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CHAPTER 18
FORECASTING WITH
TRANSFER FUNCTION-NOISE MODELS

18.1 INTRODUCTION

A transfer function-noise (TFN) model can describe the dynamic relationship between a
single output series and one or more input series. For example, a TFN model can formally
specify the mathematical association existing between riverflows and the temperature and pre-
cipitation variables which caused the flows. Furthermore, the remaining noise component can be
modelled using an ARMA model. Because its inherent flexible design reflects many types of
physical situations that can take place in practice, the TFN model constitutes an important tool
for use in water resources and environmental engineering plus many other fields.

In the previous chapter, the TFN model is defined and comprehensive model construction
techniques are presented so that the model can be conveniently applied in practice. Moreover,
practical applications are given in Chapter 17 to explain clearly how model building is carried
out. If one is confronted with a situation where the direction of causality between two series is
not clear, the residual cross-correlation function (CCF) of Section 16.2 can be utilized. Addi-
tionally, as explained in Section 17.3.1, after the type of causality is established, the results of a
residual cross-correlation function study can be employed for deciding upon the parameters to
include in a formal mathematical model to describe the relationship between the two series.

A particularly useful and common application of a calibrated TFN noise model is Sorecast-
ing. For instance, forecasts of riverflows based upon other previous flows as well as other
hydrological conditions are useful for optimizing the operation of multipurpose reservoir sys-
tems. Consequently, the objective of this chapter is to demonstrate the utility of TFN models in
forecasting by employing practical applications in hydrology.

In the next section, it is explained how minimum mean square error (MMSE) forecasts can
be generated using a TFN model. Then, practical forecasting applications are presented in the
subsequent two sections. The forecasting experiments of Section 18.3 demonstrate that TFN
models produce more accurate forecasts than other competing models, including what is called a
conceptual hydrological model. The forecasting applications of Section 18.4 explain how fore-
casts from TFN and other models can be combined in an optimal fashion in an attempt to obtain
improved forecasts. In particular, a TFN, periodic autoregressive (PAR) (see Chapter 14) and a
conceptual model (see Section 18.3.3) are employed to forecast quarter monthly riverflows.
These models all approach the modelling and forecasting problem from three different perspec-
tives and each has its own particular strengths and weaknesses. The forecasts generated by the
individual models are combined in an effort to exploit the strengths of each model. The results
of this case study indicate that significantly better forecasts can be obtained when forecasts from
different types of models are combined. The forecasting findings of Sections 18.3 and 18.4 are
based upon research by Thompstone et al. (1985) and McLeod et al. (1987), respectively.
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Because TFN models have been found to produce reliable forecasts in applications, they
are becoming popular with practitioners. In addition to the forecasting studics described in this
book, other documented results of TFN forecasting include contributions in hydrology (Ansclmo
and Ubertini, 1979; Baracos et al. 1981; Chow et al., 1983; Snorrason et al., 1984; Alley, 1985;
Maidment et al., 1985; Olason and Watt, 1986; Fay et al., 1987; Haltiner and Salas, 1988), fish
population studies (Stocker and Noakes, 1988; Noakes et al., 1990; Schweigert and Noakes,
1990) as well as many other fields. Moreover, as explained in Section 18.5, TFN models can
also be employed for extending time series records, control and simulation.

For forecasting with nonseasonal ARMA and ARIMA models, the reader may wish to refer
to Chapter 8. Forecasting experiments are presented in Section 15.5 on the three types of sea-
sonal models from Part V1. These seasonal forecasting studies include experiments on combin-
ing forecasts from different seasonal models to try to procure better forecasts.

18.2 FORECASTING PROCEDURES FOR TFN MODELS

18.2.1 Overview

A TEN model describes mathematically how one or more inputs dynamically affect a sin-
gle output or response variable. In Section 17.2, a TFN model having one input or covariate
series is defined in [17.2.5]. Within Section 17.5.2, a TFN model with two or more covariate
series is given in [17.5.3].

Intuitively, one would expect that forecasts for the response series should be considerably
improved if one uses forecasting information coming from the covariate series. Consequently,
the forecasts from a TFN model should be more accurate than those obtained from a separate
time series model fitted only to the response series. In fact, the forecasting experiments of Sec-
tion 18.3 demonstrate that a TFN model forecasts better than other competing time series models
as well as a conceptual model. When a response variable can be anticipated by changes in the
values of a covariate, economists refer to the covariate as a leading indicator for the response.
The future net growth in a national economy, for instance, is often anticipated by leading indica-
tors such as trade surplus or deficits, interest rates, unemployment and inflation.

