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PART VII
MULTIPLE INPUT - SINGLE OUTPUT MODELS

In many environmental systems, a single output or response variable is ‘‘caused’’ by one or
more input or covariate series. For example, riverflows are caused by physical variables such as
precipitation and temperature. To formally model the dynamic relationships which exist
between a single output variable and the multiple input variables, a transfer function-noise
(TFN) model can be employed. Qualitatively, a TFN model can be written as

single output = dynamic component + noise

where the dynamic component models the manner in which each input or covariate series affects
the dynamic response of the output and the noise accounts for the stochastic disturbance in the
system which cannot be modelled by the dynamic component. Because the behaviour of the out-
put is dependent upon the way the input series affect the output over time, the overall TFN
model is often referred to as a dynamic model.

An array of useful tools are available for constructing TFN models when following the
identification, estimation and diagnostic check stages of model development. At the identifica-
tion stage, a transfer function can be designed for mathematically describing the dynamic rela-
tionship over time which exists between each input and the output. An appropriate ARMA or
ARIMA model can be identified as the autocorrelated noise component in the overall TFN
model. Following the estimation of the model parameters and checking that the fitted model
adequately describes the dynamic system being modelled, the calibrated TFN model can be used
for applications such as forecasting and simulation. As is demonstrated in Part VII, the presence
of the input variables in the model allows for a more accurate description of the physical system
which in turn means more accurate forecasts (Chapter 18) and realistic simulated values can be
produced by the model. Furthermore, TFN models can be built for either seasonal or nonsea-
sonal time series for which the data points are evenly spaced over time.

In certain situations it may not be obvious if one physical variable causes another. For
instance, do sunspot numbers cause riverflows? Consequently, in Chapter 16 statistical pro-
cedures are presented as exploratory data analysis tools for investigating possible causal rela-
tionships between two variables. When meaningful relationships are detected between two
series using what is called the residual cross-correlation function, a TFN model can be con-
structed as a confirmatory data analysis procedure for rigorously describing the mathematical
relationship between the input and output. In Chapter 17, comprehensive methods for construct-
ing TFN models with a single output and multiple inputs are explained for both seasonal and
nonseasonal time series using a number of interesting hydrological applications. Subsequent to
calibrating a TFN model, the fitted model can be employed for forecasting by following the pro-
cedures of Chapter 18.

Sometimes the dynamic characteristics of a system may be changed by the imposition of
one or more external interventions. For example, in environmental engineering, pollution abate-
ment facilities are built to reduce the levels of certain pollutants. The stochastic effects upon the
mean level of the output can be rigorously modelled using intervention analysis. As will be
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thoroughly explained in Chapters 19 and 22, the intervention model is in fact a special type of
TFN model. An extensive description of exploratory and confirmatory data analysis procedures
for use in intervention analysis is presented in these chapters. Subsequent to calibrating a TFN
model, the fitted model can be employed for forecasting by following the procedures of Chapter
18.
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CHAPTER 16
CAUSALITY

16.1 INTRODUCTION

Is it possible to substantiate the claim of a Soviet hydrologist that yearly sunspot numbers
have a significant affect upon the annual flows of the Volga River? What is the influence of
temperature upon the price of wheat? In other words, how and when can one say that one
phenomenon definitely causes another?

The foregoing kinds of questions have been baffling scientists for decades and previously
some research had been carried out in an attempt to answer them. For example, Brillinger
(1969) and Rodriguez-Iturbe and Yevjevich (1968) employed cross-spectral and other statistical
methods to investigate relationships between natural time series. However, comprehensive sta-
tistical tools are now available to assist in solving causality problems and these useful techniques
have yet to be applied to a large variety of environmental data sets. Consequently, the purpose of
this chapter is to present flexible statistical procedures for formally answering causality ques-
tions and then to apply the methodologies to a wide range of natural time series. In particular,
Granger’s (1969) definition of causality is first defined and then it is explained how a cross-
correlation analysis of the residuals from the stochastic models fitted to two series, can be
employed to detect causal relationships (Pierce and Haugh, 1977). In the section on applications,
a large number of interesting cross-correlation studies are carried out to detect possible causal
relationships between many different phenomena. The time series studied include sunspot
numbers, annual and monthly temperatures, seven annual riverflow series, Beveridge wheat
price indices, and tree ring widths. Contrary to the suggestion of Smirnov (1969), it is found that
annual sunspot numbers do not significantly affect the yearly flows of the Volga River in Russia.
Other causality studies demonstrate that temperatures for certain months of the year can signifi-
cantly affect the annual flows of rivers and also the price of wheat.

