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CHAPTER 15
FORECASTING
WITH
SEASONAL MODELS

15.1 INTRODUCTION

Three families of models are presented in Part VI of the book for fitting to seasonal time
series. In particular, SARIMA, deseasonalized and periodic models are described in Chapters 12
to 14, respectively. The objective of this chapter is to employ forecasting experiments for com-
paring the capabilities of these seasonal models to forecast accurately seasonal hydrological time
series.

Forecasting can be utilized for model discrimination purposes. After fitting different types
of models to one or more time series by following proper model construction procedures, the
model or models which forecasts the best according to certain criteria can be selected for use in
further practical applications. Because carrying out forecasting studies is a very time consuming
undertaking, forecasting experiments cannot be used for discriminating among models in most
applications. Nonetheless, if one finds, for example, in an extensive forecasting experiment, that
a certain type of PAR model forecasts significantly better than its competitors when used with
average monthly riverflow series, this would give one confidence in using PAR models in other
applications involving average monthly riverflow series.

After explaining how to calculate forecasts for seasonal models in Section 15.2, two main
forecasting studies are described in the next two major sections. In the first set of forecasting
experiments, mean monthly flows from thirty rivers in North and South America are used to test
the short-term forecasting ability of SARIMA, deseasonalized and PAR models. After splitting
each series into two sections, the seasonal models are calibrated for the first portion of the data.
The fitted models are then used to generate one-step ahead forecasts for the second portion of
each time series. The forecasting performance of the models is compared using various meas-
ures of accuracy. The results suggest that PAR models identified using the sample periodic ACF
and PACF provide the most accurate forecasts. The results of this study are also presented by
Noakes et al. (1985) as well as Noakes (1984, Ch. V).

In the second forecasting study, the three quarter-monthly and three monthly riverflow
series used in Sections 14.6 and 14.8.2 of the previous chapter, are used for comparing the fore-
casting accuracy of seasonal models. Besides the SARIMA (Chapter 12), deseasonalized
(Chapter 13) and PAR models (Sections 14.2.2, 14.3, 14.4, 14.6 and 14.8), the PPAR models
(Sections 14.5, 14.6 and 14.8) are also employed in this forecasting experiment. This second
forecasting study was originally presented by Thompstone (1983, Ch. 4).

In both sets of forecasting experiments, one step ahead forecasts are used for comparing
the forecasting abilities of the model. There are two reasons for doing this. Firstly, from a
theoretical viewpoint one can show that for the families of seasonal models presented in
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Chapters 12 to 14, the one-step ahead forecasts are independent of one another. This property
allows one to use statistical tests based upon the independence assumption to ascertain whether
or not one model forecasts significantly better than another. Secondly, in many practical appli-
cations the one step ahead forecasts are of most importance to decision makers. For example,
when deciding upon the operating rules of a reservoir for generation of hydro-electric power, an
accurate forecast for the inflows of the next month is crucial. After the real value of next
month’s flows is known, one can use this information in the seasonal forecasting model to pro-
duce the one step ahead forecast for the subsequent month and so on.

Because different kinds of time series models are not defined and calibrated in exactly the
same way, it is not surprising that their forecasts for a given time series are not identical. In fact,
a given type of model approaches forecasting from a unique perspective based upon its own par-
ticular strengths and weaknesses. To attempt to exploit the forecasting capabilities of each kind
of model fitted to a time series, forecasts generated by individual models can be combined in an
optional manner. Procedures for combining forecasts across models are presented in Section
15.5.2. Additionally, experimental results on combining forecasts for SARIMA and PAR
models fitted to average monthly riverflows are given in Section 15.5.3, while findings on com-
bining hydrological forecasts from transfer function-noise (TFN), PAR and conceptual models
are described in Section 18.4.2.

Before the conclusions, a brief discussion is given in Section 15.6 on aggregating forecasts
for the purpose of producing a forecast for a longer time interval. For instance, one can employ
a monthly model to produce 12 monthly forecasts and then sum these 12 values to obtain the
aggregated annual forecast.

For a summary of where material on forecasting is presented in the book, the reader can
refer to Table 1.6.3. In particular, the table points out that forecasting with nonseasonal ARMA
and TFN models is described in Chapters 8 and 18, respectively. Finally, for references on fore-
casting listed outside of this chapter, the reader may wish to refer to appropriate references given
at the end of Chapter 1 as well as Chapters 8 and 18.

15.2 CALCULATING FORECASTS FOR SEASONAL MODELS

15.2.1 Introduction

Suppose that one fits an appropriate seasonal model to a seasonal time series and then
wishes to forecast / steps ahead where / 2 1. When using z, to represent the value of the time

series, as is done in Chapter 12 with SARIMA models, one can employ the calibrated seasonal
model to forecast z,,, given the observations up to and including time ¢. As explained in Section

8.2 for nonseasonal ARMA models, the minimum mean square error (MMSE) Jorecast £,(1) for
z,,; can be obtained by minimizing E[z,,; — £(/)]%. This minimization is equivalent to taking the
conditional expectation of z,,; at time ¢,

For the deseasonalized and periodic models of Chapters 13 and 14, respectively, it is con-
venient to let z, ,, stand for the observation in year r and season m. Then 7, m(l) represents the
MMSE forecast for lead time / 2 1 starting at z, ,,.
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The general approach for calculating MMSE forecasts for the seasonal models of Part VI is
very similar to that used for nonseasonal ARMA models in Section 8.2. The specific method for
calculating MMSE forecasts for each of the seasonal models is described below.

15.2.2 Forecasting with SARIMA Models

The SARIMA model is defined in [12.2.7]. The most convenient format to employ when
calculating MMSE forecasts is the generalized form of the SARIMA model given in [12.2.12].
More specifically, to calculate the conditional expectation of z,,; at time ¢ and, hence, the

MMSE forecast 7,(/), one takes conditional expectations of [12.2.'12] to obtain
(20} = " 1[2041-1] + 072l 20 0] +
+ 0 pssPrdssDZirt-p-sp-d-sD1H(a11] — 0’ 1[0 ]
= 00a0l = - =0 s0ld1g-s0] (15.2.1)
where

I=1.2,..., is the lead time for the forecast,
[z,+;] denotes the conditional expectation

Ei[zul'zvz:-lv )

¢’; is the generalized AR parameter defined by
¢'(B) = 6(B)D(B*)V!VP2; and
0’; is the generalized MA parameter defined by

0’(B) = 6(B)O(B®).
The nonseasonal version of [15.2.1] is given in [8.2.22]. As explained in Section 8.2.4 for
forecasting with a nonseasonal ARMA model, one can allow for a nonzero deterministic trend
component by introducing the parameter 6, on the right hand side of [8.2.21] to obtain [8.2.23].

By taking conditional expectations of [8.2.23], one obtains [8.2.24] for calculating MMSE fore-
casts for a nonseasonal ARMA model containing the level parameter 6. In a similar fashion for

a SARIMA model, one can introduce the parameter 8, on the right hand side of [12.2.12] and

then take conditional expectations to obtain a formula for calculating MMSE forecasts. The
resulting formula would be the same as [15.2.1] expect for the parameter 6, which would be

added to the right hand side.