Section 8.2 explains how to calculate minimum mean square error (MMSE) forecasts for
nonseasonal ARMA and ARIMA models, while Section 15.2 describes how to compute MMSE
forecasts for three types of seasonal models. The purpose of this section is to present procedures
for determining MMSE forecasts for various types of TFN models. More specifically, in Section
18.2.2, formulae are given for calculating MMSE forecasts for TFN models having single or
multiple inputs, ARMA or ARIMA noise and a deterministic trend component. Moreover, these
kinds of TFN models can be fitted to yearly or deseasonalized data sets that may first be
transformed using a Box-Cox transformation. In Section 18.2.3, an illustrative forecasting appli-
cation is presented for clearly explaining how to calculate MMSE forecasts and for demonstrat-
ing that a TFN model forecasts more accurately than an ARMA model separately fitted to the
response series.
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18.2.2 Forecasting Formulae

For convenience of explanation, forecasting formulae are first developed for the case of a
TFN model having a single covariate series. As explained below, these formulae can easily be
extended for handling situations for which there are two or more input series. Other complica-
tions that are discussed in this subsection include how to handle seasonality, differencing and
trends when forecasting with a TFN model.

Single Input TFN Model Having ARMA Noise
Derivation of MMSE Forecasts: As in Section 17.2, suppose that a variable X causes a
variable Y. Let the observations for X and Y at time ¢ be given by X, and Y,, respectively. If the

given series are transformed using a transformation such as the Box-Cox transformation in
[3.4.30], let the transformed series for X, and Y, be denoted as x, and y,, respectively. As in

[17.2.5], a TFN model for mathematically describing the relationship between x, and y, as well
as the noise, is written as

Y= Ky =V(B)x — ) +N, [18.2.1]
where 1, and y, are the theoretical means of y, and x,, respectively. In the above equation,
(- @B - ,B*- - -, B™
v@)= 28 _ 0" “’ZBZ mB’) [18.2.2]
3(B) (1-8B-8,8>- --- -3,B")

is the transfer function which models the dynamic effects of the input upon the output. If there is
a delay time, b, (where b is a positive integer) for x, to affect y,, then x, is replaced by x,_, in
[18.2.1]. The noise term, N,, is assumed to follow an ARMA process as in [3.4.4] such that

®(B)N, = 6(B)a,

or

1-6,B-6,82- --- -9 _BY)
= 28), - -5 232 Ly, [18.2.3]
OB) " (1-¢,B-¢,8*~ - -¢,B°)
As pointed out later, N, could also be an ARIMA model when the data are nonstationary.
As in [16.2.3), suppose that x, can be described using an ARMA model such that
6 B)(x; = 1) = 6,(B)y,
or
G =)= %® u
(] X OJ(B) (4
(1-6,,B-6,,8>— --- -0, 8%
_ U708 708 - S [18.2.4]
(1= 018 = 0282~ -+ = ,,87)

By substituting the above into [18.2.1], the TFN model becomes



620 Chapter 18

_, _9BRB) o)
)/’ u’)’ = S(B)Qt(B) Uy ¢(B) 4
=V (B)u, + y(B)a, (18.2.5]

The transfer function for &, in [18.2.5] is expanded as

v'B)=vg +V{B +V,B%+ - -

where the v* weights can be calculated by equating coefficients in the identity
w(B)8,(B)

V8= e ®)

or
5(B).(B)V" (B) = (B)0,(B) [18.2.6)
As in [3.4.18], the random shock operator is

vB)=2E) 1 yB vy, - [18.27]

(B)
where the y; weights can be determined using the identity in [3.4.21].