Upon detecting significant causal connections between two phenomena, the information
from the cross-correlation analysis can be used to design a transfer Sunction-noise (TFN) model
to describe explicitly the mathematical relationship between the two data sets (Haugh and Box,
1977; Box and Jenkins, 1976, Ch. 11). In Chapter 17, the construction of TFN models which
can handle a single output series and one or more input series, is thoroughly explained for the
identification, estimation and diagnostic check stages of model development. Moreover, in
Chapter 18, it is explained how one can calculate optimal forecasts using a TFN model. As
would be expected, the information contained in the input or covariate series in a TFN model
allows one to obtain more accurate forecasts for the output series. Finally, for the original
presentation of the main contents of Chapter 16, the reader can refer to the paper of Hipel et al.

(1985).
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16.2 CAUSALITY

16.2.1 Definition

Wiener (1956) originally formulated a definition of causality between two time series,
which is suitable for empirical detection and verification of meaningful relationships. More
recently, Granger (1969) presented a formal definition of causality while Pierce and Haugh
(1977) expanded upon the work of Granger (1969) and gave a comprehensive survey regarding
research on causality in temporal systems. Other research which is related to Granger’s (1969)
definition of causality can be found by referring to the appropriate statistical literature (see for
example Jenkins and Watts (1968), Haugh (1972, 1976), Haugh and Box (1977), and McLeod
(1979)).

Granger (1969) defines causality between two time series in terms of predictability. A
variable X causes another variable Y, with respect to a given universe or information set that
includes X and Y, if the present Y can be better predicted by using past values of X than by not
doing so (all other relevant information (including the past of Y) being used in either case). This
definition of causality does not require the system to be linear but when it is, linear predictions
are compared. To be more specific, let X, and Y, be two time series and let A, for
t=02x112,..., be the given information set that includes at least X, and Y, . Allow
A ={A,:s <t}, A', ={A, :s <t} and in a similar fashion define X, )2,, Y,, and f’, . Given the
information set A,, let P/(Y 1A,) be the minimum mean square error one step ahead predictor of Y,
and denote the resulting mean square error by (Y [A,) . According to Granger (1969), X causes
Y if

GX YA, X,) < 6XY1A,) (16.2.1]

while X causes Y instantaneously if
(YA, X,) < 6*(Y1A,) [16.2.2]

Causality from Y to X can be defined in the same way. Feedback occurs when X causes Y and
Y also causes X.

16.2.2 Residual Cross-Correlation Function

To ascertain the type of causality relationship that exists between X and Y, the properties of
the cross-correlations are examined for the prewhitened series. When prewhitening discrete time
series such as X, and Y, , the first step is to consider suitable transformations to form the
transformed series, x, and y, . The reasons for transforming the scries include stabilizing the
variance, improving the normality assumption, eliminating trends, removing seasonality, and
getting rid of nonstationarity. The selected transformations should allow x and y to be related
causally in the same manner as X and Y when considering Granger’s (1969) definition of causal-
ity. In practice, causality is preserved by many of the common types of transformations. For
example, often the given series may be transformed by the Box-Cox transformation (Box and
Cox, 1964) given in [3.4.30] to remove non-normality and heteroscedasticity in the model resi-
duals and following this the data may be differenced as in [4.3.3] to render the data stationary.
As is explained in Section 13.2.2, when dealing with seasonal geophysical series the data may be
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transformed using a Box-Cox transformation and subsequent to this the seasonality may be
removed by invoking an appropriate deseasonalization technique. For instance, when modelling
an average monthly riverflow series, often the series is first transformed by taking natural loga-
rithms and then each data point is deseasonalized by subtracting out the monthly mean and
dividing this by the monthly standard deviation as in [13.2.3]. A Box-Cox transformation such
as natural logarithms should not alter causality relationships for series consisting of all positive
values, since the manner in which one series affects the predictability of another will not be
changed by a strictly monotonic transformation that preserves the same relative position of every
data point in the series. Deseasonalizing each time series is equivalent to removing a periodic
component to eliminate seasonality where the periodic component is ultimately due to hydrolo-
gic factors such as precipitation and temperature. Because the deseasonalization parameters are
estimated from the historical data and are assumed to be the same in the future, the deseasonali-
zation should not alter the causality relationship existing in the original series when entertaining
Granger causality. However, the periodic portion still constitutes one of the components needed
to form the overall seasonal series.