As is also done in Section 8.2.4 for nonseasonal ARMA models, the conditional expecta-
tions in [15.2.1] can be determined using the following four rules:

M Elzy- =25, J=012,..., [15.2.2]
V) Efz,,;] =40), j=0,12,..., [15.2.3]

is the MMSE forecast for lead time j,
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® Ela,j1=a.j j=012...., [15.2.4]

and

@ Ela,,;1=0, j=12,... [15.2.5]

If the series contains a level represented by 6, this can be added to the forecasts obtained using
the above rules.

The MMSE forecasts have a number of interesting properties which can be illustrated using
the random shock form of the model in [12.2.15]. The forecast at time ¢ for lead time / is

L =ya,+vya_,+ [15.2.6]
Subtracting this from z,,,;, the forecast error is

e()=a, +V 181+ - + VY4 [15.2.7]
Since E[e, (/)] = 0, the variance of the forecast error is

Vi)=[Var e(D]=[1 +y2+y3+ - +y} o2 (15.2.8]
This variance can be utilized to estimate confidence intervals for forecasts at various lead times.

The one step ahead forecast error is
e(VN)=z,,-Z(1)=a,, [15.2.9]

Although one step ahead forecast errors are statistically independent, forecast errors for lead
times greater than one are correlated. For forecasts made from origin ¢, the correlation coeffi-
cient between forecast errors at lead times / and / + j is given as (Box and Jenkins, 1976)
-1
EOWiVjH
. i
ple,(D.e, (I + )] = {1-1 e }1/2 [15.2.10]

TV S v}
h=0 g=0

Inverse Box-Cox Transformation

Often the given series, z,, is first transformed using the Box-Cox transformation in [12.2.1]
to obtain the z™ series. The SARIMA model is then fitted to the z™ series as in [12.2.7]. The
above calculations for obtaining MMSE forecasts are then carried out for the z® series rather
than z,.

A naive approach for obtaining forecasts in the untransformed domain is to take the inverse
Box-Cox transformation of the MMSE forecasts calculated in the transformed domain. How-
ever, in order to produce MMSE forecasts in the untransformed domain, a modified type of

inverse Box-Cox transformation must be employed. More specifically, the exact MMSE fore-
cast in the untransformed domain is determined from the fact that its transformed value follows a
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normal distribution with expected value 2‘,(1)(1) and variance V(/). The expected value of the
inverse Box-Cox transformed value is the desired MMSE forecast and it is determined numeri-
cally by Hermite polynomial integration (Granger and Newbold, 1976). In practice, it is found
that the MMSE forecasts are slightly smaller than the naive forecasts. Moreover, studies with
real data have shown that these MMSE forecasts do perform better than the naive forecasts.
When data are transformed using a natural logarithmic transformation, as is often the case for
seasonal hydrological time series, the MMSE forecast for the untransformed data is

£(0) = explZ®() + XgQ] —c, 1=12,..., [15.2.11]

where 7 (/) is the MMSE forecast in the untransformed domain, z‘,o')(l) is the MMSE forecast

produced by the model for the transformed logarithmic data, V(!) is the variance of the forecast
error given in [15.2.8], and c is the constant in the Box-Cox transformation required to make all
entries be greater than zero.

For graphs of forecasts obtained using SARIMA models fitted to seasonal time series, the
reader can refer to Section 12.5. In particular, Figures 12.5.1 and 12.5.2 display MMSE fore-
casts for monthly water demands and concentrations of atmospheric CO,, respectively.

15.2.3 Forecasting with Deseasonalized Models

The main steps involved in forecasting with deseasonalized models are displayed in Figure
13.5.1. Firstly, one must calculate the MMSE forecasts for the ARMA model fitted to the desea-
sonalized series. This procedure is identical to that presented for the nonseasonal ARMA(p.q)
model in Section 8.2. Let the deseasonalized series that is determined using either [13.2.2] or
[13.2.3] be represented as w, ,,,, where r and m stand for the year and season, respectively. By

taking conditional expectations of the ARMA(p,g) model in [13.2.12], the MMSE forecasts for
the deseasonalized series are calculated using

[wr.m+l] = ¢l[wrm+l-1]+¢2[wr,m+l—2] + -+ ¢p [wr,m+l-p] + [ar,m+I]
= 0y[a, mii-1] = 02[a, pmas2l = -+ — 6400, mi1-g] [15.2.12]

where
1=1,2,..., is the lead time for the forecast, and
[W, m4i] denotes the conditional expectation

é’[w,,,,,,,lw,’,,,,w,',,,_l, e ,] .

Equation [15.2.12] can be used to calculate MMSE forecasts for the deseasonalized series
by following the four rules given below for/=1.2, ...,

M ElWy ) =Wy meje 12012, [15.2.13]
(2) €[WVM+]] = “‘)r.m(j)Q j = 1$2) ceey [15.2.14]

is the MMSE forecast for w, .,
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3 .
©) El, i) =ty mejp J=012,..., [15.2.15]

and

@ g[a,,,,,ﬂ-] =0, j=1.2,.. [15.2.16]

When using the above rules, one should keep in mind that the time of occurrence of the desea-
sonalized series or the innovations can be written using a variety of equivalent subscripts. For
instance, when there are s seasons per year w, ,,, W,_ m4s and Wy, -, all stand for the same

value.

Following the procedure described in Section 3.4.3, the random shock coefficient, v;,
i=1.2,..., can be found for the ARMA(p,q) model describing the w, ,, series. The variance of
the forecast error for the deseasonalized series can then be determined as

VO =[1+y?+yi+ - +y2]] [15.2.17]
Finally, the one step ahead forecast error is
e()=w, i1 =W, (1) =a, p (15.2.18]

As indicated in Figure 13.5.1, the next step is to route the MMSE forecasts through the
inverse deseasonalization filter to obtain z,(",',z. The inverse deseasonalization for the two tech-

niques given in [13.2.2] and [13.2.3] are

R0 =V ) + i, [15.2.19]
and
201 = ¥, ()5 + iy, [15.2.20]

respectively. To obtain forecasts in the untransformed domain one must take the inverse Box-
Cox transformation of z",(_},Z(l). However, as noted in the previous subsection, if one wishes to

have MMSE forecasts in the untransformed domain, one must make an appropriate adjustment

before taking the inverse Box-Cox transformation. For the case of a logarithmic transformation,
the MMSE forecast given in the same units as the original series is determined using

& () = explz () + %V(I)l -c [15.2.21]
where V (/) is the variance of the forecast error from [15.2.17].

15.2.4 Forecasting with Periodic Models

In Section 8.2, it is explained how to calculate MMSE forecasts for a nonseasonal ARMA
model. A similar procedure is followed when forecasting with PAR, PPAR or PARMA models.
For example, when calculating MMSE forecasts for a PAR model, one simply writes down the
difference equation for season m in [14.2.1] and then determines the conditional expectations of
the observations and innovations to arrive at the MMSE forecasts. Likewise, for a PARMA
model, one uses the difference equation in [14.2.15] for the ARMA model in season m and then
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calculates the conditional expectations.

The approach for calculating MMSE forecasts for PARMA models is explained first.
Assuming that the observations and innovations are known up to the rth year and mth season,
one takes the conditional expectation of [14.2.15] to obtain

3.0 = 02X 11+ 2 Wal+ - + N0, 1+ (G, )

-9 l(m)[ar,in+l-1] - eém)[a”m”_l] - - e«;:.)[aa,,.«.,_] [15.2.22]

where
1=1.2,..., is the lead time for the forecast, and
[z,(ﬁ,,,] denotes the conditional expectation

zla[z,<},2+,|z,<},2,z,(}3_l o]

By following the four rules listed below, equation [15.2.22] can be employed for calculat-
ing the MMSE forecasts for z,(},f forlead times!/=1,2,...,.