By replacing ¢ by ¢+ in [18.2.5], the TFN model for the actual value of the response vari-
able at time ¢+/ is

. L] *
Yist =By = Vol + Vil + Vollyp 2+ - -
L 3 L .
+ ViU + Vi F Vgl + 0
+ [a,+1 + Vi + Vol 2+
+ Yia; + Y1181 + V282t 0 ] [18.2.8]

where / is a positive integer. Let y,(/) be the forecast for y,,; made at origin ¢. Keeping in mind
that only information up to time ¢ can be utilized, let this forecast be written as
YD) = 1y = (VM + Vg + Vil + ) '
+ (Y7 + Yinai + Wiagia + 0 7) [18.2.9]

Then, using [18.2.8] and [18.2.9]
-,
Y = Vi) = EO(V" Uy + Widia-i)
[}

+3 [(Vl:»j = Vi + (Wij— Vﬂj)az—j] [18.2.10]
j=0

where y, = 1. Following arguments put forward in Section 8.2.2 for forecasting with an ARMA
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model, one can determine the MMSE forecast for the response variable. In particular, the mean
square error for the forecast is calculated using [18.2.10] within the expected value given below
as

ED -V (DP = (o2 +vi24v32 4 - -+ + v 3)0?
+(A+yi+yi+ o +yipo?

+ z[(v,‘ﬂ. -v,':,j)203+ (Wisj —w,‘j,,-)’c}] [18.2.11]
=0

which is minimized only if v%; = v/,; and W7 ; =y,,;. Consequently, the MMSE forecast y;(/)
of y,,; at origin ¢ is given by the conditional expectation of y,,; at time t. Therefore, the MMSE
forecast using the TFN model as written in [18.2.9] is simply
- * ] ]
V() =y = (Vi + Vil + Vil + )
+ (V18 + V10 + Vil + ) [18.2.12]
Computing MMSE Forecasts: Equation [18.2.12] could be employed for calculating

MMSE forecasts for a TFN model having a single input. However, a more convenient way to
compute the forecasts is to use the TFN format from [18.2.1] which is written at time ¢+/ as

=B, 8B)
Yot =My = gy ot =K + Tp i [18.2.13]

when the noise is modelled as an ARMA process. To eliminate the operators written in the
denominators on the right hand side of the equation, one can multiply both sides of the equation
by ¢(B)d(B) to obtain

(B)S(B)(y141 = Ky) = $(BIO(B)(x,4s — 1) + 3(B)O(B)a, [18.2.14]

Subsequently, one can multiply together the operators in each term in [18.2.13] and then take
conditional expectations to determine the MMSE forecasts. Specifically, in [18.2.13] let

8'(B)=¢(8)5B)=1-8B-8; - --- -§,,,B""
©'B)=¢B)B)=1-wg -0 - -+ —@,,B"*
8°(B)=5B)8(B)=1-6,B - 6,8~ --- - 0., B [18.2.15]

One can see that §;, ; and 8;" coefficients can be easily computed by multiplying together the

known operators as defined above. Then, employing square brackets to denote conditional
expectations at time ¢, the MMSE forecast for lead time / is

YO -1y =Dl -,
= 8y (yat-1] - Hy) + 8, (rsi2] - Ky)
* + 8ar Dert—p—r] = y)
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+ @y (] = ) = ©F (gt = 1)
- mZ.([xH-l-ﬂ - ux) -t = mp.+s([xt+l-p-s] - le) + [au-l]
= 0,[01411) = 0;(8112) = *+* =8, B1g/] [18.2.16]

In order to obtain the MMSE forecasts, the rules for iteratively calculating the conditional expec-
tations in [18.2.5] for lead times / = 1,2, . .., are as follows:

Dl =52 j) for j >0 [18.2.17a]

\

since y,,; is a known observation for j <0 and unknown for j > 0.

4

X, for j<O

sl = 1 4. for j >0 [18.2.17b)

\

where the forecasts for the input variable are determined using the ARMA model for the x; series
in [18.2.4] according to the forecasting rules laid out in Section 8.2.4 for an ARMA model.

i forj<0
la, 1=

0 forj>0 [18.2.17¢]

because a,,; is known for j < 0 and has an expected value of zero for j > 0.