The second step in the prewhitening procedure is to fit appropriate stochastic models to the
x, and y, series in order to obtain white noise residuals. For instance, when the transformed

series are nonseasonal, it may be suitable to fit the ARMA model in [3.4.4] to x, and y, such that
6. (B)(x, — 1y) =0,(B)y, [16.2.3]
and
¢, B), — H1y) =6,(B)v, [16.2.4)

where W, is the theoretical mean of the x, series; B is the backward shift operator defined by
Bx,=x,_; and B"x, =x,_; where k is a positive integer, ¢,(B) =1-¢,,B

-o, _282 - =0, _p‘B" *, is the nonseasonal AR operator of order p, such that the roots of the
characteristic equation ¢,(B) =0 lic outside the unit circle for nonseasonal stationarity and the
b i =12, p, , are the nonseasonal AR parameters;
0,B)=1-6,,B-6, 282— ces = Omqu‘, is the nonseasonal MA operator of order g, such

that the roots of 6,(B) =0 lic outside the unit circle for invertibility and 6, i=12,--- 4, ,arc
the nonseasonal MA parameters; &, is white noise (also called innovation or disturbance) that has
a mean of zero and variance of 03 ; and similar definitions to y,, ¢,(B), 6,(B), and u, hold for
Hy, ¢, (B), 6,(B), and v,, respectively. As mentioned in Section 3.4.2, to indicate the orders of
the AR and MA operators of the models in [16.2.3] or [16.2.4], the notation ARMA(p,q) is
employed. Because of the linear nature of the operators in [16.2.3] and [16.2.4], this insures that
u and v are causally related in the same way as X and Y. Of course, if the data were seasonal an
appropriate scasonal model, such as one of those given in Chapters 12 to 15, could be used to
prewhiten each series.

Subsequent to prewhitening of the time series, the cross-correlation function (CCF), at lag
k between the u, and v, series in [16.2.3] and [16.2.4], respectively, can be considered using
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Puv (k) = E[tv,4) EAE )Y (16.2.5]

Due to the form of [16.2.5], the values of the CCF can range from negative one to positive one.
Unlike the ACF, the CCF is not usually symmetric about lag zero and therefore the properties of
Puv(k) must be examined for k£ =0,11,42,--- . In addition to reflecting the type of linear
dependence between ¥ and v and consequently between X and Y, p,,, (k) gives the kind of causal-

ity relationship between these variables for linear systems.

As explained by Pierce and Haugh (1977), there are many possible types of causal interac-
tions between X and Y which can be characterized by the properties of p,,(k) . Using the results
of Pierce and Haugh (1977, p. 276, Table 3), some of the important causal relationships are
categorized according to the restrictions on p,, (k) in Table 16.2.1. Due to the findings of Price
(1979) and also Pierce and Haugh (1979), any of the relationships in Table 16.2.1 which involve
instantaneous causality are only valid when there is no feedback. The entries in Table 16.2.1 are
self explanatory. For example, when there is unidirectional causality fromX to Y, p,, (k) # O for
the k > 0, p,,, (k) =0 for all k < 0, and p,,,(0) may either be zero or else have some real non-zero

value. For the case where Y does not cause X at all, there is no instantaneous causality between
X and Y since p,,,(0)=0.

When there is feedback between two variables, one variable can cause the other and vice
versa. Although feedback is not too common in many natural problems, in economics, for exam-
ple, inflation can cause unemployment which in turn affects inflation. As indicated in Table
16.2.1, p,,, (k) is nonzero at both positive and negative lags if there is feedback between X and Y.

When checking for the type of causality between two given time series the estimated CCF
of the model residuals must be examined to ascertain which values are significantly different
from zero. Suppose that two sequences x, and y, are given for ¢t =1.2,...,n. By utilizing
[16.2.3] and [16.2.4] or other appropriate linear models, the two series can be prewhitened to
obtain the estimated innovation series or residuals, #, and v}, respectively. The residual CCF at

lag k between i, and v is estimated using
r s (k) = € 45k [c0)c ()] [16.2.6]

where

n—k
n Y dvie k20
=1
Cﬁ(k) = n
n' ¥ v, k<0
1=1-%

n
is the estimated cross-covariance function at lag k between the residual series; c;(0) = n'IZu‘,2
1=1
n
is the sample variance of the &, sequence; and ¢;(0) = n’! th,z is the estimated variance of the v,
t=1
series.
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Table 16.2.1. Causal relationships between two variables.