1 .
S r':[z,<},,3_j]=z,<},,)_j, j=012,..., [15.2.23]
) ff[z,(},2+j]=f,(?',2(j), j=12,..., [15.2.24]

is the MMSE forecast for 2%,

® Ela, y-j1=a; pm-j» j=012,..., and [15.2.25]
1

)] Ela, ,,,j1=0, j=12,..., . [15.2.26]
1

After calculating the forecasts for / = 1,2, ..., the appropriate monthly mean p,,, must be added

to each forecast when p,,, # 0.

The procedure in Section 3.4.3 can be utilized to find the random shock coefficients
y™, i=12,..., for the ARMA model in season m. To calculate the variance of the forecast

error for z",(},z(l) one uses
Ve = +y™ + Y+ -+ o], [15.227)

The one step ahead forecast error can be shown to be
&™) =281 — £V =8y [15.2.28]
To obtain forecasts in the same units as the original series, one must take the inverse Box-

Cox transformation of z‘,(},z(l) for/=1,2,...,. When the data are transformed using natural log-

arithms (i.c., A = 0), equation [15.2.21] can be utilized to calculate the MMSE forecasts in the
untransformed domain where V (/) is replaced by v )(I ) from [15.2.27].
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When determining forecasts for PAR or PPAR models, one can follow the approach
explained for PARMA models. Consider, for example, the case of the PAR model. By taking
conditional expectations of [14.2.1] or [14.2.3], the MMSE forecasts calculated after year r and
season m are determined using

R = 0B, 1+ 05z Bg]+ - + 6N, 1+ [a, ] [15.2.29]

The four rules presented in [15.2.23] to [15.2.26] can then be used to calculate the MMSE fore-
casts for the transformed series. Additionally, when p,, # 0, one must add the appropriate mean

level to each of the calculated forecasts. Finally, the modified version of the inverse Box-Cox
transformation (see [15.2.21] for the case of A = 0) must be taken to produce MMSE forecasts in
the untransformed domain.

15.3 FORECASTING MONTHLY RIVERFLOW TIME SERIES

15.3.1 Introduction

To examine the efficacy of PAR models of Chapter 14, a comprehensive forecasting study
is carried out by comparing their performance with that of several models used to model sea-
sonal data. Using thirty monthly riverflow time serics, the PAR models are compared to the
SARIMA models of Chapter 12 as well as the deseasonalized models presented in Chapter 13.
Methods of model order selection for the PAR models are also compared. The experiments
described in this section, as well as by Noakes et al. (1985), are the most comprehensive yet
reported in the hydrological literature. Other published comparisons have used only a few series
and usually only two models [see, for example, Delleur et al. (1976)]. Also, the majority of the
hydrological forecasting research to date has been concentrated on shorter time intervals in the
order of a few hours or days [see, for example, the Proceedings of the Oxford Hydrological Fore-
casting Symposium, April 15-18 (International Association of Hydrological Sciences, 1980) and
Thompstone et al. (1983)]. However, monthly riverflow forecasts are often used for operational
planning of reservoir systems. Camacho (1990) considers both short term and long term fore-
casts in his riverflow forecasting study. Even modest improvements in the operation of large
reservoir systems can result in multi-million dollar savings per year (see, for instance, Brocha
(1978) as well as the comments on stochastic hydrology given in Section 1.1). Thus, the results
of the forecasting study given in this section should be important to those concemed with the
optimal medium and long-term operation of reservoir systems.

The performance of the forecasts from the different seasonal models are assessed using the
root mean square error (RMSE), mean absolute deviation (MAD), mean absolute percentage
error (MAPE), and median absolute percentage error (MEDIAN APE), criteria. Although these
criteria give an indication as to which models seem to perform better, no statement concerning
statistically significant differences can be made from such a comparison. To address this ques-
tion, the nonparametric Wilcoxon signed rank test (Wilcoxon, 1945) is used to determine if a
particular model produces significantly better forecasts when compared to another model. One
could also employ Pitman’s (1939) correlation test and the likelihood ratio test to check if one
model forecasts significantly better than another. These latter two tests are described in Section
8.3.2 and used in the forecasting experiments with nonseasonal models presented in Section
8.3.4. The nonparametric Wilcoxon test is outlined in this section with the seasonal forecasting
experiments and described in detail in Appendix A23.2. Noakes et al. (1983) and Noakes
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(1984) present the results of the forecasting study of this section when Pitman’s correlation study
and the likelihood ratio tests are used. Finally, the overall procedure for carrying out the fore-
casting experiments in this section, Section 15.4 as well as Sections 8.3 and 15.3, is summarized
in Figure 8.3.1.

15.3.2 Data Sets

The data used in this study comprise thirty monthly unregulated riverflow time series rang-
ing in length from thirty-seven to sixty-eight years. The rivers are from a number of different
physiographic regions and vary in size from a river with a mean annual flow of one cubic meter
per second (m3ls) to a river having a mean annual flow of almost 900 m>/s. The data for the
Canadian rivers were obtained from Water Survey of Canada records, the American riverflow
series are from the United States Geological Survey, and the Brazilian data were kindly provided
from Electrobras (the national electrical company of Brazil). The rivers and their mean annual
flows for the water year from October to September are displayed in Table 15.3.1.

15.3.3 Seasonal Models

The last three years or 36 observations are omitted from each of the data sets in Table
15.3.1. After taking natural logarithms of the time series, SARIMA, deseasonalized and PAR
models are fitted to the thirty truncated logarithmic series.

The most appropriate SARIMA models to fit to the series are identified using the graphical
procedures of Section 12.3.2. All of the SARIMA models identified for fitting to the monthly
riverflow series in Table 15.3.1 are determined to be of the form (p,0,4)x(0,1,Q0),; with A=0
and with typical values of p, ¢ and Q being 1,0 and 1.

Two types of deseasonalized models are used in the forecasting study. For the first kind of
model, equation [13.2.2] is used to deseasonalize the logarithmic data after estimating each
monthly mean of the logarithmic data using [13.2.4]. The most appropriatt ARMA model is
then fitted to this deseasonalized series using the model construction techniques of Part III. This
overall deseasonalized model is referred to as DSM.

For the second type of deseasonalized model, equation [13.2.3] is used to deseasonalize the
logarithmic series before fitting an ARMA model to the resulting nonseasonal series. In
[13.2.3], the seasonal means and standard deviations are estimated using [13.2.4] and [13.2.5],
respectively. This overall deseasonalized model is called DES.

Six types of PAR models are considered in this study. In the first model, a separate AR(1)
model is fitted to each month (called PAR/1) using multiple linear regression. This model was
originally suggested by Thomas and Fiering (1962) and has been used extensively by hydrolo-
gists.

