stationary across the years. The graphs of the average monthly water consumption and atmos-
pheric CO, series displayed in Figures V1.2 and V1.3, respectively, depict revealing illustrations
of this type of behaviour. Notice that both data sets possess increasing trends which in turn
means that the level of each monthly observation is growing in magnitude within the same
month over the years. Moreover, the sinusoidal curves that follow the upward trends confirm
that the data are seasonal. Figures V1.2 and V1.3 are representative of the general types of nons-
tationary statistical characteristics that are often present in many kinds of socio-economic time
series and natural time series that are significantly affected by man-induced changes, respec-
tively. Other examples of time series which would behave in a similar fashion to the one in Fig-
ures V1.2 and VL3 include average monthly irrigation water consumption, average weekly elec-
tricity demand and total quarterly income for recreational facilities located near lakes and rivers.

In the next section, the mathematical design of the SARIMA model is presented and asso-
ciated theoretical properties are described. An inspection of this design indicates why the SAR-
IMA model is ideally suited for modelling a seasonal nonstationary time series like those shown
in Figures V1.2 and VI3 using relatively few model parameters. However, because the
mathematical definition does not contain model parameters which explicitly account for separate
means and variances in each season, the SARIMA model is not suitably designed for describing
series having stationarity of second order moments within each season across the years. For
instance, because the average monthly riverflow series of the Saugeen River at Walkerton,
Ontario, Canada, plotted in Figure V1.1, appears to have a seasonal mean and variance which are
more or less stationary across all the years for each season, a SARIMA is not the best model to
fit to this series. Rather, the deseasonalized and periodic models of Chapters 13 and 14, respec-
tively, can be employed for modelling this series. Nonetheless, when one is confronted with
modelling a seasonal serics similar to the one in Figure VI.1, the model construction techniques
of Section 12.3 can be utilized for conveniently fitting an appropriate SARIMA model to the
series. The applications contained in Section 12.4 clearly explain how SARIMA models are fit-
ted in practice by following the identification, estimation and diagnostic check stages of model
construction. Subsequent to fitting the most appropriate SARIMA model to a series, the cali-
brated model can be used for purposes such as forecasting and simulation, as explained in Sec-
tion 12.5.
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12.2 MODEL DESIGN

12.2.1 Definition

The SARIMA model defined in this section constitutes a straightforward extension of the
nonseasonal ARMA and ARIMA models presented in Chapters 3 and 4, respectively. In their
book, Box and Jenkins (1976, Ch. 9) define this model and justify why it is useful for describing
certain kinds of seasonal series.

Let z,,25, . .., 2y, Tepresent a sequence of seasonal observations. If, for example, there

were n years of data for which each year contains s seasons, this would mean that 1 is equal to
ns. For the case of 15 years of monthly data, there would be a total of 15x12 = 180 observa-
tions. If the seasonal time series were not normally distributed and/or the variance of the scries
changes over time (i.c., the series is heteroscedastic), one could alleviate this problem by invok-
ing a Box-Cox transformation (Box and Cox, 1964) defined in [3.4.30] as

l’l[(z, +C)x" 1, a=0
M= [12.2.1]
In(z, + ), A=0

The parameter A is the Box-Cox power transformation and ¢ is a positive number which is
chosen to be just large enough to cause all the entries in the time series to be positive. If non-
normality and heteroscedasticity in the given series were not detected prior to fitting a SARIMA
model to the data, these problems would show up in the residuals of the fitted model. At that
time, an appropriate Box-Cox transformation could be selected and the parameters of the SAR-
IMA model could then be estimated for the transformed series.

Figures V1.2 and V1.3 graphically depicts how the magnitudes of observations can change
across the seasons in a cyclic manner and also from year to year within a given scason. To elim-
inate nonstationarity within each season, one can employ the seasonal differencing operator
defined by

V,zM=(1-B)M =20~ 2N fort=s+1542,--- M [12.2.2]

where s is the number of seasons per year and B* is the backward shift operator defined by
B‘z,o') = z,(_",). When dealing with monthly data, notice that the relationship in [12.2.2] only con-
nects observations within the same season. Hence, when using scasonal differencing with
monthly data, an observation in March is only subtracted from the observation in March of the
previous year. If the z,o') series is of length 1 = sn, the number of observations in the differenced

series is 1} —s. The differencing operator in [12.2.2] is applied just enough times to remove the
seasonal nonstationarity. If it were necessary to apply the seasonal differencing operator in
[12.2.2] D times to produce a series of length i - sD, the resulting series would be given by

VoM =(1-B%PM [12.2.3]

For purposes of explanation, consider once again a time serics consisting of monthly obser-
vations. To model correlation among, say, March observations in the differenced series, one
may wish to introduce appropriate model parameters. More specifically, to accomplish this task
of linking March observations together one can use a model of the form
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&B°)VP:, P = 6(B*)0, [12.24]

where ®(B*) and ©(B*) are the scasonal autoregressive (AR) and seasonal moving average (MA)
operators, respectively, and @, is a residual series which may contain nonseasonal correlation.

Both the seasonal AR and MA operators are defined in order to describe relationships within the
same season. In particular, the seasonal AR operator is defined as
O(B°)=1-,B° - ,B* - --- —DpB"

where ®; is the ith AR parameter and P is the order of the AR operator. Because the power of

each differencing operator is always an integer multiple of s, only the observations within each
season are related to one another when using this operator. Hence, for the case of March obser-
vations in a monthly series, only the March observations are connected together using ®(B*). To
describe the relationship of the residuals, o, within a given season, the seasonal MA operator is

defined using
O(B*)=1-6,B° - 6,8% - --- - QB

where ©; is the ith MA parameter and Q is the order of the MA operator. Since the exponents of
B in ©(B*) are always integer multiples of s, the residuals in the same season are linked with
another when using ©(B*).

Theoretically one could define a separate model as in [12.2.4] for each season of the year.
However, to keep the model as parsimonious as possible, one can assume that [12.2.4] can be
used for all of the seasons. Therefore, one is making the assumption that the correlation within
all of the scasons is the same. For the case of monthly data this means that the relationship
among all of the March observations is exactly the same as each of the other months.

The error components or residuals, o, may contain nonseasonal nonstationarity which can
be removed by using the nonseasonal differencing operator defined in [4.3.3] as
Véa, = (1-B)q, [12.2.5]

where d is the order of the nonseasonal differencing operator which is selected just large enough
to remove all of the nonseasonal nonstationarity. The sequence produced using [12.2.5] is
theoretically a stationary nonseasonal series. The nonseasonal correlation can then be captured
by writing the ARMA model in [3.4.4] or [4.3.4] as

¢(B)V¢a, = 6(B)a, [12.2.6]
where ¢(B) is the nonseasonal AR operator of order p defined as

¢(B)=1-¢,B - B>~ --- —¢,B"
and 6(B) is the nonseasonal MA operator of order q written as

6(8)=1-6,B -6,82~ --- -0 B
The a,’s are the innovations which are identically independently distributed (IID) with a mean of

zero and variance of 2. Hence a,~IID (0,62). In order to obtain maximum likelihood estimates
for the model parameters of a SARIMA model, in the next section the restriction of normality is
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also placed upon the g,’s so that they are assumed to be distributed as NID (0,0,,2).

Because of the form of [12.2.6], the correlation among seasons is the same no matter what
season one is dealing with. Hence, when entertaining monthly data, the correlation between, say,
the March and February observations is defined to be the same as that between any other adja-
cent months such as October and September. For the periodic models of Chapter 14, this restric-
tion is dropped by allowing for a separate correlation structure for each season of the year.

To define the overall seasonal model, one simply combines equations [12.2.6] and [12.2.4].
This can be accomplished by solving for @, in [12.2.6] and substituting this result into [12.2.4] t0
obtain the SARIMA (seasonal autoregressive integrated moving average) model

$B)DB*)VIVPD = 9(B)O(B*)q, (12.2.7]

Because the operators in [12.2.7] are multiplied together rather than summed, this model is often
called a multiplicative SARIMA model.

When fitting the SARIMA model to a given time series of length 1, one first transforms the
data, if necessary, using the Box-Cox transformation in [12.2.1]. Following this, the data can be
differenced both seasonally and nonseasonally. It does not matter which differencing operation
is carried out first. One then obtains the stationary series given by

w, = Vivo,® [12.2.8]

where the length of the w, series is " =1 —d — sD. The seasonal and nonseasonal correlation in
the w, sequence is modelled by using the seasonal and nonseasonal AR and MA operators,
respectively. Hence, w, is modelled by employing

¢(B)D(B*)w, = 6(B)O(B*)a, [12.2.9]

In some applications, w, may be a stationary seasonal series which is not obtained by differenc-

ing the original series. The model in [12.2.9] is called a seasonal ARMA or SARMA model of the
w, series.

12.2.2 Notation

For a given application, one may first wish to indicate the key parameters included in a
SARIMA model, without writing down all of the parameter estimates either in a table or else
using the difference equation in [12.2.7]. An economical notation for summarizing the structure
of the SARIMA model in [12.2.7] is (p,d,q)x(P,D,Q),. The first set of brackets contains the
orders of the nonscasonal operators while the orders of the seasonal operators are listed inside
the second set of brackets. More specifically, p, d and g stand for the orders of the nonseasonal
AR, differencing and MA operators, respectively. In the second set of brackets, P, D and Q give
the orders of the scasonal AR, differencing and MA operators, respectively. The subscript s
appearing to the right of the second set of brackets points out the number of seasons per year.

For the case of monthly data for which s = 12, a specific example of a SARIMA model is
(2,1,1)x(1,1,2);,. Suppose that the original series were transformed using natural logarithms.

By utilizing [12.2.7], this model is written using a finite difference equation as
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(1-¢;B - $,B)(1 - ®;B'3(1 - B)(1 - B')In(z) = (1 - ,B)1 - ©,8'2 - 6,8%)q,

If the data are stationary, nonseasonal or seasonal differencing is not required. A stationary
model is indicated as (p,0,¢)x(P,0,Q),. Because this model is stationary, sometimes it is

referred to as a SARMA (i.e., seasonal autoregressive-moving average) (p,)x(P,Q), model.