RELATIONSHIPS RESTRICTIONS ON p,,, (k)

X causes Y Puv(k) # O for some k > 0
Y causes X Puv(k) # 0 for some k < 0

Instantaneous Causality Puy(@ =0

Feedback Puv(k) # 0 for some k > 0
and for some k < 0

X causes Y but not Puv(k) # 0 for some k > 0

instantaneously and p,,(0)=0

Y does not cause X Puk)=0forall k <0

Y does not cause X atall | p,, (k)=0forall k <0

Unidirectional causality | p,,(k) # 0 for some k > 0
fromXtoY and p,,, (k) = O for either
(@)allk<Qor()allk <0

X and Y are only related | p,,(0) # 0 and
instantaneously Puwk)=0forallk#0

X and Y are independent | p,, (k) =0 forall k

The residual CCF can be plotted against lag k for k = -n/4 to k = n/4 . In order to plot con-
fidence limits, the distribution of the residual CCF must be known. Assuming that the x, and y,

serics are independent (so p,, (k) = O for all k), Haugh (1972, 1976) shows that for large samples
F45(k) is normally independently distributed with a mean of zero and variance of 1/n. Conse-

quently, to obtain the approximate 95% confidence limits a line equal to 1.96 n~*2 can be plot-
ted above and below the zero level for the residual CCF. McLeod (1979) presents the asymptotic
distribution of the residual CCF for the general case where the x, and y, series do not have to be
independent of each other and, consequently, more accurate confidence limits can be obtained by
utilizing his results.
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One reason why the residual CCF is examined rather than the CCF for the x; and y, series,
is that it is much easier to interpret the results from a plot of r;(k) . This is because when both
the x, and y, series are autocorrelated, the estimates of the CCF for x; and y; can have high vari-

ances and the estimates at different lags can be highly correlated with one another (Bartlett,
1935). In other words, the distribution of the estimated CCF for x, and y, is more complex than

the distribution of r,;(k) . Monte Carlo studies executed by Stedinger (1981), demonstrate the

advantages of prewhitening two series before calculating their CCF. Additionally, from an intui-
tive point of view it makes sense to examine the residual CCF. Certainly, if the driving mechan-
isms or residuals of two series are significantly correlated, then meaningful relationships would
exist between the original series.

From an examination of the residual CCF, the type of relationship existing between X and
Y can be ascertained by referring to the results in Table 16.2.1. Suppose, for example, the X
variable is precipitation and the Y variable is riverflow. From a physical understanding of
hydrology, it is obvious that precipitation causes riverflow. This knowledge would be mirrored
in a plot of the residual CCF for these two series. For k 2 0 there would be at least one value of
r;(k) which is significantly different from zero. However, all values of the residual CCF for

k < 0 would not be significantly different from zero. In situations where the type of causality
between two series is not known (for instance, do sunspots cause riverflows), an examination of
the residual CCF can provide valuable insight into the problem (see Section 16.3).

Formal tests of significance may also be derived when examining causal relationships (see,
for example, McLeod (1979) and Pierce (1977)). Suppose that it is known a priori that Y does
not cause X so that p,,(k) =0 for k <0 (for instance riverflows do not cause precipitation).

Consequently, one may wish to test the null hypothesis that X does not cause ¥ and hence
Pk)=0fork=12,...,L, where L is a suitably chosen lag such that after L time periods it

would be expected there would not be a relationship between the x, and y, series. The statistic

L rik)
—plg
Qp=n E,o par? [16.2.7]

is then approximately distributed as x*L +1) . A significantly large value for Q; would mean
that the hypothesis should be rejected and, therefore, X causes Y.

A limitation of the methods explained in this section is that they are only useful when
describing the relationships between two time series. If three or more time series are mutually
related, then analyzing them only two at a time may lead to finding spurious relationships among
them. Consequently, further research on causality between linear systems is still required.
Nevertheless, as shown by the applications in the next section, in many situations bivariate
causality studies are of direct interest to the practitioner.

When sufficient data are available, an alternative approach for detecting causal linear rela-
tionships is to work in the frequency domain rather than the time domain by employing the
coherence function. An advantage of this procedure is that it can be extended for handling
multiple-input and multiple-output systems (Bendat and Piersol, 1980).
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16.3 APPLICATIONS

16.3.1 Data

For a long time, hydrologists have been attempting to ascertain the impact of exogenous
forces upon specific hydrological and meteorological phenomena. In many instances, the great
complexity of the physical problem at hand has precluded the development of suitable physical
or statistical models to describe realistically the situation. Consequently, a wide range of
phenomena are now studied in order to detect and model meaningful dynamic relationships.