The second and third PAR models are fitted to the data using the algorithm of Morgan and
Tatar (1972) described in Section 14.3.3. This algorithm calculates the residual sum of squares
of all possible regressions for each season. The AIC and BIC can thus be calculated for all pos-
sible models. The PAR model which gives the minimum value of the AIC in [14.3.8] or BIC in
[6.3.5] (with p,, < 12) is selected as the most appropriate. This type of procedure has been called
subset autoregression by McClave (1975), and thus is referred to as SUBSET/AIC or
SUBSET/BIC modelling.
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Table 15.3.1. Average monthly riverflow time series used in
the forecasting experiments.
River Location Period Obser-  Mean Flow
vations (m3/s)
1  American Fair Oaks, California 1906-1960 660 106
2 Boise Twin Springs, Idaho 1912-1960 588 33
3  Clearwater Kamish, Idaho 1911-1960 600 231
4 Columbia Nicholson, British Columbia  1933-1969 444 109
5 Current Van Buren, Missouri 1922-1960 468 54
6 W.B. Delaware Hale Eddy, New York 1916-1960 540 30
7 English Sioux Lookout, Ontario 1922-1977 660 123
8  Feather Oroville, California 1902-1977 708 167
9 James Buchanan, Virginia 1911-1960 600 69
10  Judith Utica, Montana 1920-1960 492 1
11 Mad Springfield, Ohio 1915-1960 552 14
12 Madison West Yellowstone, Montana  1923-1960 456 13
13 McKenzie McKenzie Bridge, Oregon 1911-1960 600 47
14 Middle Boulder - Nederland, Colorado 1912-1960 588 2
15 Missinaibi Mattice, Ontario 1921-1976 672 103
16 Namakan Lac La Croix, Ontario 1923-1977 648 108
17  Neches Rockland, Texas 1914-1960 564 69
18 N. Magnetawan Burke Falls, Ontario 1916-1977 732 6
19  Oostanaula Resaca, Georgia 1893-1960 816 78
20 Pigeon Middle Falls, Ontario 1924-1977 636 14
21 Rappahannock Fredericksburg, Virginia 1908-1971 768 45
22 Richelieu Fryers Rapids, Quebec 1932-1977 468 331
23  Rio Grande Furnas, Minas Gerais, Brazil 1931-1978 576 896
24  Saint Johns Fort Kent, New Brunswick 1927-1977 600 30
25  Saugeen Walkerton, Ontario 1915-1976 744 68
26 S.F. Skykomish  Index, Washington 1923-1960 456 278
27  S. Saskatchewan  Saskatoon, Saskatchewan 1911-1963 624 272
28  Trinity Lewiston, California 1912-1960 588 47
29 Turtle Mine Centre, Ontario 1921-1977 672 37
30 Wolf New London, Wisconsin 1914-1960 564 49

The next PAR models are estimated by using the appropriate Yule-Walker equations (see
Section 14.3.3). In the first case p,, is selected on the basis of the minimum value of the AIC or

BIC. Unlike the previous case, however, intermediate parameters are not allowed to be con-
strained to zero. Thus, all of the parameters from ¢{™ to ¢ are estimated in this model for a

given season to produce the PAR/AIC and PAR/BIC models.

The last PAR models are identified by examining plots of the sample periodic PACF,
presented in Section 14.3.2. In general, an AR(p,,) model is fitted to month m, where p,, is the

last lag for which the PACF is significantly different from zero. The adequacy of the selected
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model is checked by testing for significant residual correlation or non-normality. Thus, the
PAR/PACEF is the natural extension to PAR models of the modelling philosophy recommended
by Box and Jenkins (1976) and adhered to in this book. Once again, no intermediate parameters
are constrained to zero.

15.3.4 Forecasting Study

After omitting the last 36 values of each of the 30 average monthly riverflow series in
Table 15.3.1, the nine seasonal models are fitted to the 30 truncated series. From Section 15.3.3,
these nine models are labelled as the SARIMA, DSM, DES, SUBSET/AIC, SUBSET/BIC,
PAR/AIC, PAR/BIC, PAR/1, and PAR/PACF models. The nine models are then used to gen-
erate thirty-six one-step-ahead forecasts for the logarithmic flows. Figure 15.3.1 shows a time
series plot of the last five years of the logarithmic flows along with the forecasts for the last three
years using the PAR/PACF method for river number 14 in Table 15.3.1. As can be seen from a
visual viewpoint, the PAR/PACF model forecasts quite well.
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Figure 15.3.1. Logarithmic monthly flows and one step ahead
PAR/PACEF forecasts for the Middle Boulder Creek.
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The monthly means of the logarithmic flows are also considered as forecasts and are
referred to as MEANS. The logarithmic forecast errors associated with each of the ten forecast-
ing models are then compared using the forecast performance measures RMSE, MAD, MAPE
and MEDIAN APE, mentioned in Section 15.3.1.

RMSE results are given in Table 15.3.2 for each river. The results for each performance
measure are summarized in Tables 15.3.3 to 15.3.6 where rank and rank-sum comparisons

appear.

Table 15.3.2. RMSE x 1000 of the logarithmic forecast errors.

Riveer PAR/ PAR/l PAR/ PAR/ SUBSET/ SUBSET/ DSM DES SARIMA MEANS

PACF AIC  BIC AlIC BIC
1 857 896 813 864 796 796 801 907 690 1240
2 280 279 273 280 307 289 264 289 273 248
3 33 330 334 33 346 330 359 339 367 544
4 183 190 180 198 204 211 184 181 182 209
5 426 418 445 410 464 423 389 408 390 357
6 658 642 628 666 681 664 689 690 698 775
7 191 218 187 203 218 201 209 205 440 633
8 337 338 394 338 415 335 354 347 358 481
9 516 495 536 54 562 548 489 489 488 579
10 470 469 463 469 500 47 582 427 576 746
11 435 428 416 431 481 440 426 431 424 539
12 98 91 120 90 125 98 98 118 107 127
13 175 175 208 176 254 221 167 171 169 186
14 273 213 272 274 281 296 290 290 302 365
15 619 614 604 618 634 626 707 639 752 961
16 242 244 238 243 248 238 253 259 261 515
17 909 909 930 910 1078 906 916 907 969 1147
18 407 407 416 407 419 407 408 411 419 440
19 a4 418 425 420 427 425 48 47 446 487
20 600 591 592 604 627 618 673 707 694 1118
21 530 546 536 547 570 535 553 552 564 569
22 250 266 264 270 326 274 217 270 260 600
23 230 226 265 229 294 241 241 236 242 335
A 411 412 398 420 414 428 389 385 398 379
25 425 402 430 421 479 422 433 423 432 532
26 380 391 407 422 434 401 411 416 411 476
27 436 438 420 379 500 391 464 445 461 587
28 626 624 624 633 603 632 628 639 627 822
29 282 283 282 283 318 283 283 301 297 410

30 355 358 408 367 368 n 352 361 352 465
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Table 15.3.3. RMSE of one-step MMSE forecasts of logged series
(number of times each method has indicated rank).

Rank PAR/ PAR/1 PAR/ PAR/ SUBSET/ SUBSET/ DSM DES SARIMA MEANS

PACF AIC  BIC AIC BIC
1 4 3 7 3 1 4 1 1 3 3
2 3 5 5 2 0 5 4 3 3 0
3 10 2 3 4 1 4 2 2 2 0
4 3 11 0 7 0 2 2 3 2 0
5 S 3 S 6 1 3 3 3 1 0
6 3 3 2 2 S 1 7 6 1 0
7 1 1 2 4 4 3 4 3 7 1
8 1 2 4 1 3 5 5 5 4 0
9 0 0 2 1 11 1 2 4 7 2
10 0 0 0 0 4 2 0 0 0 A4
Rank-
sum 110 119 127 134 230 145 166 173 178 268

Table 15.3.4. MAD of one-step MMSE forecasts of logged series
(number of times each method has indicated rank).