Variance of MMSE Forecasts: To obtain the v;” and y; weights for the TFN model as
written in [18.2.5], one can employ the identities in [18.2.6] and [3.4.21], respectively. On the
right hand side of [18.2.10], the forecast error is given by the first summation component. From
the first two terms on the right hand side of [18.2.11], the variance of the forecast error for lead
time / is written as

V() = Elyas - 5P

I-l
-G“Zv 2+ 02 Zw, [18.2.18]

where o& is the variance of the noise term for the ARMA model fitted to the x, series in [18.2.4],

is the variance of the ARMA noise term for the TFN model in [18.2.1] and [18.2.12], and the
v and v; coefficients are determined using the identities in [18.2.6] and [3.4.21], respectively.
thn the u, and a, series are assumed to be NID(0,0, ) and NID(O,oz) respectively, one can

conveniently calculate the probability limits for each MMSE forecast. For instance, the 95%
probability limits for y,(/) would be y,(/) £ 1. 96V V(l) where V(l) is estimated using [18.2.18]

_when the coefficient and noise estimates appropriately replace the theoretical values given on the
right hand side of the equation.
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Forecasts in the Original Domain: If the y, or x, are transformed using a Box-Cox
transformation from [3.4.30], the MMSE forecasts calculated above are for the transformed
domain. To obtain forecasts in the original units or untransformed domain, one would have to
take an inverse Box-Cox transformation as is explained in Section 8.2.7 for the case of an
ARMA model fitted to a single series. Keep in mind that both the forecasts and corresponding
probability limits in the transformed domain can be determined for the untransformed domain.

Multiple Input TFN Model Having ARMA Noise

The TFN model in [17.2.5] and [18.2.1] has a single covariate or input series x,. In general,
one could have a TFN model with I input series which is written in [17.5.3] as

- w,(B)
8,(B)
®B)

©,(B) i
+ W(&, W)+ + —S;ZE)—(X" =H)

0(B)
+ ——=a, 18.2.19
To employ this model for forecasting purposes, one follows a procedure similar to that carried
out for the TFN model having a single covariate series. In particular, first one must write the
TFN model so that there is no operator in the denominator of any term in [18.2.19]. This is
accomplished by multiplying [18.2.19] by {5,(B)3,(B) - - - §;(B)¢(B)}. Next, by separately fit-
ting an ARMA model to each of the x, series, one calculates the MMSE forecasts for each x,

series by following the procedure of Section 8.2.4. Thirdly, one iteratively calculates the MMSE
forecasts for the response or output series for lead times / = 1,2, .. ., using the rules in [8.2.16].
Additionally, using a formula similar to that given in [18.2.18] for a TFN having one input, one
can determine the probability limits for each forecast. Finally, if the response variable and other
input covariates have been transformed using a Box-Cox transformation, one can, if desired, cal-
culate the corresponding forecasts and probability limits in the untransformed domain.

0 =uy) O, — Ky

Seasonal TFN Model

As noted in Section 17.2.1, a simple procedure is available for handling seasonal data.
Firstly, the output series and each of the input series may be transformed using a Box-Cox
transformation in order to cause each time series to be approximately normally distributed.
Secondly, assuming that there is approximate stationarity within each season for a given series
so that a graph of the series follows a shape similar to that in Figure V1.1 for an average monthly
riverflow series, one can deseasonalize the series using a procedure from Section 13.2.2. Next,
an appropriate TFN model is fitted to the set of deseasonalized series using the model construc-
tion techniques explained in Sections 17.3 and 17.5.3, and an ARMA model is separately
developed for each deseasonalized input series by following the model building methods of Part
III. Fourthly, by employing the forecasting formulae of Section 8.2.4, MMSE forecasts can be
iteratively generated for each deseasonalized input series using the ARMA model fitted to the
series. Next, by utilizing the forecasting formulae for TFN models presented in this section as
well as the forecasts for the inputs, MMSE forecasts can be iteratively determined for the
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response variable for lead times / =1,2, .. .,. Finally, to obtain forecasts in the untransformed
domain, one must first take the inverse deseasonalization transformation of the forecasts and
then invoke the inverse Box-Cox transformation. The procedure for forecasting seasonal data
using a TFN model is depicted in Figure 18.2.1.

Another approach for handling seasonal data is to employ a periodic TFN model. The
interested reader may wish to explore this possibility by answering problem 18.5.

TFN Model Having ARIMA Noise

Suppose that one wishes to fit a TFN model to a nonseasonal response series which has one
nonseasonal input series and that these two series are nonstationary. One way to remove this
nonstationarity is to introduce the differencing operator of Section 4.3.1 into the noise term of
the TFN model so that the noise component follows an ARIMA rather than an ARMA process.
Accordingly, the nonstationary version of the TFN model in [18.2.1] is

_oB)_ . _8B)
= 5B) X, + ¢(B)Vd a, [18.2.20]

where
vé=(1-B)

is the differencing operator defined for d taking on values of zero when the data are stationary
and positive integers when the data are nonstationary. As exemplified by the examples in Sec-
tion 4.3.3, usually d = 1 or 2 when an ARIMA model is fitted to a single yearly nonstationary
time series. Because of the differencing operator in [18.2.20], both the y, and x, series are

assumed not to have mean levels.