The time series investigated are listed in Table 16.3.1. Except for monthly temperatures
from the English Midlands, all of the data sets consist of annual values. The sunspot numbers,
annual and monthly temperatures, seven riverflow series in m3/s where each average yearly flow
is calculated for the water year from October 1st of one year to September 30th of the next year,
and Beveridge wheat price indices, are obtained from articles by Waldemeier (1961), Manley
(1953, pp. 255-260), Yevjevich (1963), and Beveridge (1921), respectively. The tree ring widths
given in units of 0.01 mm are for Bristlecone Pine and were received directly from V.C.
LaMarche of the Laboratory of Tree Ring Research, University of Arizona, Tuscon, Arizona.
The length and accuracy of the tree ring series make it a valuable asset in cross-correlation stu-
dies for determining the effects of external variables such as temperature and the amount of sun-
light. The reason for considering the Beveridge wheat price index data is that the series could be
closely related to climatic conditions and, therefore, may be of interest to hydrologists and
climatologists. For example, during years when the weather is not suitable for abundant grain
production the price of wheat may be quite high.

16.3.2 Prewhitening

When checking for causality, the time series under investigation must first be prewhitened.
Table 16.3.2 describes the types of models which were used to prewhiten the series from Table
16.3.1. In all cases, the models were determined by following the three stages of model con-
struction in conjunction with the AIC (see Section 6.3) and in some instances the most appropri-
ate models are constrained models for which some of the model parameters are omitted. For
example, as explained in Sections 3.4.4 and 5.4.3, the best ARMA model for the sunspot series is
a constrained ARMA (9,0) model where ¢; to ¢g are left out of the model and the original data

are transformed by a square root transformation for which A = 0.5 in [3.4.30] where x, replaces
z,, and ¢ =1 due to some zero values in the series. Using the format in [16.2.3] or [3.44], the
estimated sunspot model is written in difference equation form in [6.4.4] as

(1 - 1.245B +0.524B% - 0.192B%)(x, — 10.673) = 4, [16.3.1]
where
x, = (110.5)[X, + 1.0)°5 - 1.0]

Notice for the Beveridge wheat price indices that the data are transformed using a natural
logarithmic transformation where A =0 and ¢ =0 in [3.4.30]. The transformed data are then
differenced once to remove nonstationarity by using [4.3.3] which is written as
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Table 16.3.1. Time series used in the causality studies.

DATA SET LOCATION PERIOD | LENGTH
Sunspots Sun 1700-1960 261
Annual Temperatures English Midlands 1723-1970 248
12 Monthly Temperature | English Midlands 1723-1970 248
Sequences per month
St. Lawrence River Ogdensburg, New York, USA | 1860-1957 97
Volga River Gorkii, USSR 1877-1935 58
Neumunas River Smalininkai, USSR 1811-1943 132
Rhine River Basle, Switzerland 1807-1957 150
Gota River Sjotorp-Vanersburg, Sweden 1807-1957 150
Danube River Orshava, Romania 1837-1957 120
Mississippi River St. Louis, Missouri, USA 1861-1957 96
Beveridge Wheat Price England 1500-1869 370
Index
Tree Ring Widths Campito Mountain, 1500-1969 470

California, USA

Y =InY,,; -InY,

fort=1.2,3,...,n-1. Following this, identification results explained in detail in Section 4.3.3
reveal that an ARMA (8,1) without ¢; to ¢, should be fitted to y, where the estimated model is

written using the notation of [16.2.4] as
(1-0.729B +0.364B% + 0.11988))’, =(1-0.783B)y, [16.3.2]

The reader should bear in mind that only the family of ARMA models are entertained when
selecting the best model to describe each data set in Table 16.3.2. In certain instances, it may be
appropriate to also consider other types of models. For example, Akaike (1978) noted that
because of the nature of sunspot activity a model based on some physical consideration of the
generating mechanism may produce a better fit to the sunspot series than an ARMA model. For



Causality

Table 16.3.2. Models used to get residuals for the CCF studies.
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DATA SET ARMA (p,9) MODEL i, v

Sunspots (9,0) without ¢ to ¢g,
A=05andc=1 *

Annual Temperature (2,0) without ¢, * *
12 Monthly Temperature | (0,0) for all months * *
Sequences
St. Lawrence River (3,0) without ¢, as in [6.4.2] *
Volga River 0,0 *
Neumunas River 0,1),A=0 *
Rhine River 0,0) *
Gota River 2,0 *
Danube River (0,0) *
Mississippi River o,1) *
Beveridge Wheat Price (8,1) without ¢3 to ¢, A =0,
Indices and series is differenced once *
Tree Ring Widths (4,0) without ¢, *

modelling the sunspot series, Granger and Andersen (1978) utilized a bilinear model. Whatever
the case, for each time series in Table 16.3.2 extensive diagnostic checking was executed to
ensure that the best ARMA model was ultimately chosen.