Rank PAR/ PAR/l PAR/ PAR/ SUBSET/ SUBSET/ DSM DES SARIMA MEANS

PACF AIC BIC AIC BIC
1 4 4 4 1 1 5 1 2 5 3
2 6 4 4 4 1 4 3 3 1 0
3 5 8 5 3 1 4 2 2 0 0
4 6 6 2 8 1 4 1 1 1 0
5 6 2 4 6 0 2 5 1 4 0
6 2 3 3 2 6 3 4 4 2 1
7 0 1 2 5 3 3 6 6 4 0
8 1 2 4 1 3 2 6 3 8 0
9 0 0 2 0 10 3 1 8 5 1
10 0 0 0 0 4 0 1 0 0 25
Rank-
sum 105 1 137 135 221 133 175 185 180 268
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Table 15.3.5. MAPE of one-step MMSE forecasts of logged series
(number of times each method has indicated rank).

Rank PAR/ PAR/I PAR/ PAR/ SUBSET/ SUBSET/ DSM DES SARIMA MEANS

PACF AIC  BIC AIC BIC

1 3 5 3 1 3 5 1 1 5 3

2 5 4 3 5 2 3 2 5 1 0

3 4 7 4 4 1 3 5 1 0 1

4 7 2 5 7 0 3 3 1 2 0

5 7 6 4 2 1 3 1 2 4 0

6 2 2 1 5 1 4 6 s 4 0

7 1 1 2 5 2 3 5 7 3 1

8 1 3 6 i 3 2 6 2 4 2

9 0 0 2 0 11 4 0 6 7 0

10 0 0 0 0 6 0 1 0 0 23
Rank-

sum 115 115 147 134 218 144 166 17 175 259

Table 15.3.6. MEDIAN APE of one-step MMSE forecasts of logged series
(number of times each method has indicated rank).

Rank PAR/ PAR/1 PAR/ PAR/ SUBSET/ SUBSET/ DSM DES SARIMA MEANS

PACF AIC BIC AIC BIC
1 5 1 3 1 6 4 2 1 3 4
2 3 3 5 4 4 2 1 3 4 1
3 4 5 6 2 0 3 3 4 2 1
4 6 4 3 6 2 3 2 3 0 1
5 4 5 5 6 2 1 3 2 2 0
6 3 3 1 3 4 6 3 2 4 1
7 3 6 2 2 2 6 2 5 2 0
8 1 1 2 3 3 2 7 4 5 2
9 1 1 3 1 4 2 4 5 8 1
10 0 1 0 2 3 1 3 1 0 19
Rank-
sum 123 150 131 154 160 156 190 175 177 234

The rank-sums for the models are the sums of the product of the rank and the associated
table entry. Thus, models with lower rank-sums perform better than those with larger rank-
sums. The models PAR/PACF, PAR/1, PAR/AIC, PAR/BIC, and SUBSET/BIC fare very well
on the basis of all performance criteria. As expected, using the MEANS proves unsatisfactory in
most cases. The MEANS has the worst overall performance and produces the largest RMSE for
twenty-four of the series. Table 15.3.2 shows that in the three cases (rivers 2, 5, and 24) where



Forecasting with Seasonal Models 539

the MEANS has the smallest RMSE there is very little difference between any of the forecasting
methods. Moreover, in these three cases all methods have low MAPEs and RMSEs. At the
other extreme, the best alternative to MEANS for rivers 7, 16, and 22 has a RMSE less than half
that of MEANS. Next to the PAR models mentioned above, the DSM, DES, and SARIMA
models perform about equally as well. The SUBSET/AIC model performance is disappointing,
although not totally surprising. The large number of parameters associated with the
SUBSET/AIC model does not provide a sufficiently parsimonious and flexible model for pro-
ducing accurate forecasts. The importance of parsimony in forecasting models is discussed by
Ledolter and Abraham (1981).

For several of the rivers, there are large discrepancies between the MAPE and MEDIAN
APE criteria. This is found to be due to a defect in the absolute percentage error when the
observed value is small. For example, the observed logged flow for river 14 for November,
1959, is 0.0024 and the PAR/PACEF forecast is -0.746. This creates an absolute percentage error
of over 31,000!.

The forecasting results reported thus far are for the logarithmic flows. To compare results
in the untransformed domain, one converts the forecasts using [15.2.21]. Table 15.3.7 shows the
forecasting findings for the RMSE of one-step ahead MMSE forecasts for the untransformed
time series. Once again, the same PAR models perform the best. However, there are some
differences in the untransformed and transformed forecasting results. In particular, notice the
improvement of the MEANS model and the poor performance of the DES model. The DSM and
SARIMA models still perform reasonably well and the SUBSET/AIC improves slightly.

Table 15.3.7. RMSE of one-step MMSE forecasts of the flows
(number of times each method has indicated rank).

Rank PAR/ PAR/1 PAR/ PAR/ SUBSET/ SUBSET/ DSM DES SARIMA MEANS

PACF AIC BIC AIC BIC
1 2 5 7 0 4 4 3 0 2 3
2 5 4 5 6 0 3 3 0 4 0
3 n 3 3 5 0 3 2 0 1 2
4 6 6 4 5 1 5 1 1 0 1
5 1 8 2 8 2 6 0 0 3 0
6 4 3 3 3 5 1 6 0 1 4
7 1 0 4 1 2 5 3 5 4 5
8 0 1 1 1 5 2 7 5 4 4
9 0 0 1 1 10 1 4 1 8 4
10 0 0 0 0 1 0 1 18 3 7
Rank-
sum 105 112 115 129 202 135 178 268 196 210
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The Wilcoxon signed rank test (Wilcoxon, 1945) for paired data is used to test for statisti-
cally significant differences in the forecasting ability of the various procedures. In this test,
which is also described in Appendix A23.2, the differences in the squares of the logarithmic
forecast errors are computed. These differences are ranked in ascending order, without regard to
sign, and assigned ranks from one to thirty-six. The sum of the ranks of all positive differences
are then computed as T in [A23.2.3] and compared to tabulated values in order to ascertain if the
forecasts from one model are significantly better than the forecasts from a competing model.
These results are then used to examine the performance of the models across all thirty series. In
this test, the P- value associated with each T value is calculated by estimating the area in the tail
of the distribution. Then, the Fisher (1970, p. 99) method for combining significance levels for
one-sided tests is

—2£ln(p,-) = %3, [15.3.1]

i=1

where p is the calculated P-value associated with T and k is the number of series considered in
the test. This combination technique generally has greater power than alternative methods such
as simply summing the T’s.