The summary notation for a pure MA model is (0,4,4)x(0,D,Q),. When a model contains
no MA parameters, the SARIMA model is written as (p,d,0)x(P,D ,0);.

When a model is purely nonseasonal, the notation of Part II should be used. Hence, a sta-
tionary nonseasonal ARMA model is simply indicated by ARMA(p,q) instead of
SARMA(p,9)x(0,0);. Likewise, a nonstationary nonseasonal ARIMA model is denoted as
ARIMA(p,d,q) rather than the more cumbersome notation given by SARIMA (p,d,q)x(0,0,0),.

12.2.3 Stationarity and Invertibility

For a nonseasonal model, the conditions of stationarity and invertibility are discussed in
detail in Sections 3.2.2, 3.3.2, and 3.4.2. Recall that for an ARMA model to be stationary the
roots of the characteristics equation ¢(B) =0 must lic outside the unit circle. Likewise, for
invertibility the roots of 8(B) = 0 must fall outside the unit circle.

In addition to the aforesaid conditions, the properties of the seasonal AR and MA operators
must be specified for the SARIMA model if it is to be fitted to the stationary w, series in
[12.2.9]). For seasonal stationarity the roots of the characteristic equation ®(B*) =0 must lie

outside the unit circle. Similarly, for seasonal invertibility, the roots of the characteristic equa-
tion ©(B*) = 0 must fall outside the unit circle.

12.2.4 Unfactored and Nonmultiplicative Models

The SARIMA(p,d,)x(P,D,Q), model in [12.2.7] is referred to as a multiplicative model.
This is because the nonseasonal and seasonal AR operators are multiplied together on the left
hand side while the two MA operators are multiplied together on the right hand side. In addi-
tion, the nonseasonal and seasonal differencing operators are multiplied together with the AR
operators in [12.2.7]. Following similar arguments, the SARMA(p,Q)x(P,Q), model which can

be fitted to the stationary w, series in [12.2.9] is also multiplicative.

Rather than write the SARIMA or SARMA model in multiplicative form, it is sometimes
useful to use other formats. One approach is to write the models in unfactored form. This is
accomplished by multiplying the ¢(B) and d(B*) operators together to create a single AR opera-
tor which can be labelled as ¢(B). Likewise, one can multiply 8(B) and ©(B*) together to form
the single MA operator 6(B). The SARIMA model in [12.2.7] can then be written in unfactored
form as

¢B\VIV22 P = 6(8)a, [12.2.10]
while the unfactored SARMA model for the w, series is
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¢B W™ =6(B)a, [12.2.11]

As mentioned in Section 12.5, the unfactored form of the model in [12.2.10] or [12.2.11] is used
for simulating data when differencing operators are present.

As an example of how an unfactored model is determined, consider a SARMA(2,1)x(1,2),
model which is written in multiplicative form as

(1- 4,8 - 4:BY)(1 - ,B*)w, = (1 - 0,B)(1 - 6,B* —6,8%)q,
The unfactored version of this model is
(1- 6,8 — 6,82 - ,B° + ¢, D,B°*! + 0, ®,B*))w,
=(1-9,B - ©,B° +6,8,B°*! - 6,8% +0,0,8%*)q,

In the unfactored model in [12.2.10], the qonscasonal and seasonal differencing operators
are not included in the unfactored AR operator ¢(B). To obtain a SARIMA model that does not
have separate differencing factors, one can write the model in generalized form as

¢'B)z ™M =0'(B)a, [12.2.12)

where ¢'(B) = *(B)DB*)V? V2 is the generalized or unfactored AR operator for which ¢’; is the
ith generalized AR parameter, and 6'(B) = 6(B)8(B*) = 6(B) is the generalized or unfactored
MA operator for which @’; is the ith generalized MA parameter. The unfactored format in

[12.2.12] is useful for calculating minimum mean squared error forecasts, as is pointed out in
Section 12.5.

Because the unfactored models are equivalent to their multiplicative counterparts, unfac-
tored models are, of course, multiplicative. For some applications one may wish to generalize
the multiplicative models given in equations [12.2.7], [12.2.9], [12.2.10] and [12.2.11], by allow-
ing nonmultiplicative AR and MA operators, which are denoted by ¢*(B) and 0*(B), respec-
tively. If one wishes to remove nonseasonal and seasonal stationarity using differencing, the
nonmultiplicative model is given as

$*(B)VIV2,® = 0*(B)a, [12.2.13]

When the given series is already stationary due to differencing or some other type of operation,
the nonmultiplicative model is written as

¢*(B)w, = 6*(B)q, [12.2.14]

The model in [12.2.14] is, in fact, the same as the nonseasonal ARMA model given in

[3.4.4]. However, in practice one would not use all of the parameters in the ARMA model and,

therefore, use the constrained type of model discussed in Section 3.4.4. An example of a con-
strained model is

(1-¢,B- ¢282 -¢,B° - ¢,+1B"+1)W, =(1-6,B -6,B° - 9s+lB‘+l)a‘

Notice that this model cannot be factored to form a multiplicative model, as is the case for the
carlier example for the unfactored model.
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In addition to entertaining the nonmultiplicative model, certain problems may dictate that a
more complex multiplicative seasonal model should be used. For example, suppose that a water
demand series contains two distinct seasonal components. One component may be due to indus-
trial use which follows a different seasonal pattern than the second component, which is the
residential demand. For each seasonal component, separate AR and MA operators could be
defined and all of these operators would be combined together in an overall multiplicative sca-
sonal model.

12.2.5 Autocorrelation Function

The derivations of the theoretical ACF for nonseasonal AR, MA, and ARMA processes are
presented in Sections 3.2.2, 3.3.2 and 3.4.2, respectively. One could follow a similar approach to
that used for the nonseasonal case to develop the formula for the theoretical ACF of the station-
ary seasonal process, w,, given in [12.2.9]. However, a simpler approach is to write the SARMA
model for w, in [12.2.9] in the same format as its nonseasonal counterpart by using the unfac-
tored form in [12.2.11]. Subsequent to this, the procedure developed for the nonseasonal case
can be used to obtain the theoretical ACF for the seasonal model. To use the theoretical results
for the ACF developed for the nonseasonal ARMA model in Section 3.4.2, simply replace the
nonseasonal AR and MA operators by their combined counterparts for the seasonal model. The
algorithm of McLeod (1975) presented in Appendix A3.2 can then be used to determine the
theoretical ACF for the SARMA process. In a similar fashion, one can also calculate the theoret-
ical PACEF for the seasonal model by utilizing appropriate results developed for the nonseasonal
case in Chapter 3.

12.2.6 Three Formulations of the Seasonal Processes

Introduction

The three formulations for the ARMA and ARIMA processes are given in Sections 3.4.3
and 4.3.4, respectively. As explained in these sections, the ARMA and ARIMA processes can be
written using the original forms for their finite difference equations, the purely MA or random
shock formulations, or the purely AR or inverted formats. Likewise, one can write the SARIMA
or SARMA processes using any of the three formulations. The difference equation forms in
which the SARIMA and SARMA processes are originally defined are given in [12.2.7] and
[12.2.9], respectively. The random shock and inverted formulations are now described.

Random Shock Form

Because of both the invertibility and stationarity conditions referred to in Section 12.2.3,
one can manipulate the operators algebraically and, hence, write the SARIMA process as cither a
pure MA process or a pure AR process. Using [12.2.7], the pure MA or random shock form of
the SARIMA model is

Mo __8@OE)
L eBEHVIVE
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=q,+¥a,_1+¥a_,+ -

=a,+Y¥Bg, + ‘Psza, + -

=(1+¥,B+¥,B2+ --)q,

=¥(B)q, [12.2.15]

where W(B)=1+¥,B +¥,B+ - - -, is the seasonal random shock or infinite MA operator,
and '¥; is the ith parameter, coefficient or weight of ¥(B).

It is instructive to express a SARIMA process in the random shock in [12.2.15] for both
theoretical and practical reasons. For example, the ¥ weights are needed to calculate the vari-
ance of forecasts when using a SARIMA model for forecasting. Also, one way to simulate data
is to first write a SARIMA model in random shock form and then use this format of the model
for producing synthetic data. Finally, by writing each member of a set of SARIMA models in
random shock form, the models can be conveniently compared by examining the magnitudes and
signs of the ¥ parameters.

In practice, one would first fit a SARIMA model to a given time series by following the
model building approach described in Section 12.3 in order to obtain estimates for the AR and
MA parameters. Subsequent to this, one may wish to calculate the ¥; parameters in [12.2.15],
given the AR and MA parameters. The relationship for carrying out these calculations is con-
tained in [12.2.15]. By definition, the following identity is true:

0(B)O(B*)
B) =
e $(B)D(B*)V4VD
or
0(B)DB*)VIVO¥(B) = 6(B)O(B®) [12.2.16]

By equating coefficients of B, k=1,2,- - - » on the left hand side of [12.2.16] to those on the
right hand side, one can use the identity to solve for the ¥; coefficients in terms of the AR and
MA parameters. Examples of performing these manipulations for nonseasonal ARMA models
are presented in Section 3.4.3. Similar calculations can be carried out using [12.2.16] or a sim-
plified version thereof for the seasonal case.

If no differencing operators are present and one is dealing with the SARMA model in
[12.2.9] instead of the SARIMA model in [ 12.2.7], a similar procedure can be used to calculate
the random shock weights. Simply remove the differencing operators from [12.2.16] and, once
again, compare coefficients of BX, k =0,1,2, - - - » to solve for the random shock parameters.