16.3.3 Causality Studies

Following prewhitening, [16.2.6] is employed to calculate the residual CCF for two speci-
fied residual series. In the third and fourth columns of Table 16.3.2, *’s indicate when the resi-
duals of a given series are used as &, and/or Vv, , respectively, in [16.2.6]. Whenever two series
are cross-correlated, the residual values are used for the time period during which the #, and v,

data sets overlap. The sunspot residuals could possibly affect all the other series in Table 16.3.2
and, therefore, the sunspot residuals are separately cross-correlated with each of the remaining
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series in Table 16.3.2. For the monthly temperature data, each monthly sequence is considered
as a separate sample when the residual CCF is calculated between the sunspot series as i; and a

given monthly temperature data set as v, . However, it is also possible that temperature can

affect the phenomena listed below the temperature series in Table 16.3.2. For example, April
temperatures may influence tree ring growth in the Northem Hemisphere since the month of
April is when the growing scason begins after the winter months. Consequently, the residual
series for the annual temperature data set and the 12 monthly temperature sequences are each
cross-correlated with the residual series of each of the data sets given below the temperatures.

In many situations, it may not be known whether or not one phenomenon definitely causes
another. Although the direction of suspected causality is often known a priori due to a physical
understanding of the problem, proper statistical methods must be employed to ascertain if the
available evidence confirms or denies the presence of a significant causal relationship. Consider,
for example, determining whether or not sunspots and riverflows are causally related. Obvi-
ously, it is only physically possible for sunspots to cause riverflows and not vice versa. Based
upon ad hoc graphical procedures comparing annual flows of the Volga River in the USSR with
yearly sunspot numbers, Smirmov (1969) postulated that sunspots unequivocally affect river-
flows. However, when the residual CCF is used to detect scientifically causality, the results do
not support Smimov’s strong claim. In Figure 16.3.1, the residual CCF along with the 95% con-
fidence limits are presented for the residuals from the ARMA model fitted to the annual flows of
the Volga River at Gorkii, USSR, and the residuals from the ARMA model fitted to the annual
sunspot numbers (refer to Table 16.3.1 for a description of these data sets and to Table 16.3.2 for
the types of models fitted to the two time series). As can be seen, there are no significant values
of the residual CCF at lag zero and the smaller positive lags. If sunspot activity did affect the
Volga flows, it would be expected that this would happen well within the time span of a few
years. Therefore, the absence of significant values of the CCF from lags 0 to 2 or 3 indicates
that the current information does not support the hypothesis that sunspots cause the Volga river-
flows. The slightly large magnitudes at lags 5 and 11 are probably due to chance. Nevertheless,
it is possible, but highly unlikely, that the value at lag 11 could be due to the fact that the best
ARMA model could not completely remove the periodicity present in the sunspot series. Previ-
ously, Granger (1957) found that the periodicity of sunspot data follows a uniform distribution
with a mean of about 11 years. However, the constrained sunspot model in [16.3.1] is designed
to account for this. Moreover, the fitted model is subjected to rigorous diagnostic checks to
demonstrate that the periodicity is not present in the model residuals and none of the values of
the residual ACF are significantly different from zero, even at lag 11.

Besides the annual flows of the Volga River, no meaningful causality relationships are
detected when the sunspot residuals are separately cross-correlated with the other riverflow resi-
duals and also the remaining residuals series which are considered as v, in Table 16.3.2. As

emphasized earlier, if correct statistical procedures are not followed it would not be possible to
reach the aforesaid conclusions regarding the causality relationships between the sunspots and
the other phenomena. For example, in Figure 16.3.2 it can be seen that the values of the CCF
calculated for the given annual sunspot and Gota riverflows series are large in magnitude at
negative and positive lags (recall that the 95% confidence limits in Figure 16.3.2 are derived for
independent series). Furthermore, the cyclic nature of the sunspot data is portrayed by the
sinusoidal characteristics in the graph. To uncover the underlying causal relationship between
the series it is necessary to examine the residual CCF. As just noted, the residual CCF for the
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sunspot and Gota River series does not reveal that sunspot numbers affect the flows of the Gota
River.