Fisher’s test is employed to compare the overall performance of the PAR/PACF model to
that of the other competing models. In addition, the PAR/1 parameters are also estimated using
the Yule-Walker equations to provide an additional model for comparison (PAR/YW1). In this
way, identical forecasts produced by the PAR/PACF and PAR/YW1 models could be ignored,
ensuring that only the differences in the forecasting procedures are compared. The results of
Fisher’s test are presented in Table 15.3.8. The PAR/PACF model is significantly better than all
of the models except the PAR/1 and the PAR/AIC at the five-percent level. Since different esti-
mation procedures are employed for the PAR/PACF and PAR/1 models, there are several fore-
casts that are almost, but not quite, identical. These are all included in the analysis, thus mask-
ing the differences in the performance of the two models. The PAR/YW1 model, however,
employs the same estimation procedure, thus resulting in identical forecasts when an AR(1)
model is identified for a particular month for the PAR/PACF model. This allows ties to be
dropped from consideration, and results in the testing of only the differences between the two
models. All series with fewer than five untied forecasts are dropped from consideration in this
test. The results of this comparison indicates that when ties are ignored, the PAR/PACF model
is better than the PAR/YW1 model at the two-percent level of significance. Although the
PAR/AIC compares quite favourably with the PAR/PACF when the significance levels are com-
bined, detailed examination of the results reveal that for three rivers the PAR/PACF forecasts
significantly better at the five-percent level than the PAR/AIC. However, in no case are the
PAR/AIC forecasts significantly superior to those of the PAR/PACF. Additional details are
given in the thesis of Noakes (1984).

15.4 FORECASTING QUARTER-MONTHLY AND MONTHLY RIVERFLOWS

15.4.1 Introduction

The results of the forecasting study of Section 15.3 indicate that certain types of PAR
models work better than other competing seasonal models when forecasting average monthly
riverflow time series. In particular, PAR models identified using the sample periodic PACF
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Table 15.3.8. Results of Fisher’s test for the Wilcoxon tests
when each model is compared to the PAR/PACF model.

Model PAR/I PAR/ PAR/ PAR/ SUBSET/ SUBSET/ ARMA/ ARMA/ SARIMA MEANS
YW1 AIC BIC  AIC BIC DSM  DES

1 652 605 648 S8 1160 87.8 %94 1012 1133 276

DF 60 8 40 60 60 60 ) 60 60

SL®%) 30 2 25 3 1074 1 01 00s 0% 1083

provide the most accurate forecasts. Because PPAR models are not used in the forecasting
experiments of the previous section, one of the objectives of the forecasting study presented in
this section as well as by Thompstone (1983) and Thompstone et al. (1985) is to show a forecast-
ing study involving PPAR models, as well as other types of seasonal models. A second goal is
to perform forecasting experiments with both quarter-monthly and monthly time series.

15.4.2 Time Series

The data sets used in this forecasting study are identical to those utilized in the seasonal
modelling applications of Section 14.6 and the simulation experiments with seasonal models in
Section 14.8.2. In particular, the time series consist of both the quarter-monthly and monthly
flows of the rivers called the Alcan system, Rio Grande and Saugeen. For all of these series, the
last three years on record are not used when the seasonal models given in Table 14.6.3 were fit-
ted to the six series.

15.4.3 Seasonal Models

The seasonal models used in the forecasting experiments are those listed in Table 14.6.3.
The seasonal models consist of the SARIMA (Chapter 12), deseasonalized (Chapter 13), PAR
(Sections 14.2.2 and 14.3) and three types of PPAR (Section 14.5) models. The deseasonalized
model called DES refers to the situation when the most appropriate ARMA model is fitted to a
series fully deseasonalized using [13.2.3], for which the seasonal means and standard deviations
are estimated by utilizing [13.2.4] and [13.2.5], respectively. In all cases, the logarithmic series
are used and the fitted models are identical to those described in Section 14.6.

15.4.4 Forecasting Experiments

For each time series and fitted model given in Table 14.6.3, one step ahead forecasts are
calculated for the additional three year period in each series. Besides these models, forecast
errors are also calculated for a model labelled MEANS, which simply entails using the seasonal
means of the logarithmic series as the one step ahead forecasts.

For each fitted model and logarithmic time series, one can calculate the MSE (mean
squared error) of the forecast errors. In Table 15.4.1, the models are ranked according to their
MSE'’s for each of the six time series. The lowest value of MSE is ranked as 1 whereas the
highest number refers to the model which produces the least accurate forecasts for the series.
Because the forecast errors are approximately normally distributed, they can be employed in the
Pitman test (Pitman, 1939) described in Section 8.3 to determine if there are significant
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differences in the MSE’s of the forecasts between any two seasonal models.

tive results using the Pitman test are given in Table 15.4.2.

Table 15.4.1. MSE’s of the one step ahead forecasts and
ranking of the models according to MSE’s.

Chapter 15

Some representa-

Model Quarter-monthly Series Monthly Series
Alcan System | Rio Grande | Saugeen | Alcan System | Rio Grande Saugeen

MEANS 04314 (7) 02831 (7) | 06177 (7) | 03476 (4) 03359 (7) | 05712 (7)
SARIMA | 02871 (6) 02293 (6) | 04274 (6) | 03325 (2) 02399 (6) | 0.4883 (6)

DES 02634 (5) 02222 (3) | 04117 (5) 03011 (1) 0.2381 (4) | 0.4788 (5)

PAR 0.2575 (3) 02213 (1) | 04070 (1) | 03457 (3) 0.2301 (2) | 0.4189 (2)
PPAR/50 0.2567 (2) 0.2235 (5) | 04075 (2) 02289 (1) | 04187 (1)
PPAR/20 0.2583 4) 02221 (2) | 0.4096 (3) 02321 (3) | 0.4265 (4)
PPAR/OS 02552 (1) 02227 (4) | 0.4098 (4) 02381 (4) | 04217 (3)

Note: The parenthetical figure ranks the MSE’s for & given series from the lowest (1) to the highest (7).

Table 15.4.2. Pitman’s correlation test statistics for comparing MSE’s

of one step ahead forecasts for seasonal models fitted to the

quarter-monthly Saugeen riverflows.

MEANS | SARIMA | DES PAR | PPAR/SO | PPAR/20 | PPAR/S

MEANS 0.4476(-) | 04735(-) | 0.4814(-) | 04831() | 04799¢) | 0.4792()
SARIMA* 0.4476(+) 0.1460(=) | 0.1358(=) | 0.1320(=) | 0.1205(=) | 0.1239(=)
ARMA/DES* | 0.4735(+) | 0.1460(=) 0.0504(=) | 0.0424(=) | 0.0201(=) | 0.0195(=)
PAR® 0.4814(+) | 0.1358(=) | 0.0504(=) 0.0227(=) | 0.0633(=) | 0.0657(=)
PPAR/50° 04831(+) | 0.1320(=) | 0.0424(=) | 0.0227(=) 0.0625%(=) | 0.0524(=)
PPAR/20* 0.479%(+) | 0.1205(=) | 0.0201(=) | 0.0633(=) | 0.0625(=) 0.0024(=)
PPAR/OS* 0.4792(+) | 0.1239(=) | 0.0195(=) | 0.0657(=) | 0.0524(=) | 0.0024(=)

(1)  Table shows |7 | for Pitman's correlation test statistic.

(2)  Difference in MSE’s of forecasts is significant at 5% level if |71 > 0.163.

(3) A parenthetical = indicates the difference is not significant, a + indicates the row model is "better” than the column model

@

(significant difference and smaller MSE), and a - indicates the row model is "worse” than the column model.