To obtain MMSE forecasts for the TFN model in [18.2.20], the procedure is similar to that
for the stationary case. Firstly, one must eliminate operators in the denominator by multiplying
[18.2.20] by 8B)$(B)V* to obtain

3(B)O(B)VYy, = ¢(B)VaxB)x, + &B)B(B)a, [18.2.21]

Next, after multiplying together the operators in each term in [18.2.21], one can iteratively calcu-
late the MMSE forecasts by employing the rules in [18.2.17]. Finally, after taking into account
the fact that there is a differencing operator, probability limits can be calculated for each forecast
using a formula similar to that in [18.2.18].

If one were dealing with seasonal time series that follow graphs similar to those in Figures
V1.2 or V1.3, one could possibly model a st of these time series using a TFN model by having a
SARIMA noise term. As defined in Section 12.2.1, a SARIMA model contains nonseasonal and
scasonal differencing operators to remove nonseasonal and seasonal nonstationarity, respec-
tively. Moreover, the SARIMA model also has seasonal AR and MA operators in addition to the
nonseasonal AR and MA operators.
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Figure 18.2.1. Forecasting seasonal series using a TFN model.
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TFN Model Having a Deterministic Trend

As discussed in Sections 4.5 and 4.6, differencing is designed for removing stochastic
trends in a time series. However, differencing may not eliminate a deterministic trend contained
in a time series. To explain how a deterministic trend can be modelled and forecasted rewrite
[18.2.20] as

B) 6(8)
vy, -, = 2By, , 8B 18.2.22
where W, is a level in the y, series that the differencing cannot eliminate. By multiplying
[18.2.22] by &B)¢(B), one obtains

8(B)O(B)V?y, =8y + $(B)(B)Vx, + 5(B)8(B)q, [18.2.23]
where
8o = 3(B)¢(B)n,,
=8(1e(D,,
In the expression for 6y, one replaces each B by unity in the two operators because B"|.1w =y,

fork=0,1,2,--- .

The procedure for calculating MMSE forecasts using [18.2.23] is the same as before except
for the 6, term on the right hand side of [18.2.23]. Consequently, the rules for conditional

expectations in [18.2.17] are employed to determine the MMSE forecasts for the response and
input series, keeping in mind that [8,] = 8, in [18.2.23].

18.2.3 Application

The Red Deer River is a tributary of the South Saskatchewan (abbreviated as S.Sask.) River
which flows eastwards from the Rocky Mountains across the Canadian prairies. In Section
17.4.2, a TFN model is constructed for describing the influence of the deseasonalized loga-
rithmic Red Deer riverflows upon the deseasonalized logarithmic S.Sask. riverflows. From
[17.4.1), this calibrated TFN model is written as

(1-0.494B) a
(1-0.8568) *
where y, and x, are the deseasonalized logarithmic S.Sask. and Red Deer riverflows, respec-
tively, and 63 =0.310.

¥, = (0.572 + 0.238B)x, + [18.2.24]

To write the model in [18.2.24] in a convenient form to calculate MMSE forecasts, first
multiply the difference equation by the operator (1 - 0.8568) to get

(1-0.856B)y, = (1 -0.8568)(0.572 + 0.238B)x, + (1 — 0.494B )a,

or
y‘ = 0-856y‘_1 + 0.572!, - 0.252‘1_] - 0.2041,_2 + a' - 0.4940,_1
By replacing ¢ by t+/ and taking conditional expectations in the above equations, the MMSE
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forecast for lead time / is
¥y () = 0.856[y, ;1] +0.572%,(I) - 0.252[x,,,_,] — 0.204[x,, ;5]

+[a,41] - 0.494[a,,;,] (18.2.25)
For the case of a one-step-ahead forecast where / = 1 the above equation becomes
(1) = 0.856[y,] + 0.572x,(1) - 0.252[x,] — 0.204[x,_,] + [a,,1] — 0.494[a,]
=0.856y, + 0.572%,(1) — 0.252x, — 0.204x,_; — 0.494q, [18.2.26]