For the case where the i, sequence, as represented by the residuals of the annual tempera-
ture data, is cross-correlated with each of the last nine ¥ series in Table 16.3.2, no meaningful

relationships are found. Nonetheless, some significant values of the residual CCF are discovered
when each monthly temperature series is cross-correlated separately with each residual sequence
for the riverflows and also the Beveridge wheat price indices. Table 16.3.3 shows the lags at
which the residual CCF possesses large values when &, is a designated monthly temperature

series and v, is either the annual riverflow or Beveridge wheat price index residuals. Since it

would be expected from a physical viewpoint that a given monthly temperature data set would
have the most effect upon the other time series in the current year or perhaps one or two years
into the future, large values of the residual CCF are only indicated in Table 16.3.3 when they
occur at lags 0 to 2. As an illustrative example, consider the graph of the residual CCF for the
August temperatures and the Gota River residuals which is shown in Figure 16.3.3. As can be
seen, the large negative correlation at lag zero extends well beyond the 95% confidence limits.
When the Q; statistic in [16.2.7] is calculated for lags 0 to 2, the estimated value for the residual

CCF in Figure 16.3.3 is 26.6. Because this value is much larger than the tabulated x2(3) value of
7.8 for the 5% significance level, one must reject the null hypothesis that the August tempera-
tures do not affect the annual flows of the Gota River.

It would be expected that temperature could significantly affect tree ring growth. As noted
by La Marche (1974), because Bristlecone Pines are located at the upper treeline on mountains,
temperature is a key factor in controlling growth. However, this growth would only be sensitive
to local temperature conditions and the temperatures recorded in the English Midlands are prob-
ably not representative of the temperatures at Campito Mountain in California. If local tempera-
tures were available, the residual CCF between the local temperatures and tree ring widths could
be calculated to ascertain the type of causality which is present.

16.4 CONCLUSIONS

Comprehensive procedures are now available for detecting causal relationships between
two time series. The results of Table 16.3.3 demonstrate that monthly temperatures can signifi-
cantly affect annual riverflows and also the price of wheat. However, no meaningful links are
found between the annual sunspot numbers and the other phenomena designated by v, in Table

16.3.2. In particular, the statistical evidence from Figure 16.3.1 cannot support the claim (Smir-
nov, 1969) that sunspots significantly affect the annual flows of the Volga River. While some of
the findings of Section 16.3 may be somewhat interesting, it is also informative to note the types
of results that Pierce (1977) discovered in the field of econometrics. Using residual CCF studies,
Pierce found that numerous economic variables which were generally regarded by economists as
being strongly interrelated were in fact independent or else only weakly correlated. These con-
clusions are of course based upon the information included in the time series which Pierce
analyzed. If it were possible to improve the design of the data collection scheme for a causality
study, this would of course enhance the conclusions reached at the analysis stage. Certainly, it is
necessary that a sufficiently wide range of values of the relevant variables appear in the sample
in order to increase the probability of detecting relationships which do actually exist in the real
world. However, as is the case in economics and also in the natural sciences, the experimenter



Causality 567

Table 16.3.3. Residual CCF results of monthly temperature

and other series.
MONTHLY TEMPERATURES LAGS FOR
LARGER VALUES
v U, OF RESIDUAL CCF

St. Lawrence River February 1
Volga River February 2
April 2

May Oand 1
July 2
Neumunas River May 0
July 2
December 2
Rhine River October 0
Gota River June 0
July 0
August 0
September 0
Danube River September 0
October 0
Mississippi River December 1
Beveridge Wheat February 0
Price Index November 0
December 0

has little control over the phenomena which produce the observations and must therefore be con-
tent with the data that can be realistically collected. Perhaps God may have a switch that can
greatly vary the number of sunspots that appear on the sun so that mortal man can assess beyond
a shadow of a doubt whether or not sunspots can significantly affect riverflows.

Given the available information, it is essential that the data be properly analyzed. For
example, if a sample CCF were calculated for the x, and y, series, spurious correlations may

seem to indicate that the variables are causally related (see Figure 16.3.2, for instance).
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Figure 16.3.3. Residual CCF for the August temperatures
and the Gota riverflows.