* indicates the model is better or equal to all other models.
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Consider the results for the MSE’s in Table 15.4.1 for comparing the forecasting capabili-
ties of the seasonal models. The simplistic MEANS model consistently provides the worst fore-
casts, and this confirms that the methods of time series analysis provide meaningful improve-
ments in forecasting ability. In five of the six cases, SARIMA models provide the second largest
forecast errors. This could lead to some doubts regarding the appropriateness of SARIMA
models for forecasting the inflow series considered herein. As noted in Chapter 12 and else-
where in Part V1, from a physical viewpoint SARIMA models are not well designed for model-
ling riverflow time series, like the one in Figure VI.1, because they cannot explicitly model sta-
tionarity within each season as well as a seasonally varying correlation structure.

In three cases (one quarter-monthly series and two monthly series), PPAR models provide
the smallest MSE’s of forecasts, while in two other cases (both quarter-monthly), PAR models
produce the best forecasts. More generally, one sees that in five of the six cases, the smallest
and second smallest MSE’s are furnished by PAR or PPAR models; in four of the six cases, the
four smallest MSE’s are provided by PAR or PPAR models. All this suggests that PAR and
PPAR models have appealing forecasting abilities for the series considered herein. In only one
case, the Alcan system monthly inflow series, the DES provides the smallest MSE.

Table 15.4.2 shows the results of Pitman’s correlation test for the case of the quarter-
monthly flows of the Saugeen River. The statistic, Ir|, for comparing MSE’s between one step
ahead forecasts for two seasonal models is described in Section 8.3.2. A parenthetical equal
sign, (=), indicates that, at the 5% level, the difference between the row model errors and the
column model errors is not significant. A parenthetical plus sign, (+), indicates that the row
model provides significantly better forecasts than the column model, and a parenthetical negative
sign, (-), indicates the contrary. An asterisk beside the label of the row model indicates that it
provides forecasts which are, at the 5% level, equal to or better than forecasts from all other
models considered. As is the situation in Table 15.4.2 and the results for the other 5 series which
are not shown, in no case does a model furnish forecasts which are significantly better than fore-
casts from all other models.

In all three cases of quarter-monthly series, the DES, PAR, and PPAR/05 models give fore-
cast errors which were statistically equivalent to or better than all other models. In two cases out
of three, the SARIMA, PPAR/50 and PPAR/20 models are equal to or better than all other
models with respect to their forecasting abilities. Only the MEANS model s, in all three cases,
significantly worse than all other models.

Forecasting results for the monthly Alcan system inflows are inconclusive. No PPAR
models are identified for this series, and there is no statistically significant difference in forecasts
from the four other models. For the two other monthly series, forecasts are, at the 5% level of
significance, indistinguishable for the SARIMA, DES, PAR, PPAR/50, PPAR/20 and PPAR/OS
models. In the case of the monthly Rio Grande flows, the MEANS model is significantly worse
than all other models, while for the monthly Saugeen riverflows, the MEANS model is indistin-
guishable from the SARIMA and DES models, but significantly worse than the others.

In summary, from the results of the Pitman test, it is difficult to conclude that, amongst the
SARIMA, DES, PAR, and various PPAR models, one type of model is particularly outstanding
with respect to its forecasting ability for the time series considered herein. However, it is
interesting to recall that in three of the five cases for which they are identified, the PPAR models
provide the smallest MSE’s of forecasts (see Table 15.4.1), and in the other two cases it is the
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PAR models which produces the best forecasts.
15.5 COMBINING FORECASTS ACROSS MODELS

15.5.1 Motivation

The selection of the “‘best’” forecasting procedure is certainly a hopeful result of any fore-
casting study. Invariably, however, no one method will produce optimum forecasts in all cases.
The task then becomes one of selecting the most appropriate forecasting procedure based upon
the available information.

An alternative approach is to combine the forecasts from two or more procedures in accor-
dance to their relative performances. In this way, it is hoped that the strengths of each method
might be exploited. The successes achieved by combining economic forecasts are documented
in several studies (Armstrong and Lusk, 1983; Bates and Granger, 1969; Bordley, 1982; Granger
and Ramanathan, 1984; Makridakis et al., 1982; Newbold and Granger, 1974; Winkler and Mak-
ridakis, 1982). Within the field of water resources, McLeod et al. (1986) present experimental
results on combining hydrologic forecasts which are also described in Sections 15.5.3 and 18.4.2
of this book.

In the next subsection, techniques for combining forecasts are given. Subsequently, in Sec-
tion 15.5.3, seasonal riverflow forecasts generated using both PAR and SARIMA models are
combined in an attempt to achieve improved forecasts. Within Section 18.4.2, seasonal river-
flow forecasts from TFN, PAR and conceptual or physically based models are optimally com-
bined in forecasting experiments.

15.5.2 Formulae for Combining Forecasts

There are certainly countless ways of combining forecasts from different forecasting pro-
cedures to arrive at a combined forecast. The simplest is probably to weight each forecast
equally. If there are k forecasts available, the combined forecast f., would be

k
fo=3wif; [15.5.1]
i=1
where f; is the forecast produced by the ith model, w; is the weighting factor for the ith forecast
and w; =Wj =1/k forall i aﬂdj.

It would be expected that a better combination of forecasts could be obtained if the statisti-
cal properties of the forecast errors were considered. Winkler and Makridakis (1983) point out
that if the covariance matrix of the forecast errors from k methods, Z, is known, then the optimal
weights are given by

k
L%
w; = ‘T’-'l;— [15.5.2]
2 Yoy
h=1j=1
where the a; terms are the elements of T\, In practice, I is not known and must be estimated.
Estimates of the weights in [15.5.2] can be calculated from the inverse of $ where
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A

-1 o g
; =v1 ¥ e [15.5.3]
h=t-v

e,(i) is the percentage error for method i at time ¢ and v is the number of previous forecast errors
employed to calculate w;.

In the study concerning the combination of economic forecasts by Winkler and Makridakis
(1983), these authors found that estimating X! and calculating the weights using [15.5.2] gave
the poorest results. One of the preferred procedures in their study was to ignore the correlation
between the forecast errors. In this case, the forecast weights were calculated as

= -1
For]
Y (15.5.4]

p |1 , -1
| X e
Jj=1 |h=t-v

WA,'=

where e,(i) and v are as defined previously. This approach ensures that all of the estimated
weights are greater than or equal to zero.

An alternative approach to calculating the combining weights when seasonal data are con-
sidered is developed by McLeod et al. (1986). In this procedure, the model residuals are
employed to calculate the residual variance for each season. If two forecasts are to be combined,
then the weights are calculated for each season such that

zn:[ajg()k-—l)slz
W= ——— [15.5.5]
El (a1l + El [ae-1ys)

and

f;[a}f&-l),lz
Wyj=— 1‘=‘ — [15.5.6]
IEl[ank-xnl + El CH

where w, ; is the weight assigned to forecasting procedure one for the jth season, wy; is the
weight assigned to forecasting procedure two for the jth season, a,(‘) is the residual at time ¢ for
the ith model, n is the number of years of data and s is the number of seasons per year. Since

the data are seasonal, the forecast error variance might be expected to be seasonal and, hence,
this procedure should account for this seasonality.