Another approach to solve for the random shock parameters for the SARIMA or SARMA
model is to use [4.3.11] or [3.4.21] to solve for the ¥;’s. This is accomplished by writing the
SARIMA or SARMA model in unfactored form by using [12.2.12] or [12.2.11], respectively,
and then making appropriate substitutions for the operators so that the nonseasonal formulae for
calculating the seasonal random shock parameters can be used.
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Inverted Form
To express the SARIMA model in inverted form, equation [12.2.7] can be written as

_ 4By vIv®
"~ eB)eB*)
=z M-z R -8 - -

a;

= Z'G) - nle'(l) - Hszz,m -
=(1-T,B _11232 - )z'(l)
=T(B)z,» [12.2.17]

where T1(B) = 1 - T1,B ~ T1,B2 — - - -, is the seasonal inverted or infinite AR operator and IT; is

the ith parameter, coefficient or weight of I1(B). By comparing [12.2.17] and [12.2.16], one can
see that

¥(B)! =T1(B) [12.2.18]

To calculate the inverted parameters, given that one knows the values of the AR and MA
parameters, one can use the identity

s\gdy D
@) = $(B)DB )V V;
0(B)O(B*)
or
8(B)O(B*)I1(B) = ¢(B)D(B*)V/VP [12.2.19]

which is obtained from [12.2.17]. To solve for the I'1; parameters, simply equate the coefficients
of B* fork =0,1,2, - - - , on the left hand side of [12.2.16] to those on the right hand side.

If one wishes to calculate the inverted parameters for the SARMA model in [12.2.9], sim-
ply eliminate the differencing operators in [12.2.19]. Following this, one can use [12.2.19] to
determine the inverted parameters by equating coefficients of the B* for k=0,12,- -, on the
left hand side to those on the right.

As was done for the random shock parameters, one can also use the nonseasonal formulae
to determine the seasonal inverted parameters. Simply write the SARIMA or SARMA model in
unfactored form as in [12.2.12] or [12.2.11], respectively, and then make appropriate substitu-
tions into [4.3.14] or [3.4.27], respectively to solve for the seasonal inverted parameters.

12.3 MODEL CONSTRUCTION

12.3.1 Introduction

The most appropriate SARIMA model to fit to a given seasonal time series can be ascer-
tained by following the identification, estimation, and diagnostic check stages of model con-
struction. In the previous section, it is shown how the design of the multiplicative SARIMA
family of models is a straightforward extension of the nonseasonal models presented in Part IT of
the book. Likewise, as is explained in this section, the tools used for SARIMA model building
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are cither the same or else closely related versions of the nonseasonal model construction tech-
niques discussed in Part III. The applications described in Section 12.4 clearly demonstrate that
the model development techniques of this section can be conveniently and easily utilized for
determining the most appropriate SARIMA or SARMA model to fit to a given time series.
Finally, to allow the model building stages to be expeditiously and properly implemented in
practice, one can employ a flexible decision support system such as the McLeod-Hipel Package
described in Section 1.7.

12.3.2 Identification

Introduction

The purpose of the identification stage is to determine the nonseasonal and seasonal dif-
ferencing required to produce stationarity and also the orders of both the nonseasonal and the
seasonal AR and MA operators for the w, series in [12.2.9]. Although each identification tech-

nique is discussed separately, in practical applications the output from all the techniques is inter-
preted and compared together in order to design the type of model to be estimated.

For some types of seasonal time series, it is known in advance whether or not the data sets
should be transformed using the Box-Cox transformation in [12.2.1]. For instance, average
monthly riverflow series often require a natural logarithmic transformation to cause the residuals
of the fitted models to be approximately normally distributed and homoscedastic. In many
applications, analysts may not realize that Box-Cox transformations are needed until after the
model parameters have been estimated and the statistical properties of the residuals are exam-
ined. The analysts should keep in mind that usually a Box-Cox transformation does not change
the design of the AR and MA operators needed in the model or models to fit to the transformed
time series. However, this is not true in general, and as is pointed out by Granger and Newbold
[1976], certain transformations can change the type of model to estimate for a given time series.
Therefore, even though it is usually not necessary to perform the identification stage for the
transformed data if it has already been done for the corresponding untransformed series, a practi-
tioner should be aware that in some instances this may not be the case. When a transformation
does change the type of model to be used, diagnostic checks would detect this fact and then the
design of the model to fit to the transformed data can be properly identified.

For a SARIMA model application there should be at least seven years of seasonal data and
also at least 50 data points overall in order to get reasonable MLE’s (maximum likelihood esti-
mates) for the model parameters. If one were analyzing a monthly series, one would require at
least 12X7 = 84 observations. Therefore, one should proceed with the identification stage only if
the minimum required amount of information is present.

Tools

When examining a specified time series analysis for the first time, one may wish to utilize
the exploratory data analysis tools described in Section 22.3. The purpose of exploratory data
analysis is to discover the basic statistical characteristics of a data set by examining simple
graphical and numerical output. Subsequent to obtaining a general understanding of the statisti-
cal properties of the time series, one may wish to design a specific SARIMA model to fit to the
series by studying the graphical output from the following techniques which are also used for
designing nonseasonal models in Chapter 5:
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1. Plot of the Original Series - A graph of the observations in the series against time is an
important exploratory data analysis method that should always be used in model identifica-
tion. Characteristics of the data which are usually easily uncovered from a perusal of a
time series plot include seasonality, nonstationarity due to trends in the mean levels of the
seasons or years, changing variance, extreme values, correlation or dependence among
observations, and long term cycles. The nonstationarity present in the data can often be
removed using seasonal and/or nonseasonal differencing. The seasonal and nonseasonal
correlation in the time series can be modelled by appropriately deciding upon which AR
and MA operators should be included in the SARIMA model. Graphs of the next four
functions can be used for specifically designing the components needed in the SARIMA
model.

2. ACF (autocorrelation function) - The theoretical ACF defined in [2.5.4] measures the

amount of linear dependence between observations in a time series that are separated by k
time lags. The sample estimate, r;, for p,, is given in [2.5.9] while approximate variances

for r, are given in [2.5.10] and [2.5.11]. To use the sample ACF in model identification,
calculate and then plot 7; up to a maximum lag of roughly —;l along with the approximate

95% confidence limits. The graph of the sample ACF and the other three graphs described
below should include at least 25 or 3s lags, where s is the number of seasons per year. In
this way, the cyclic behaviour caused by seasonality and any decaying or truncation proper-
ties of r, over k, can be visually detected.

The first step is to examine a plot of the ACF to detect the presence of nonstationarity in
the given series. For scasonal data with the seasonal length equal to s, the ACF often fol-
lows a wave pattern with peaks at s, 2s, 3s, and other integer multiples of 5. As is shown
by Box and Jenkins (1976, pp. 174-175), if the estimated ACF at lags that are integer multi-
ples of the seasonal length s do not die out rapidly, this may indicate that seasonal dif-
ferencing is needed to produce stationarity. Failure of other ACF estimates to damp out
may imply that nonseasonal differencing is also required. If the length of the original
series is 7, the number of data points in the differenced series would be ' =1 —d + sD.
Li (1991) develops some statistical tests for determining the orders of differencing required
for a seasonal time series.

If the stationary w, series is not white noise, one can use the sample ACF to help decide

upon which AR and MA parameters are needed in the SARIMA model. When the process
is a pure MA(0,d,9)x(0,D,Q), model, the sample ACF truncates and is not significantly

different from zero after lag ¢ +sQ. For this case, the variance of r; after lag ¢ +50Q is
(Bartlett, 1946)

1 0 ,
Var[r,] = -;l—; 1+2 Y r|, k>q+sQ [12.3.1]

i=1
where 1’ stands for the length of the w, series after differencing.

If r, attenuates at lags that are multiples of s, this implies the presence of a seasonal AR

component. The failure of the ACF to truncate at other lags may imply that a nonseasonal
AR term is required.
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As defined in [12.2.8], the stationary w, series created by differencing either the original or
transformed series is given as

w, = VivP;®

where the exponent A indicates that the original z, series may be transformed using the

Box-Cox transformations in [12.2.1]. After the data have been differenced just enough
times to produce both seasonal and nonseasonal stationarity, then check the ACF of the w,

series to determine the number of AR and MA parameters required in the model. The w,
series is also used at the other steps of the identification procedure. Of course, if no dif-
ferencing is required, the w; series is simply the z® series. As noted carlier, the graph of
the sample ACF for w, should include at least 2s or 3s lags.

If a series is white noise, then r; is approximately NID(O,-T:—,-). This result allows one to test

whether a given series is white noise by checking to see if the ACF estimates are signifi-
cantly different from zero. Simply plot confidence limits on the ACF diagram and see if a
significant number of r; values fall outside the chosen confidence interval.

PACF (partial autocorrelation function) - After writing the SARIMA or SARMA model
in unfactored form as in [12.2.10] or [12.2.11], respectively, the theoretical PACF is
defined for the w, series in [3.2.17] using the Yule-Walker equations. Following the

approach discussed in Section 3.2.2 and Appendix A3.1, the sample PACF can be
estimated. For model identification, simply calculate and plot the sample PACEF to at least
lag 25 along with the 95% confidence limits which are calculated using [3.2.18], in which
the length of the series is taken to be that of w,. Employing rules put forward by authors

such as Hipel et al. (1977), McLeod et al. (1977), and Hamilton and Watts (1978), the sam-
ple PACEF can be utilized for deciding upon which AR and MA parameters are needed for
properly representing the data.

When the process is a pure AR(p,d,0)x(P,D,0), model, the sample PACF cuts off and is
not significantly different from zero after lag p + sP. After lag p + sP, the sample PACF is

approximately NID(O,FI; .

If the sample PACF damps out at lags that are multiples of s, this suggests the incorpora-
tion of a seasonal MA component into the model. The failure of the sample PACF to trun-
cate at other lags may imply that a nonseasonal MA term is required.

IACF (inverse autocorrelation function) - The theoretical IACF (Cleveland, 1972) is
defined in Section 5.3.6 and a method for estimating the sample IACF along with approxi-
mate 95% confidence limits is given in the same section. Theoretically, the IACF of the w,

series is defined to be the ACF of the (¢,d p)x(Q.D,P), process that is written as
0(8)8(B*)w, = $(B)D(B*)a, [12.32]

The model in [12.3.2] is called the dual model while the SARIMA(p ,4,q)x(P D ,Q); model
in [12.2.7] or [12.2.9] is referred to as the primal model (McLeod, 1984).
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As is the case for all four functions discussed under pgints 2 to 5, the sample IACF is plot-

ted up to a lag of at least 2s or 3s or not more than -2— If the w; series is white noise, the

sample IACF is approximately NID(O,#). For the case of white noise, the values of the

sample IACF should not fall outside the 95% confidence limits of :!:7——1 :? more than once
in twenty lags.