However, an examination of the residual CCF for the two series may clearly reveal that based
upon the given data no meaningful relationships do in fact exist between the two phenomena. It
is of course possible that no significant correlations may appear in the residual CCF even though
two variables are functionally related. This is because correlation is only a measure of linear
association and nonlinear relationships that contain no linear component, may be missed. To
minimize the occurrence of this type of error, the fitted ARMA models that are used to prewhi-
ten the series are subjected to stringent diagnostic checks. In this way, any problems that arise
due to the use of these linear models will be detected prior to examining the residual CCF.

Subsequent to the revelation of causality using the residual CCF, a dynamic model can be
built to describe mathematically the formal connections between the x, and y, series. In most
hydrological and other geophysical applications, usually one variable causes another and there is
no feedback. For instance, precipitation causes riverflows and this unidirectional causality can-
not be reversed. In terms of the residual CCF, for unidirectional causality from X to Y, the resi-
dual CCF is nonzero at one or more lags for k > 0, p,,(0) may be either zero or have some
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nonzero value, and the value of the residual CCF at all ‘ncgativc lags must be zero (see Table
16.2.1). To describe mathematically the formal connections between the x, and y, series, the

TFN model described in the next chapter constitutes a flexible dynamic model which can be util-
ized. An inherent advantage of TFN models is that well developed methodologies are available
for use at the three stages of model construction. For instance, at the identification step the
results of the residual CCF study that detected the causal relationship in the first place, can be
utilized to design the dynamic model (Haugh and Box, 1977). When the y, series has been

altered by one or more external interventions, then intervention components can be introduced
into the TFN model to account for possible changes in the mean level (see Chapters 19 and 22).

When there is feedback between X and Y, Table 16.2.1 shows that p,,, (k) is nonzero at both

positive and negative lags. The multivariate models in Chapters 20 and 21 are the type of
dynamic models which can be used to model rigorously the dynamical characteristics of the
feedback. Nevertheless, the reader should keep in mind that TFN models are used much more
than multivariate models in hydrology and environmental engineering, since most natural sys-
tems do not possess feedback. Consequently, TFN models are described in more detail than
multivariate models within this text.

PROBLEMS

16.1 Granger causality is defined in Section 16.2.1. Explain at least one other way in
which scientists define causality between two phenomena. You may, for instance,
wish to examine the path analysis procedure for studying relationships among vari-
ables which Kaplan and Thode (1981) apply to water resources data. Another pro-
cedure to consider for investigating causality is the coherence function (Bendat and
Piersol, 1980) mentioned at the end of Section 6.2.2. Compare the residual CCF
method to the other techniques for causality detection in terms of similarities and
differences in the basic procedures, as well as advantages and drawbacks.

16.2 As is illustrated in Figure 16.3.2, spurious relationships between two variables can
be found by improperly comparing the two variables. One way to overcoming
spurious statistical connections between two time series is to employ the residual
CCF approach of section 16.2.2. Find a statistical study in a field which is of
interest to you where you think that scientists may have discovered spurious causal
connections between two variables which do not really exist. Point out where the
authors followed an improper procedure and explain how it can be corrected.

16.3 Select two annual time series for which you suspect one variable causes the other.
For instance, you may have a representative yearly regional precipitation series
which causes average annual riverflows in a river falling within the region. For
these two data sets, carry out the following tasks:

(a) Prewhiten each series by fitting an ARMA to the series and thereby obtaining
the model residuals.
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(b) Calculate and plot the residual CCF for the two series along with the 95% con-
fidence limits.

(¢) Describe the stochastic relationships that you find in part (b). Explain why
your findings make sense by linking them with the physical characteristics of
the system under study. If, for example, you are examining a hydrological sys-
tem, include aspects of the hydrological cycle described in Section 1.5.2 in
your explanation.

16.4 Design and calibrate a TFN model for formally describing the dynamic relationships
between the two time series examined in problem 16.3. Perform diagnostic checks
to ensure that your fitted model adequately links the two data sets.

16.5 Choose a set of 6 to 10 time series in a field which you are working. Following the
approach employed for the time series in Section 16.3, carry out a systematic causal-
ity study among your data sets. Comment upon the interesting results that you dis-
cover.

16.6 Select two seasonal time series, such as average monthly precipitation and river-
flows, for which it makes sense to remove the seasonality by employing a suitable
deseasonalization technique from Section 13.2.2. After fitting an ARMA model to
ecach of the deseasonalized series, carry out a causality study to examine the relation-
ships among these series.
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