15.5.3 Combining Average Monthly Riverflow Forecasts

The thirty average monthly riverflow time series listed in Table 15.3.1 and referred to in
Section 15.3.2 are the data sets employed in the experiments for combining forecasts among two
models. As is also the situation in Section 15.3.3, the last three years or 36 observations are
omitted from each of the data sets. Subsequently, after taking natural logarithms of each time
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series both PAR/PACF and SARIMA models are fitted to each of the truncated logarithmic
sequences. Recall from Section 15.3.3 that PAR/PACEF refers to a calibrated PAR model that is
identified using the sample periodic PACF. The same 36 one-step-ahead forecasts calculated in
Section 15.3.4 for cach of these two models and each of the thirty series are employed in the
combination experiments reported upon here.

The monthly logarithmic forecasts produced by the PAR/PACF and SARIMA models are
combined using some of the procedures outlined previously in Section 15.5.2. Specifically, the
combining weights are calculated using [15.5.4] with v=3, 6, 9, and 12. In addition, seasonal
combining weights are also determined employing [15.5.5] and [15.5.6]. The combined fore-
casts are then compared on the basis of MSE’s. A summary of the results is presented in Table
15.5.1. The CMB-SEAS entries refer to the combined forecasts produced when separate weights
are calculated for each season. The CMB-v entries represent the combined forecasts when the
previous v forecast errors are employed to calculate the combining weights. The results show
that, in general, the combined forecasts do not constitute an improvement over the PAR/PACF
forecasts, regardless of the procedure utilized to calculate the combining weights. This is
because the PAR family of models has a better mathematical design for forecasting an average
monthly riverflow series like the one in Figure VI.1 while the SARIMA model is more suitable
for forecasting series such as those in Figures V1.2 and V1.3. Accordingly, the PAR model fore-
casts better than the SARIMA model and attempting to combine inferior forecasts with better
ones does not improve the situation for the PAR forecasts. Conversely, the SARIMA forecasts
are almost always improved by combining them with PAR/PACF forecasts. Finally, a com-
parison of the various procedures for combining the forecasts seems to indicate that the more
information employed to estimate the combining weights the better the forecasts.

Table 15.5.1. Percentage of times model A gives better values
for forecasting a series than model B.

Model A Model B
) PAR/PACF | SARIMA | CMB-SEAS | CMB-3 | CMB-6 | CMB-9 | CMB-12
(%) (%) (%) (%) (%) (%) (%)
@ ©)) @ %) ©) m ®
PAR/PACF 0 70 56.7 60 60 56.7 56.7
SARIMA 30 0 20 16.7 20 20 20
CMB-SEAS 434 80 0 46.7 433 56.7 56.7
CMB-3 40 83.3 533 0 50 46.7 333
CMB-6 40 80 46.7 50 0 433 26.7
CMB-9 433 80 433 533 56.7 0 30
CMB-12 433 80 433 66.7 73.3 70 0
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15.6 AGGREGATION OF FORECASTS

Suppose that one wishes to forecast future average annual riverflows for a given river for
which the average monthly and hence also the annual values are known. One approach is to fita
nonseasonal time series model such as an ARMA model to the yearly data and then employ this
model for forecasting annual values. Another procedure is to fit an appropriate scasonal model
like the PAR model of Sections 14.2.2 and 14.3 to the average monthly series and then utilize
this model to forecast the next 12 months. The sum of these 12 monthly forecasts would
represent an aggregated forecast for the yearly value.

Noakes (1984, Ch. 6) carried out forecasting experiments with riverflow time series to
ascertain if aggregated forecasts can improve the accuracy of forecasts determined for a larger
time interval. For various yearly and seasonal time series models, Noakes found that for the data
sets that he considered, the aggregated forecasts for annual values were generally not as good as
those produced by the annual models.

For further research on aggregation of forecasts the reader can refer to Tiao (1972) and
Tiao and Wei (1976). Moreover, a discussion on disaggregation and aggregation in time series
modelling within the hydrological literature is given in Section 20.5.2.

15.7 CONCLUSIONS

As explained in Section 15.2, MMSE forecasts can be easily calculated for all the seasonal
models presented in Part VI. The results of the forecasting experiments of Section 15.3 for 30
monthly riverflow series clearly indicate that PAR models identified using the sample periodic
PACEF forecast significantly better than SARIMA, deseasonalized, and PAR models identified
using techniques other than the sample periodic PACF. When PPAR models are also con-
sidered, the forecasting studies of Section 15.4 show that PPAR models also forecast quite well.
Finally, forecasts can be combined across models in an attempt to achieve improved forecasts by
using procedures described in Section 15.5.2 and applied to monthly riverflow time series in
Section 15.5.3.

PROBLEMS

15.1 Select a seasonal time series for which you think may be appropriate to fit a SAR-

IMA mode! and then carry out the following tasks:

(a) FExamine suitable exploratory data analysis graphs for discovering the key sta-
tistical characteristics of the time series.

() Remove the final year of observations from the time series and then by follow-
ing the three stages of model construction, fit a SARIMA model to the remain-
ing values.

(c) Calculate the MMSE forecasts and 90% probability limits for the last year of
observations to which the model was not fitted. Clearly explain how you per-
form your calculations.
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(d) Plot the MMSE forecasts and 90% probability limits on a graph with the his-
torical observations for the final year. Determine the accuracy of the forecasts
and comment upon any interesting findings.

Follow the instructions in problem 15.1 for a deseasonalized model.
Carry out the instructions in problem 15.1 for a PAR model.

Choose a time series to which it seems reasonable to fit SARIMA, deseasonalized
and PAR models. For each of these models follow the instructions of question 15.1.
Additionally, for the time series under study, compare the forecasting capabilities of
the three seasonal models and ascertain if one model forecasts significantly better
than another.

Makridakis et al. (1982) carry out forecasting experiments for a range of models fit-
ted to 1001 time series consisting of yearly, monthly and quarter-monthly economic
data sets. After reading their paper, respond to the following questions:

(a) Outline the major findings of their study.

(b) Describe the main steps these authors followed in executing their forecasting
experiments and comparing the forecasting results for the various models and
data sets.

(c) Explain the commonalities and differences between the procedures used by the
authors of the forecasing paper for carrying out their forecasting experiments
with those employed in this book.

Carry out the instructions of the previous question for the paper by Newbold and
Granger (1974).

From your field of study, pick out a set of three or more seasonal time series that are
of direct interest to you. After fitting appropriate time series models from Part VI to
the first portion of each series, execute forecasting experiments to ascertain which
class or classes of models provide the most accurate forecasts. A summary of how
to perform a systematic forecasting study is given in Figure 8.3.1.

Employing procedures described in Section 15.5.2, combine forecasts among pairs
of models used in problem 15.7 in order to ascertain if enhanced forecasts can be
found. Comment upon any interesting discoveries that you may make.

Summarize the main research findings of Tiao (1972) as well as Tiao and Wei
(1976) on the aggregation of forecasts.

The aggregation of forecasts is discussed in Section 15.6. Select an average
monthly riverflow time series and then do the following:

(a) Fit a PAR model to all but the last three years of the monthly series. Employ
this model to forecast the last 36 values. For each of the last 3 years, deter-
mine the aggregated forecast for each year.

(b) Fit an ARMA model to the average annual series for which the last 3 years are
left out. Employ this calibrated model to forecast the next three years.



Forecasting with Seasonal Models 549

(c) Compare the accuracy of the annual forecasts obtained in points (a) and (b)
and comment upon the results.

(d) Discuss the annual forecasting results when only one step ahead forecasts are
employed in parts (a) and (b).
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