For a pure AR(p,d,0)x(P,D ,0), process, the sample IACF truncates and is not significantly
different from zero after lag p + sP. If the sample IACF damps out but is still significant at
lags s, 2s, 3s, etc., a scasonal MA component may be needed in the model. An additional
nonseasonal MA component will cause the sample IACF to damp out for values between 0

and s, s and 2s, etc., where decreasing but prominent peaks occur at s, 2s, 3s, etc., due to
the seasonal MA term.

5. IPACF (inverse partial autocorrelation function) - The theoretical IPACF originally
defined by Hipel et al. (1977) is presented in Section 5.3.7. The PACF for a SARMA
model is by definition the IPACF of the dual model in [12.3.2]. In addition, a method for
estimating the IPACF and obtaining approximate 95% confidence limits is explained in
Section 5.3.7.

For model identification, the sample IPACF and its 95% confidence limits are plotted up to
a lag of at least 25 or 3s. If the w, series is white noise, then the values of the sample
IPACEF should not be significantly different from zero and should fall within the 95% con-
fidence limits.

For a pure MA(0,4,9)x(0,D,Q), model, the sample IPACF truncates and is not signifi-
cantly different from zero after lag ¢ + sQ. After lag ¢ + sQ, the sample IPACF is approxi-
mately NID(O,?‘ly). If the sample IPACF attenuates at lags that are multiples of s, this may

indicate the presence of a seasonal AR component. When the IPACF fails to cut off at
other lags, this implies the need for a nonseasonal AR term.

6. Cumulative periodogram white noise test - As was mentioned previously, the sample
ACF plot is an accepted means of checking whether the given data are white noise. The
sample PACF, IACF, and IPACF can also be employed in this capacity. However, the
cumulative periodogram defined in [2.6.2] provides another means of checking for white
noise.

In addition to verifying whether a series is uncorrelated, the cumulative periodogram can
also detects certain types of correlation. In particular, it is an effective procedure for find-
ing hidden periodicities.

Summary

A plot of the original data portrays an overall view of how the time series is generally
behaving and whether or not differencing is required. However, the sample ACF, PACF, IACF,
and IPACF transform the given information into a format whereby it is possible to detect the
number of AR and MA terms required in the model. In general, the ACF and the IPACF trun-
cate for pure MA processes, while the PACF and IACF cut off for AR models. For mixed
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processes, all four functions attenuate. This behaviour of identification graphs for SARIMA
models is summarized in Table 12.3.1.

The ACF and the IPACF possess similar general properties, while the PACF and the IACF
have common attributes. However, the four functions are defined differently, and none of them
behave exactly in the same fashion. In practice, the authors have found that if the PACF fails to
detect a certain property of the time series, then the IACF often may be more sensitive and
thereby may clearly display the presence of that property and vice versa. A similar situation
exists between the ACF and the IPACF. In actual applications, it is necessary to consider simul-
taneously the output from all the functions in order to ascertain which model to estimate.

The incorporation of the IACF and the IPACF into the identification stage simplifies and
substantiates model design because it is easier and more accurate to determine the proper SAR-
IMA model to estimate. It is recommended that all of the identification plots be programmed for
instantaneous display on a computer terminal screen. In this way, the identification stage can
usually be completed in just a few minutes. The capability of making an immediate copy of any
results portrayed on a screen provides a convenient method of keeping a permanent record. The
decision support system for time series modelling described in Section 1.7 can be employed in
this manner.

In Appendix A12.1, an alternative procedure for using the ACF to identify the parameters
required in a SARMA model is given. This novel approach utilizes the structure of the multipli-
cative SARMA model by splitting the analysis using the ACF into nonseasonal and seasonal
components.

Table 12.3.1. Behaviour of identification functions for

SARIMA models.
TYPES OF MODELS
FUNCTION Pure AR Pure MA Mixed
(p,d,0)x(P.D,0); | (04d,9)X0,D,Q); | (0.d,q)x(P,D,Q),
ACF Attenuates Truncates Attenuates
after lag ¢ + sQ
PACF Truncates Attenuates Attenuates
I after lag p + sP
IACF I Truncates Attenuates Attenuates
after lag p + sP
IPACF I Attenuates Truncates Attenuates
after lag ¢ + sQ

12.3.3 Estimation

Introduction

Often, identification methods cannot clearly determine which is the single best SARIMA
model to fit to the time series under study. Rather, anywhere from one to four model designs
may be tentatively identified. At the estimation stage, MLE’s can then be obtained for the
parameters in each of the models. Subsequently, discrimination methods can be used for select-
ing the best model from the set of calibrated models. The techniques for choosing the best
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model include the AIC discussed in this section as well as Section 6.3 and the diagnostic checks
presented in Section 12.3.4. If none of the fitted models adequately describes the data, appropri-
ate design modifications can be made before estimating the parameters of the most recent itera-
tion and repeating the above procedure until a suitable model is found.

Algorithms

Two algorithms are discussed in this section for obtaining approximate MLE’s for the
parameters of the SARMA model fitted to the w, series in [12.2.9). Besides using the basic

definition of the SARMA model, both methods are based on the assumption that the innovations
are normally independently distributed with a mean of zero and variance of 03 [ie. NID(O,G,,Z)].
The first approach is to use the algorithm developed for the nonseasonal ARMA model while the
second one is to employ a more computationally efficient procedure which takes into account the
specific mathematical structure of the SARMA model. Because the orders of nonseasonal and
seasonal differencing operators required to produce the stationary w, series in [12.2.9)] are not
estimated but selected based upon identification results, only the parameters included in the
SARMA model for fitting to w, have to be estimated. Consequently, in this section, parameter

estimation is discussed in terms of the SARMA(p,q)x(P,Q), model in [12.2.9] rather than the
SARIMA(p,d,q)x(P ,D,Q), model in [12.2.7]. Furthermore, since the mean level of w, is zero

due to differencing, the mean level or trend is not included in the SARMA model in [12.2.9). If
it were necessary to estimate a mean or trend this could be accomplished using the estimation
methods discussed in this section.

In Chapter 6, the modified sum of squares algorithm of McLeod (1977) is suggested for
estimating the parameters of the ARMA(p,q) model in [3.4.4]. As explained in that chapter,
compared to other competing estimation methods, the modified sum of squares approach is both
computationally and statistically efficient. The main steps in the algorithm are described in
Appendix A6.1. To use the modified sum of squares method in Chapter 6 to estimate the param-
eters of the SARMA (p,q) model in [12.2.9], the first step is to write the model in the unfactored
form given in [12.2.11]. Because the unfactored model in [12.2.11] can be considered as a spe-
cial case of the ARMA(p,q) model, the modified sum of squares method can be used to obtain
approximate MLE’s for the model parameters and residuals.

The first estimation method works well when the number of seasons per year is not more
than 12. However, for bimonthly data and weekly series for which s = 24 and 52, respectively,
the estimation becomes computationally inefficient. To overcome this problem, the maximum
likelihood approach of McLeod and Salas (1983) can be used. This estimation method, which is
based upon the modified sum of squares method of McLeod (1977), is designed according to the
multiplicative structure of the AR and MA operators in the SARMA model. It works for yearly
(s =1), monthly (s = 12), weekly (s = 52), daily (s = 365) as well as any other types of seasonal
series. The main steps in the McLeod-Salas algorithm are described in Appendix A12.2.

The MLE’s for a SARMA or other kind of time series model are asymptotically normally
distributed. Because a SE (standard error) is estimated for each of the estimated parameters
using the information matrix, one can check if an estimate is significantly different from zero. If
the estimate is significant at the 5% significance level, its absolute magnitude should be larger
than 1.96 SE. Usually, it is advisable to drop parameters which are not significantly different
from zero from the SARMA model and then to re-estimate the parameters of the simplified
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model and then check if this model provides an adequate fit.

Model Discrimination

Subsequent to estimating the model parameters for the models separately fitted to the time
series under study, one can calculate the value of the AIC for each model in order to select the
model which has the minimum AIC value. This procedure is referred to as MAICE (minimum
AIC estimation) and is described in detail in Section 6.3. The flow chart in Figure 6.3.1 explains
the ways in which MAICE can be used in model construction for applicatior: purposes. One
approach is to carry out an exhaustive AIC study by fitting a large range of SARMA models to
the time series and then picking the one having the minimum AIC. In the second main approach,
the identification techniques of Section 12.3.2 are used to select a handful of models for which
the parameters and AIC values are estimated. Once again, one selects the model having the
minimum AIC value.

The general formula for the AIC is given in [6.3.1] as (Akaike, 1974)
AIC =-2In(ML) + 2k

where ML denotes the maximized value of the likelihood function and k is the number of
independently adjusted parameters in the model. Approximate formulae can be devised for
determining the AIC for a SARIMA model which contains differencing operators. Because the
amount of data has been reduced from a total of 1) to " =1 —d — sD points when there is both
nonseasonal and seasonal differencing, this will certainly affect the first term on the right-hand
side of [6.3.1]. Hence, the AIC for a SARIMA model can be roughly calculated as

AIC = -TIl];(—2ln(ML)) +2k [12.3.3]

where the maximized log likelihood is obtained by optimizing the log likelihood function
defined in [A12.2.1]. The total number of model parametersis k =p +q + P + Q + 1, where the
unity term allows for the estimate of the variance of the model residuals. Usually, the mean of
the differenced series can be assumed to be zero. However, if the mean of the differenced series
is also estimated, k must be increased by unity. Also, k is increased by one if A # 1.

Another alternative for developing an AIC formula for a SARIMA model is to alter both of
the terms on the right-hand side of [6.3.1). As argued by Ozaki (1977), an increase in the
number of data points contributes to decreasing the penalty due to the number of parameters.
When the data are differenced both nonseasonally and seasonally, the number of data points
decreases from 1 to " =1 —d - sD. This effect can be incorporated into the AIC by writing the
formula as

AIC = -111\,-(-21n(ML) +2k) [12.3.4]

12.3.4 Diagnostic Checks

Introduction
The three assumptions underlying the innovations, a,, t = 1,2, . .., 7’, of the SARMA
model in [12.2.9] are that the disturbances are independent, homoscedastic (i.e. have constant
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variance) and normally distributed. To check the foregoing residual stipulations, the estimated
innovations, d,’s, or model residuals are required. The estimates for the d,’s are automatically
calculated at the estimation stage along with the MLE’s and SE’s for the SARMA model param-
eters (see Appendices A12.2, A6.1 and A6.2).