Notice in [18.2.25] and [18.2.26], one requires MMSE forecasts for the x, series. Conse-
quently, one must separately fit an ARMA model to the x; series and then use this model to gen-
erate MMSE forecasts for the x, series. When an ARMA model is separately designed for
describing the x, series for the deseasonalized logarithmic Red Deer flows, the most appropriate
ARMA model is found to be an ARMA(1,1). The estimated ARMA(1,1) model for the x, series
is given as

(1-0.845B)x, = (1 = 0.292B)u, [18.2.27]

where y, is the innovation series at time ¢ and &3 =(0.482. By substituting ¢+/ for ¢ and taking

conditional expectations in [18.2.27], the formula for iteratively generating MMSE forecasts for
X, is

X,(1)=0.845[x,,;11 + [4,44] — 0.292[u;,;_4] [18.2.28]
To obtain the one-step-ahead MMSE forecast in [18.2.28] simply replace / by unity to obtain
X, (1) =0.845[x,] + [1;,1] — 0.292[y,]
=0.845x, - 0.292y, [18.2.29]
To calculate MMSE forecasts for the y, series in the TFN model in [18.2.25], one can
employ [18.2.28] to determine the MMSE forecasts for the x, series which are needed as input
forecasts in [18.2.25]. Consider the case where one wishes to find y(1) using [18.2.26). Firstly,
%,(1) is found by utilizing [18.2.29] and then X;(1) is substituted into [18.2.26] to get y;(1). From
[18.2.18], the variance of the one-step-ahead MMSE forecast error for y,(1) is given theoretically
as

V(1) = wlc? +a? [18.2.30]
where the estimate is calculated as
V(1) = (0.572)%0.482 + 0.310 = 0.468

To calculate the lead one MMSE forecast for the original untransformed series, the deseasonali-
zation and logarithmic transformations must be taken into account. Accordingly, from time ¢,
the lead one MMSE forecast y; (1) for the untransformed series is estimated using
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A £ fod ~ l A
(1) =exp [y,(l)o,, + i, + -2-(0.468)03, [18.2.31]

where |1, and G, are the estimated mean and standard deviation calculated using [13.2.4] and
[13.2.5], respectively, for the month that is currently connected with time #+1 of the y, series. As
explained in Section 8.2.7, the last term in the exponent in [18.2.31] is the correction required for
producing the MMSE forecast in the untransformed domain.

When calculating MMSE forecasts for the y, series using the TFN model in [18.2.25],

information from the input series is used in the forecast calculation. Consequently, a priori, one
would expect a TFN model to forecast more accurately than an ARMA model that is separately
fitted to the response series. For the case of the y, series representing the deseasonalized loga-

rithmic flows of the S. Sask. River, the most appropriate model to fit to this series is an
ARMA(1,1) model which is calibrated as

(1-0.819)y, = (1 - 0.253)v, [18.2.32]

where v, is the innovation series at time ¢ and 6,2 =0.507. Notice that the variance of the noise
has a value of G =0.507 for the ARMA model in [18.2.32] and a magnitude of 62 =0.310 for
the TFN model in [18.2.24]. Consequently, the TFN model provides a better fit to the available
information than the single ARMA model and has a residual variance which is about 40%
smaller. By replacing ¢ by ¢+/ and taking conditional expectations in [18.2.32], the formula for
iteratively determining MMSE forecasts for y, using an ARMA model is

¥ (1) = 0.8190y, ;] + [,1] - 0.253(v,,,_,] [18.2.33]

To ascertain the one-step-ahead MMSE forecast in [18.2.33], simply assign / a value of one to
get

¥:(1) =0.819[y,] + [v,,;] - 0.253[v,]
=0.819y, —0.253v, [18.2.34]
In the untransformed domain, the lead one MMSE forecast, y(1) is calculated using

(1) = exp [v‘,(l)&,,, +h, + %(0.507)03, [18.2.35]

where (1) is determined using [18.2.34]), G2 = 0.507 as in [18.2.32], and G, as well as |i,, are
the same as in [18.2.31].