A data transformation cannot correct dependence of the residuals because the lack of
independence indicates that the present model is inadequate. Rather, the identification and esti-
mation stages must be repeated in order to determine a suitable model having different model
parameters. If the less important assumptions of homoscedasticity and normality are violated,
they can often be corrected by a Box-Cox transformation of the data.

The residual assumptions for the SARMA model are identical to those stipulated for the
nonseasonal ARMA model in [3.4.4). Consequently, all of the diagnostic checks presented for
the nonseasonal ARMA model in Chapter 7, can be used with the SARMA model. Some of
these diagnostic methods are bricfly described below but for detailed accounts of these and other
model checking methods, the reader can refer to Chapter 7.

Tests for Whiteness

If a calibrated SARMA model adequately describes a time series, the estimated innova-
tions, d;’s, or residuals should be white, due to the independence assumption of the a’s. To

determine whether the residuals are white noise, the best procedure is to examine the residual
autocorrelation function (RACF). Because the distribution of the RACF which is shown in the
theorem below is now known, sensitive testing techniques are available for checking the
independence assumption of g.

The theorem for the RACF is developed as follows. The ACF, ri(d), of the calculated resi-
duals can be determined by

nl n’
rd)=3 ldd._/ [za}] [12.3.5]
1=k+] i=1

Define the vector of the first L values of the RACF as
r(d) =[ry@d).y(d). ..., r @) [12.3.6]

Denote by W, (®) the coefficient of B* in the Maclaurin series expansion of [®(B°)]! in powers
of B, and similarly define ‘¥;(9), ¥;(8), and '¥;(8). Then it can be proved for large samples
(McLeod, 1978) that

r(d)=N[0,(1m)U] [12.3.7]
where U=1; - XT'X, 1, is the identity matrix, I=X’X is the large-sample information matrix,
and X = [‘l’,_j,(tb), ‘P,.j(¢), ¥,_;s(), \P,_,(e)] are the i,j entries in the four partitions of the X
matrix. The dimensions of the matrices X, ¥(_js(®), ¥,_;(¢), ¥,_;5(©), and ‘¥,;(0) are, respec-
tively, LX(P +p +Q +q), LxP, Lxp, LxQ, and Lxg. Previously, Box and Pierce (1970)

obtained this result for the nonseasonal AR case, but the theorem listed here is valid for nonsea-
sonal ARMA, SARMA, transfer function-noise, and intervention models.
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There are two useful applications of the RACF distribution theorem. A sensitive diagnostic
check is to first plot the RACF along with the asymptotic significance intervals for the RACF

that are obtained from the diagonal entries of the matrix # U. If some of the RACF values

are significantly different from zero, this may mean that the present model is inadequate. The
important values of the RACEF to examine are those at the first couple of lags and also at lags that
are integer multiples of s for a seasonal model.

If the current model is insufficient, one can use the information from the RACF plot to help
design an improved model before returning to the earlier stages of model construction. For
example, a significantly large value of the RACF at lag s may indicate that a seasonal MA
parameter is needed in the SARMA model. Upon updating the model design, the new model can
be calibrated and checked for the presence of any further weaknesses.

A second but less sensitive test is to calculate and to perform a significance test for the
modified Portmanteau statistic U; (Li and McLeod, 1981). If L is large enough so that the

weights W (), ¥, (9), ¥,(0), and ¥ (6) have damped out, then

U, = 3 ri) + LEED

12.3.8
> = [12.3.8]

where L can be given as value of 25 to 4s such that the maximum value of L is not more than
about 11- The statistic U, is x distributedon (L -P-p-Q - ¢q) degrecs of freedom. A test

of this hypothesis can be done for model adequacy by choosing a level of significance and then
comparing the value of the calculated x> to the actual xz value from the tables. If the calculated
value is greater, on the basis of the available data, the present model is inadequate and, conse-
quently, appropriate design changes must be made.

In Section 7.3.3, three Portmanteau test statistics are defined for carrying out whiteness
tests with nonseasonal ARIMA models. The Portmanteau statistic defined in [12.3.8] for use
with SARIMA models is based upon the statistic given in [7.3.6] for employment with nonsea-
sonal ARIMA models. The seasonal equivalent of the test statistic in [7.3.5] is

L
U= +2) T rdYm’ - k) [12.3.9]
k=1

This statistic is x2 distributed on (L — P - p - Q - q) degrees of freedom.

Test for Periodic Correlation

When a SARIMA model is fitted to a seasonal hydrological series such as the average
monthly flows for the Saugeen River plotted in Figure VL1, it may not be able to describe the
periodic or seasonal correlation that may be contained in the series. This is because the SAR-
IMA model assumes that the correlation structure contained in the series is the same throughout
the year. However, the correlation between riverflow values for July and August, for instance,
may be quite different from the correlation between April and March. This fact is confirmed in
Section 14.4 where a periodic autoregressive model is fitted to the average monthly Saugeen
riverflows.
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To test whether or not periodic correlation is contained in the residuals of a fitted SARIMA
model, one can employ a statistical test presented by McLeod (1993). The periodic autocorrela-
tion at lag k for season m may be written as

n
zdr.mdr.m-k
G ) = — [12.3.10]
)T T LA
r=1 r=1

where 4, ,, is the estimated innovation or residual for the rth year and mth season, n is the
number of years of seasonal data, and s is the number of seasons per year. Over the s seasons,
the residual autocorrelations at lag one given by r{™(d, ), m =12,...,s, are approximately
jointly normally distributed with mean zero, diagonal covariance matrix, and
var(r,(”')(d, m)= nl A diagnostic check for detecting periodic autocorrelation in the residuals
of a fitted SARIMA model is given by

L
S=nY (r™d,,.))* (12.3.11]
m=1
which should be approximately xz distributed on s degrees of freedom, if the model is adequate.
When the calculated value for S is larger than that found in the tables for a given significance
level, the calibrated model does not capture the periodic correlation.

Normality Tests

As pointed out in Section 7.4, many standard tests are available to check whether data are
normally distributed. Additionally, the graph of the cumulative distribution of the residuals
should appear as a straight line when plotted on normality paper if the residuals are normally dis-
tributed (Section 7.4.3). For instance, the residuals should not be significantly skewed or pos-
sess a significantly large kurtosis coefficient under the assumption that the residuals are nor-
mally distributed (Section 7.4.2).

Homoscedasticity Checks

Heteroscedasticity or changes in variance can arise in a number of different ways including:
1.  the variance changes over time,
2. the magnitude of the variance is a function of the current level of the series.

Sensitive significance tests for checking for the presence of the above kinds of heteroscedasticity
are described in detail in Section 7.5.

12.3.5 Summary

By following the identification, estimation and diagnostic checks stages of model construc-
tion, one can conveniently determine a reasonable SARMA or SARIMA model for describing a
time series. These three construction stages are summarized in Figure 12.3.1. This approach
follows the general model building procedure shown in Figure 6.3.2. The applications in the
next stage demonstrate how easy it is to carry out this SARMA model building approach in prac-
tice.
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Figure 12.3.1 Constructing a SARIMA model.

12.4 APPLICATIONS

12.4.1 Introduction

To demonstrate how the model construction procedures of Section 12.3 are conveniently
utilized in practice, SARIMA models are fitted to three seasonal time series. In the first applica-
tion, an appropriate SARIMA model is designed for describing the average monthly water con-
sumption series of Figure V1.2 while in the second case study a SARIMA model is fitted to the
average monthly concentrations of atmospheric CO, displayed in Figure VI.3.

As pointed out in the Foreword to Part VI, the seasonal series displayed in Figures V1.2 and
VL3 constitute data sets for which the level of the series within each series increases with time.
This nonstationary characteristic is clearly depicted in Figures VL2 and V1.3 by the increasing
trend around which the seasonal data fluctuate in sinusoidal patterns. However, for the average
monthly flows of the Saugeen River at Walkerton, Ontario, shown in Figure V1.1, the mean and
variance within a particular season across the years are more or less stationary and, conse-
quently, there is no upward trend. In the third application, the best SARIMA model to fit to this
series is determined. However, as mentioned in the Foreword to Section VI, the most appropri-
ate types of models to fit to the average monthly Saugeen Riverflows are the deseasonalized and
periodic models of Chapters 13 and 14, respectively. Although a calibrated SARIMA model for
the Saugeen flows could be used for forecasting, it cannot be employed for simulation. This is
because the SARIMA model is not designed for preserving stationarity within each season.
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12.4.2 Average Monthly Water Useage

The average monthly water consumption series in millions of litres per day is available
from the Public Utilities Commission (1989) of London from 1966 to 1988. When fitting a
SARIMA model to this series, the first step is to obtain appropriate exploratory data analysis and
identification graphs referred to in Section 12.3.2 and then to compare the information displayed
on these graphs in order to design the SARIMA model.

As explained in Section 22.3, one of the most informative exploratory data analysis tools is
simply a plot of the given series against time. A plot of the monthly water consumption versus
time in Figure VI.2 certainly reveals important characteristics about the observations. As also
noted in the foreword to part VI as well as the introduction to this section, the sinusoidal curve in
Figure V1.2 indicates that the data are seasonal. Indeed, the demand for water is highest during
the warmer summer months and lowest during the winter time. Moreover, the increasing linear
trend component indicates that the data in each month of the year are increasing with time. In
some instances a physical understanding of the phenomenon being analyzed allows for the incor-
poration of deterministic components into the model to account for seasonality and/or trends.
For instance, seasonality may be modelled by a Fourier series, while trend might be accounted
for by a polynomial. However, for the water demand data, a purely stochastic SARIMA model
is fit to the data. Following the explanation of Section 4.6, the nonseasonal and seasonal dif-
ferencing take care of the stochastic trend while the AR and MA parameters can describe the
remaining dependence among the observations. Consequently, the SARIMA model stochasti-
cally accounts for the inherent properties of the data.

From the graph of the water demand series in Figure V1.2, it is not obvious that a data
transformation is required. However, the variance appears to be increasing in the last two years
of the water demand series. When a Box-Cox transformation is estimated for the SARIMA
model identified below, the best transformation is found to be A = —0.75.

The upward trend in Figure V1.2 points out that seasonal and perhaps also nonseasonal dif-
ferencing are needed for removing the nonstationary behaviour. The nonstationarity of the raw
data is also confirmed by the fact that the sample ACF plotted in Figure 12.4.1 dies off very
slowly. The seasonality of the water demand data is reflected in the attenuating sine wave pat-
tern in this figure.

Differencing the data once seasonally removes the nonstationarity contained in the original
series. A graph of the seasonally differenced series in Figure 12.4.2 shows that differencing has
eliminated the linear trend component as well as the sine wave. Also notice that the seasonally
differenced series in Figure 12.4.2 has 12 fewer data points than the graph in Figure V1.2
because of the monthly differencing. In order to compare conveniently the original water con-
sumption series in Figure V1.2 to the seasonally differenced version of the series in Figure
12.4.2, the two series can be plotted on a single graph. Figure 12.4.3 displays the bivariate trace
plot for these graphs which shows Figure V1.2 as the lower graph and Figure 12.4.2 as the upper
plot. To avoid clutter and permit easier interpretation of the results, the ordinate axis is omitted.
One can clearly see from Figure 12.4.3 how seasonal differencing has removed trend and
sinusoidal components.

The sample ACF, PACF, IACF and IPACF are displayed in Figures 12.4.4 to 12.4.7 for the

seasonally differenced water demand series. Because none of these graphs attenuate slowly, the
scasonally differenced data of Figures 12.4.2 and 12.4.3 (upper plot) are stationary. When
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Figure 12.4.1. Sample ACF and 95% confidence limits for the
average monthly water useage series from January, 1966,
to December, 1988, for London, Ontario, Canada.

calculating the sample ACF in Figure 12.4.4, or, in general, when computing the ACF of any
series that has been differenced, the mean of the w, series in [12.2.8] is not removed. This pro-

cedure precludes missing any deterministic component that may still be present even after dif-
ferencing.

In order to identify the number of AR and MA terms required in the model of the season-
ally differenced monthly water useage data, the graphs of the sample ACF, the PACF, the IACF,
and the IPACF that are shown in Figures 12.4.4 to 12.4.7, respectively, are interpreted simul-
taneously keeping in mind the main identification rules summarized in Table 12.3.1. Notice that
both the sample ACF and IPACF have a significantly large value at lag 12. Moreover, because
the sample PACF and IACF possess values that are decreasing in absolute magnitude at lags 12,
24, 36, and 48 (i.c. lags that are positive integer multiples of 12), this indicates the need for a
seasonal MA term in the model.

Overall, the four identification graphs in Figures 12.4.4 to 12.4.7 complement one another
in clearly pointing out the need for a seasonal MA parameter to include in the SARIMA model
to fit to the seasonally differenced monthly water demand series. These graphs are also utilized
for ascertaining which nonseasonal AR and MA parameters are needed. Because both the sam-
ple ACF and IPACF appear to dic off across the first three or four lags, a nonseasonal AR
parameter is required. Although the pattern is not strong, one could also interpret the sample
PACF as attenuating during the first few lags. This indicates that a nonseasonal MA parameter
may be needed in the model. Finally, notice that the sample IACF seems to cut off after the first
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Figure 12.4.2. Graph of the seasonally differenced average
monthly water useage series for London, Ontario, Canada.
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Figure 12.4.3. Bivariate trace plot of the average monthly water useage series
(lower graph) for London, Ontario, Canada, from January, 1966, to December, 1988,
and also the seasonally differenced water useage series (upper graph).
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Figure 12.4.4. Sample ACF and 95% confidence limits for the seasonally differenced
average monthly water useage series for London, Ontario, Canada.
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Figure 12.4.5. Sample PACF and 95% confidence limits for the seasonally differenced
average monthly water useage series for London, Ontario, Canada.
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Figure 12.4.6. Sample IACF and 95% confidence limits for the seasonally differenced
average monthly water useage series for London, Ontario, Canada.
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Figure 12.4.7. Sample IPACF and 95% confidence limits for the seasonally differenced
average monthly water useage series for London, Ontario, Canada.
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lag and, therefore, does not confirm the need for a nonseasonal MA parameter.

In summary, the identification plots given in Figures 12.4.4 to 12.4.7 indicate that an
ARIMA(1,0,1)x(0,1,1),, or an ARIMA(1,0,0)x(0,1,1);, model should be fit to the water demand

series. As mentioned earlier, a Box-Cox power transformation with A =—0.75 is also required.
When SARIMA models are calibrated for the seasonally differenced transformed water demand
series, the SARIMA model possessing the lowest AIC calculated using [12.3.3] is the SAR-
IMA(1,0,1)x(0,1,1);, model. Table 12.4.1 lists the parameter estimates and the SE’s for this

model while [12.4.1] gives the corresponding difference equation.
(1-0.618B)(1 - B'3);™ = (1 - 0.297B)(1 - 0.851B'3)q, [12.4.1]

where the Box-Cox power parameter A =~0.75 for water demand series, z,.

Table 12.4.1. Parameter estimates and SE’s for the
SARIMA(1,0,1)x(0,1,1);, model with A=-0.75

fitted to the water consumption series for London, Ontario, Canada.

Parameters MLE’s SE’s
9 0.618 0.123
9, 0297 | 0.150
e, 0.851 0.032
c? 1.86x107%

Notice in Table 12.4.1 that the estimate for the nonseasonal MA parameter is about twice
its SE and is, therefore, just barely significantly different from zero. On the other hand, the
parameter estimates for ¢, and ©, are many times larger than their corresponding SE’s. Recall
that the need for incorporating both ¢; and 6, into the model are clearly indicated by the identif-
ication graphs.

The calibrated SARIMA model in [12.4.1] passes diagnostic checks for whiteness, normal-
ity and homoscedasticity refereed to in Section 12.3.4. Figure 12.4.8, for example, of the RACF
for the fitted SARIMA model shows that the model residuals are white. Except for lag 22, all of
the RACEF values fall within the 95% confidence interval. This large value at lag 22 is probably
due to chance alone and could not be removed by including other model parameters. One would
expect that there is one chance in twenty that a value could fall outside the 95% confidence lim-
its. Additionally, this large value does not occur at crucial lags such as 1, 12, 24, and 36. Other
diagnostic checks reveal that both the homoscedasticity and the normality assumption for the
residuals are fulfilled. Therefore, on the basis of the information used, the chosen SARIMA
model [12.4.1] adequately models the monthly water useage data.
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Figure 12.4.8. RACF and 95% confidence limits for the SARIMA(1,0,1)x(0,1,1);,

model with A = —0.75 fitted to the average monthly
water useage series for London, Ontario, Canada.

12.4.3 Average Monthly Atmospheric Carbon Dioxide

Bacastow and Keeling (1981) as well as Keeling et al. (1982) list average monthly concen-
trations of atmospheric CO, measured at the Mauna Loa Observatory on the Island of Hawaii.
Figure V1.3 displays a plot of these observations from January, 1965, to December, 1980.
Because carbon dioxide is a principal greenhouse gas that could cause global warming, the mon-
itoring and analysis of CO, data such as the series in Figure V1.3 is of wide interest to environ-
mental scientists, political decision makers and, indeed, the general public. As pointed out by
Bacastow and Keeling (1981), the increase per year in carbon dioxide concentration in the atmo-
sphere is one of the important observations for understanding the carbon cycle.

Blue (1991) reports upon the work of Wahlen et al. (1991) who are taking measurements
of CO, in the air of bubbles in the GISP 2 (Greenland Ice Sheet Project 2) ice core using a dry
extraction technique and tunable diode laser absorption spectroscopy. The CO, record spans the
years from 1530 to 1940 and includes parts of the little ice age, a time of abnormally cold tem-
peratures in Europe during the 16tk and 18k centuries. Wahlen et al. (1991) have found that
there were no significant changes in CO, concentrations during the little ice age. However, since

about 1810, the CO, concentrations have started to increase due to industrialization and other

related land use changes such as deforestation and urbanization. Moreover, the date of the onset
of increasing CO, in about 1810 in the GISP 2 ice core is similar to that discovered in the Siple

core from Antarctica (Neftel et al., 1982) and also in another Antarctic ice core analyzed by
Pearman et al. (1986). Finally, the data retrieved from the Greenland ice core GISP 2 are
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consistent with observations from Mauna Loa.

Figure V1.3 clearly depicts an increasing linear trend in the monthly CO, levels over the

years. The sinusoidal curve wrapped around the trend demonstrates that the data are sinusoidal
with larger values occurring in May or June of each year. Because of the nonstationarity in Fig-
ure VL3, differencing is required to remove trends and hence create a stationary series. Figure
12.4.9 shows a bivariate trace plot for which the original CO, series of Figure V1.3 is given in
the lower half of the graph and the stationary series is plotted at the top when the given series is
differenced both seasonally (i.c. D = 1) and nonseasonally (d = 1). Notice from the top series
the way in which differencing has removed the increasing trend as well as the distinct seasonal-
ity shown in the original lower series. Also, because of the differencing, the upper series is 13
(d + D =1 + 12 = 13) data points shorter than the original lower series.

L 1 I | 1 1 I 1 J
0 24 48 72 96 120 144 168 192

OBSERVATION NUMBERS

Figure 12.4.9. Bivariate trace plot of the average monthly concentrations of atmospheric
CO, (mole fraction in ppm) (lower graph) measured at Mauna Loa Observatory
in Hawaii from January, 1965, to December, 1980, and also the
nonscasonally and seasonally differenced CO, series (upper graph).
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To discover the AR and MA parameters required to model the top series in Figure 12.4.9,
one can simultaneously examine the sample ACF, PACF, IACF and IPACF shown in Figures
12.4.10 to 12.4.13, respectively. The significantly large values of the sample ACF and IPACF at
lag 12 means that a seasonal MA parameter is needed in the model. This finding is also con-
firmed by the fact that the sample PACF and IACF attenuate at lags that are positive integer mul-
tiples of 12 (i.c. lags 12, 24, 36 and 48). The slightly large values at lag one for the sample ACF
points out that a nonscasonal MA parameter may be needed. The fact that the sample IACF
possesses attenuating values after lags 1, 12, 24 and 36 may indicate that a nonsecasonal MA
parameter is required. Consequently, the most appropriate model to fit to the monthly CO, data

is probably a SARIMA(0,1,1)x(0,1,1);; model. When comparing other possible SARIMA
models such as the SARIMA(1,1,1)x(0,1,1),, and (1,1,0)x(0,1,1),, to the aforementioned model,
the AIC value calculated using [12.3.3] is lowest for the SARIMA(0,1,1)x(0,1,1),, model.

Table 12.4.2 lists the MLE’s and SE’s for the parameters of the SARIMA(0,1,1)x(0,1,1);,
model fitted to the monthly CO, data set. In difference equation form, this calibrated SARIMA
model is written as

(1-B)(1 - Bz, = (1-0.336B)(1 - 0.831B'))q, [12.4.2)
where z, represents the average monthly CO, series value at time f.

The estimated model in [12.4.2] provides a reasonable fit to the CO, series according to

diagnostic checks for whiteness, normality and constant variance described in Sections 7.3 to
7.5, respectively. Because all of the values for the RACEF fall within the 95% confidence limits
in Figure 12.4.14, the model residuals are not significantly correlated and, hence, are white.
Moreover, the calibrated model performs reasonably well with respect to normality and homos-
cedasticity checks. For example, the value of the test statistic for changes in variance depending
on the current level (see Section 7.5.2) is -2.232 with a SE of 1.296. Because the test statistic
falls within two SE’s of zero, one can argue that the statistic is not significantly different from
zero and, hence, the residuals are homoscedastic.

12.4.4 Average Monthly Saugeen Riverflows

The average monthly flows for the Saugeen River at Walkerton, Ontario, Canada, are
displayed in Figure VI.1. When modelling monthly riverflow series it is usually necessary to
take natural logarithms of the data to alleviate problems with heteroscedasticity and/or non-
normality in the model residuals. Therefore, the Box-Cox parameter A is set equal to zero in
[12.2.1] for the Saugeen flows. Following this, an examination of the sample ACF for the loga-
rithmic data reveals that the data has to be differenced once seasonally in order to remove sea-
sonal nonstationarity. By studying the properties of the sample ACF, PACF, IACF and IPACF
graphs for the seasonally differenced logarithmic Saugeen time series, it is found that the best
design is a SARIMA(1,0,1)x(0,1,1);, model. Diagnostic checks for the residuals of the cali-

brated model indicate that the model provides an adequate fit to the data. However, it is found
that the periodic autocorrelation test statistic in [12.3.11] for the fitted SARIMA has a signifi-
cantly large value of 59.6 on twelve degrees of freedom. Consequently, the SARIMA model
residuals possess significant periodic correlation. Therefore, in Section 14.4 a periodic autore-
gressive model is fitted to the logarithmic average monthly Saugeen riverflows in order to
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Figure 12.4.10. Sample ACF and 95% confidence limits for the differenced (d =D =1)
average monthly atmospheric CO, concentrations (mole fraction in ppm)

measured at Mauna Loa Observatory in Hawaii.
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Figure 12.4.11. Sample PACF and 95% confidence limits for the differenced
(d =D = 1) average monthly atmospheric CO, concentrations

(mole fraction in ppm) measured at Mauna Loa Observatory in Hawaii.
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Figure 12.4.12. Sample IACF and 95% confidence limits for the differenced (d =D =1)
average monthly atmospheric CO, concentrations (mole fraction in ppm)

measured at Mauna Loa Observatory in Hawaii.
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Figure 12.4.13. Sample IPACF and 95% confidence limits for the differenced
(d = D = 1) average monthly atmospheric CO, concentrations

(mole fraction in ppm) measured at Mauna Loa Observatory in Hawaii.
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Table 12.4.2. Parameter estimates and SE’s for the
SARIMA(0,1,1)x(0,1,1);, model fitted to the average

monthly atmospheric CO, concentrations measured
at Mauna Loa Observatory in Hawaii.

Parameters MLE'’s SE’s
6, 0.336 0.070
6, 0.831 0.041
2 1.01x10!
0.2[-
N\ N
o1l /'
w
O | | | | |
0.0 1 , 1
= I l T l T
o1 \
Ve
........... | I S G S |
0 12 24
LAG

Chapter 12

Figure 12.4.14. RACF and 95% confidence limits for the SARIMA(0,1,1)x(0,1,1),,

model fitted to the average monthly atmospheric CO, concentrations
(mole fraction in ppm) measured at Mauna Loa Observatory in Hawaii.

properly model the periodic correlation.

Equation [12.3.3] can be employed for calculating the AIC of the SARIMA model fitted to
the Saugeen flows. The value of the AIC is found to be 3435.43. As shown in Chapters 13 and
14 for the values of the AIC determined for the deseasonalized and periodic models, respec-
tively, the estimate of the AIC is much higher for the calibrated SARIMA model. This is
because deseasonalized and periodic models are specifically designed for preserving certain

kinds of stationarity within each season of the average monthly Saugeen riverflows.
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12.5 FORECASTING AND SIMULATING WITH SARIMA MODELS

After fitting the SARIMA model in [12.2.7] to a given seasonal time series, the calibrated
model can be employed for forecasting and simulation. In Chapter 8, minimum mean square
error forecasts are defined and procedures are presented for calculating MMSE forecasts for non-
seasonal ARMA (Chapter 3) and ARIMA (Chapter 4) models. Section 15.2.2 explains how
MMSE forecasts are conveniently determined for a SARIMA model when the model is written
using the generalized form in [12.2.12]. If the data have been transformed using a Box-Cox
transformation, one can employ the procedure explained in Section 15.2.2 as well as Section
8.2.7 to determine the forecasts in the original untransformed domain.

In Section 12.4.2 of the previous section, the most appropriatc SARIMA model to fit to the
average monthly water useage series displayed in Figure V1.2 is found to be the SAR-
IMA(1,0,1)x((0,1,1);; model with A =-0.75 written in [12.4.1]. Figure 12.5.1 depicts the
MMSE forecasts for the water demand series from January 1989 until December 1990 that are
calculated for the fitted SARIMA model by following the procedure given in Section 15.2.2.
The seasonal characteristics of these forecasts can be clearly seen as a sinusoidal pattern on the
right hand side of Figure 12.5.1 that fall within their 90% probability limits.

The model for the SARIMA(0,1,1)%(0,1,1);, model fitted to the average monthly concen-
trations of atmospheric CO, is written in [12.4.2]. The MMSE forecasts for this model are
displayed on the right hand side of Figure 12.5.2 along with the 90% probability limits. As is
also the case in Figure 12.5.1, the forecasts follow the seasonal sinusoidal shape exhibited by the
historical observations.

When simulating with a SARIMA model, the first step is to write the model in unfactored
form as in [12.2.11]). Next, WASIM1 or WASIM2 explained in Sections 9.4 and 9.5, respec-
tively, is employed to determine simulated data for the w, series in [12.2.11]. Subsequently, the
algorithm of Section 9.5.2 is utilized for integrating the systematic w; values to obtain the simu-
lated z,m series. Finally, the inverse Box-Cox transformation in [9.6.2] is invoked to procure the
corresponding z, synthetic data in the untransformed domain. Parameter uncertainty can be
entertained by employing the WASIM3 algorithm of Section 9.7.

12.6 CONCLUSIONS

The SARIMA and SARMA models defined in [12.2.7] and [12.2.9], respectively, are
designed for modelling time series which exhibit nonstationarity both within and across seasons.
An inherent advantage of the SARIMA family of models is that relatively few model parameters
are required for describing these types of time series. As demonstrated by the three applications
in Section 12.4, the model construction techniques of Section 12.3 can be conveniently and
expeditiously implemented in practice for designing, calibrating and checking SARIMA models.
Many other applications of SARIMA models to water resources and environmental time series
can be found in the literature. For instance, Irvine and Eberhardt (1992) fit SARIMA models to
lake level time series.

As explained in Section 12.5 and also Section 15.2.2, a calibrated SARIMA model can be
employed for forecasting and simulation. In Chapter 15, the results of forecasting experiments
demonstrate that the deseasonalized and periodic models of Chapters 13 and 14, respectively,
forecast better than SARIMA models when forecasting monthly riverflow time series. This is
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Figure 12.5.1. MMSE forecasts along with their 90% probability intervals
for the SARIMA(1,0,1)x(0,1,1);, model with A =-0.75 fitted to

the average monthly water useage (million litres per day) series from 1966 to 1988
for London, Ontario, Canada.

because the SARIMA model is designed for modeling the type of series shown in Figures V1.2
and V1.3 rather than the one in Figure VL1.

If there were more than one seasonal cycle in a series, other sets of seasonal operators could
be incorporated into the SARIMA model to handle this situation. Furthermore, one could also
casily design a seasonal FARMA (fractional ARMA model) by directly extending the definitions
in Chapter 11 for nonseasonal FARMA models to the seasonal case.
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Figure 12.5.2. MMSE forecasts along with their 90% probability intervals for the
SARIMA(0,1,1)x(0,1,1);, model fitted to the average monthly water concentrations of

atmospheric CO, (mole fraction in ppm) measured at Mauna Loa observatory in Hawaii.

APPENDIX Al12.1
DESIGNING
MULTIPLICATIVE SARIMA MODELS
USING THE ACF

The multiplicative SARMA(p,g)x(P,Q); model for fitting to the stationary w, series in
[12.2.8] is defined in [12.2.9]. The theoretical ACF of w, is given by

P =N/, k=012,

where ¥, = E[w,w,_;]. Using a result of Godolphin (1977, [3.4]), it follows that for s large
enough
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Pijs = p,(u,)p,(U,) fori=0,1,...,52and j=0,1,---, [A12.1.1]

where p;y;; is the ACF of w, at lag itjs and p;(«,) and p;(U,) are the values of the ACF at lags i
and j of u, and U, in the models ¢(B)u, = 6(B)a, and ®(B*)U, = ©(B*)a,, respectively. Godol-
phin (1977, [3.4]) demonstrates using a vector representation that [A12.1.1] holds exactly when
p=P=0and s >2q. As shown at the end of this appendix, this result may also be derived
using the autocovariance generating function (Box and Jenkins, 1976, p. 81). In any case, the
general approximation follows from the fact that a SARMA (p,q)x(P,Q), model can be approxi-

mated by a (0,¢)x(P,Q), model for suitable Q when s is large enough.

A graphical interpretation, along similar lines to that suggested by Hamilton and Watts
(1978) for the PACF may be given. First, the regular nonseasonal component pattern is defined
as the ACF of 4, plus repetitions centered about the seasonal lags 0,5,2s, - - - . Figure A12.1.1

shows the regular component pattern corresponding to a (1,0(P,Q),, model with ¢; =0.6. Next,
the seasonal component pattern is determined from the ACF of U, as illustrated in Figure
A12.1.2 for the case of a (p,¢)(1,0);, model with &, =0.6. Then, the approximation to the ACF
of w, is the product of the regular and seasonal component patterns. Figure A12.1.3 shows the
resulting approximation for the (1,0)(1,0),, model with ¢, = ®, = 0.6.

In conclusion, the general interpretation presented in this appendix is useful for seasonal
model identification and does not appear to have been pointed out previously. For some applica-
tions, the employment of this procedure can simplify the identification process.

Generating Function Proof of Godolphin’s Result

Theorem: If s > 24, the autocovariance function, ¥, of a (0,¢)x(P,Q), model may be expressed
for nonnegative lags as,

Y@ Uy) for0<i<qand0s<j<Q,
Yisti = o, otherwise,

where ¥;(%,) and v;(U,) denote the autocovariance functions of the processes ¢(B)u, = 6(B)a, and
d(B)U, = 6(B)a,.

Proof: For convenience, it may be assumed that var(a,) = 1.
I'(B) = 6(8)0(B™"V[®(B)2(B ™)
= ¥ I8!
k—ee
Then the autocovariance generating function of the (0,¢)(P,Q), model may be written as
Y8)= T v

=0(B)8(BHIr'(B*)
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=3 "f;'e,-e,-+, ](B’ +B7) [r@),
=0 i=0

where 8y = —1. Thus, provided s > 2q, the coefficient of B** (i =0, - - - ) is
—i
Yjs+i =T j&eﬁm
=0

Similarly, the coefficients of B/** and B”~ can be shown to be equal.

APPENDIX A12.2
MAXIMUM LIKELIHOOD ESTIMATION
FOR
SARMA MODELS

McLeod and Salas (1983) provide an algorithm for calculating an approximation to the
likelihood function of the multiplicative SARMA model in [12.2.9]. Their algorithm specifi-
cally takes advantage of the multiplicative structure of the nonseasonal and seasonal AR and MA
operators in the SARMA model. The conditional, unconditional or iterated unconditional
method of Box and Jenkins (1976) may be used in the algorithm of McLeod and Salas (1983) in
conjunction with an approximation to the determinant term (see McLeod (1977) and also Appen-
dix 6.1) to obtain an accurate and highly efficient algorithm. In fact, McLeod and Salas (1983)
point out that other competing algorithms become computationally infeasible when the seasonal
period s becomes much larger than 12, as in the cases of half-monthly (s = 24), weekly (s = 52)
or daily (s = 365) time series.

In this appendix, the theory behind the algorithm of McLeod and Salas (1983) is outlined.
The reader can refer to the paper of McLeod and Salas (1983) for a more detailed description of
the theory and method of application as well as a listing of the Fortran computer program for the
algorithm.

The SARMA (p.9)x(P,Q), model for fitting to a series w, of length n'=n-d -sD is
defined in [12.2.9]. Let the vector of model parameters be given by

B = (¢l’¢2' e ,¢pye]|02, cee :op,¢l,¢ e .°p,el,e2. PP ,eQ)

Although the SARMA model may be considered as a special case of the ARMA (p*,g*) model
in [12.2.14] by taking p* =sP, q* =q +s50Q, ¢*(B) = D(B*)¢(B) and 6*(B) =6(B*)6(B), a
more efficient estimation algorithm can be developed utilizing the multiplicative structure of the
SARMA model.
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Figure A12.1.1. A regular nonseasonal component pattern of a
SARIMA(1,0)(P,Q);, model with ¢, =0.6.
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Figure A12.1.3. Approximate ACF of a SARMA(1,0)(1,0);,
model with ¢l =0.6 and d’l =0.6.

Given the observations w;, t=1,2, : - - 1’, the exact log-likelihood function maximized over
the variance, 62, of the innovation, g,, may be written, apart from an arbitrary constant,
logL (B) = -nlog(S,,/n")/2 , [A12.2.1]
where S,,, the modified sum of squares is
S =SMy(p.a.P. Q. [A122.2]
S represents the unconditional sum of squares of Box and Jenkins (1976) defined by
S= 3 la [A12.2.3]

F ]
where [.] denotes expectation given wy,wy, * * * ;Wyr.
The evaluation of S by the iterative unconditional sum of squares method may involve two
types of truncation error. First, the infinite sum in [A12.2.3] is replaced by
n
5= ¥ [a)? [A12.2.4)
t=1-T
for suitably large T. Theoretically, T should be chosen so that
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2 I 2
W0a— LV <eo [A12.2.5]
=0

where Yy = var(w;), y; is the coefficient of g,_; in the infinite MA representation of [12.2.9] and
€01 is an error tolerance. Thus, if the model contains a AR factor with roots near the unit circle,
a fairly large T might be necessary. In practice,

T =q +s0 +20(p +5Q) [A12.2.6]

is often sufficient. The other truncation error involves terminating the iterative procedure used
to calculate [g,]. Several iterations may be required to obtain convergence when the model con-
tains a MA factor with roots near the unit circle. However, sufficient accuracy is usually
obtained on the first evaluation.

McLeod (1977) suggests that the term M,«p,q,P.Q.s) be replaced by m(p.q,P.Q,s), given

by

m@.q,P.Q.5)=M@p.q)IM(P.Q)Y, [A122.7]
where M (p,q) is defined for any ARMA(p,q) model as

M@.q)=MM2M,,, [A12.2.8)

where the terms M,, M, and M,,, are defined in terms of the auxiliary autoregressions,
¢(B)v, =a, and 8(B)y, =a, and the left-adjoint autoregression ¢(B)8(B)y, =a,. For the autore-
gression, ¢(B)v, =a,, M, is the determinant of the pxp matrix with (i,j) entry

min(i,j)

El Pik®jt = Oprk-i¥pt—j [A12.2.9]
and similarly for the other autoregressions. The pxp matrix defined by [A12.2.9] is called the
Schur matrix of ¢$(B). Pagano (1973) has shown that a necessary and sufficient condition for sta-
tionarity of an autoregression is that its Schur matrix be positive-definite (see Section 3.2.2).
Thus, calculation of m(p.q,P,Q,s) also provides a check on the stationarity and invertibility con-
ditions and so during estimation the parameters may be constrained to the admissible region.
Modified Cholesky decomposition is used to evaluate M(p.g).

To obtain MLE’s for the model parameters, the modified sum of squares must be minim-
ized by using a standard optimization algorithm (sec Section 6.2.3). McLeod and Salas (1983)
describe in detail how the backforecasting method of Box and Jenkins (1976, Ch. 7) for ARMA
models can be efficiently adapted for employment with SARMA models by making use of their
multiplicative structure.
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12.1

122

12.3

124

12.5

12.6
12.7

12.8

12.9

PROBLEMS

Select an average monthly riverflow time series that has at least ten years of data.
Employ a suitable set of time series programs such as the McLeod-Hipel Package
referred to in Section 1.7 to help you perform the following tasks.

(a) Examine a graph of the observations plotted over time and comment upon the
overall statistical characteristics of the data. If necessary use other exploratory
data analysis tools (see Sections 1.2.4, 5.3.2, 12.3.2 and 22.3) to study the sta-
tistical properties of your series.

(b) Based upon the discussion given at the start of Part VI and elsewhere in the
chapter, which type of seasonal model do you feel is most appropriate to fit to
the time series?

(c) Utilizing the techniques of Section 12.3, follow the three stages of model con-

struction to develop the most appropriate SARIMA model to fit to this series.
Show and explain all of your modelling results at each model building stage.

Carry out question 12.1 for a seasonal socio-economic time series of your choice.
For example, you may wish to study a quarterly water or electrical demand series.

Execute question 12.1 for a seasonal water quality time series that has no missing
values.

Select a seasonal meteorological time series for answering the questions given in
question 12.1.

Write a SARIMA(2,1,3)x(1,1,2), model that is fitted to a series z, with A=0.5 in
the following forms:

(a) difference equation format given in [12.2.7],

(b) unfactored form in [12.2.10],

(c) generalized style as in [12.2.12],

(d) random shock form given in [12.2.15],

(¢) and inverted format written in [12.2.17)].

Derive the theoretical ACF for the SARMA (p,g)x(P,Q) model in [12.2.9].

For a SARIMA(1,1,2)x(1,1,1),;, model fitted to a series with A =0.5, calculate the
MMSE forecasts for/ = 1,2, ...,24.

For the same SARIMA model given in 12.7, describe the steps for simulating
10,000 sequences of length 120 for this model. Where necessary, use equations to
explain how calculations are carried out.

Select one of the calibrated SARIMA models that you fitted to a seasonal time
series in problems 12.1 to 12.4. Calculate and plot the MMSE forecasts as well as
the 90% probability intervals using this model for lead times from 1 to 25 where s is
the seasonal length. Comment upon your results.



460 Chapter 12

12.10 Choose one of the calibrated SARIMA models that you fitted to a seasonal data set
in one of the first four questions. Simulate and plot three synthetic sequences of
length 8s for the SARIMA model where s is the seasonal length. Compare these
simulated sequences to the original series and discuss your findings.

12.11 Outline the procedure of Box et al. (1987) for estimating the trend in a seasonal time
series that can be described using a SARIMA model. Comment upon the advan-
tages and drawbacks of their approach.

12.12 Briefly describe how the tests of Li (1991) work for determining the orders of dif-
ferencing required for modelling a seasonal time series. Comment upon the useful-
ness of the differencing tests.
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