As would be expected the TFN model for the response variable produces more accurate
forecasts than an ARMA model separately fitted to the same series. More specifically, when the
TFN model in [18.2.26] along with the inverse transformation in [18.2.31] are employed for
obtaining lead one MMSE forecasts in the untransformed domain, the mean square error for all
months in 1963 is about 20% less than for the forecasts obtained using the ARMA(1,1) model in
[18.2.34] and [18.2.35] for the output series. Consequently, the input series in the TFN model
acts as a leading indicator to significantly improve the accuracy of the MMSE forecasts of the
output series.
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18.3 FORECASTING QUARTER-MONTHLY RIVERFLOWS

18.3.1 Overview

A key problem in the operation of a water resources system is the forecasting of natural
inflows to the various reservoirs in the system. It is increasingly recognized that time series
analysis is of considerable practical use in dealing with this problem. The current section
demonstrates the practical importance of this methodology by examining the use of the TFN
models of Chapter 17 to forecast natural inflows in the Lac St. Jean reservoir, a major com-
ponent of the multi-reservoir hydroelectric system operated by Alcan Smelters and Chemicals
Ltd. in the province of Quebec, Canada.

The electricity generated by this system is used at Alcan’s aluminum smelter in Arvida,
Quebec. In order to insure a constant and adequate supply of power, it is necessary to schedule
releases from the reservoir in an optimum fashion. Thus, forecasts of the quarter monthly
inflows into the reservoir are required so that the desired outflow and hydraulic head are avail-
able for power generation.

The forecasting experiments presented in this section were originally presented by Thomp-
stone et al. (1985). The output for the TFN model used in the study are the quarter-monthly (i.e.,
near-weekly) natural inflows to the Lac St. Jean reservoir. The covariate series for the TFN
model are rainfall and snowmelt, the latter being a novel derivation from daily rainfall, snowfall
and temperature series. It is clearly demonstrated in Section 18.3.2 using the residual variance
and the AIC (see Section 6.3) that modelling is improved as one starts with a deseasonalized
ARMA model (Chapter 13) of the inflow series and successively adds transfer functions for the
rainfall and snowmelt series. It is further demonstrated that the TFN model is better than a PAR
model (Chapter 14) of the inflow series. The split-sample experiments are used in Section
18.3.4 to compare one-step-ahead forecasts from this TFN model with forecasts from other sto-
chastic models as well as with forecasts from a so-called conceptual hydrological model
described in Section 18.3.3 (i.c., a model which attempts to mathematically simulate the physical
processes involved in the hydrological cycle). It is concluded that the TFN model is the pre-
ferred model for forecasting the quarter-monthly Lac St. Jean inflow series.

18.3.2 Constructing the Time Series Models

The application involves a series of quarter-monthly natural inflows in m*/s to the Lac St.
Jean reservoir in the Province of Quebec. One of the covariate series selected for possible incor-
poration in a dynamic model of the inflow was rainfall. The quarter-monthly rainfall series in
mm/day represents the spatial average of rainfall over the entire 57,000 km? watershed (Thomp-
stone, 1983). The second covariate series was a rather novel quarter-monthly snowmelt series in
mm/day, and it was calculated using logic extracted directly from the conceptual hydrologic
model which is described in the next subsection. Data were available for the years 1953-82
(Thompstone et al., 1980) but only the years 1953-79 were used in fitting the models described
in this section. The other three years were reserved for the split-sample forecasting experiment
described in Section 18.3.4.

Following Section 13.3, the identification, estimation and diagnostic checking stages of
model construction were used to build a desecasonalized ARMA model for the Lac St Jean
inflow series. Several models were examined and, based on the AIC, the standard errors (SE’s)
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of estimation of the model parameters, and the results of diagnostic checking, the following
ARMA (3,1) model was chosen:

(1-1.430B +0.62682 - 0.1138%)z,® = (1 - 0.653B)q, [18.3.1]

where A =0.0 indicates the given monthly series is transformed by taking natural logarithms as
in [3.4.30], the 2, inflow series is deseasonalized by subtracting seasonal means and dividing by

seasonal standard deviations, and g, is the approximately normally distributed white noise inno-
vation having a mean of zero and a variance of 6‘, =0.685. All AR and MA parameters were

more than two SE’s from zero, and thus are statistically significant. Diagnostic checking of the
residuals confirmed them to be uncorrelated, homoscedastic and approximately normally distri-
buted (see Chapter 7). The AIC of the model was found to have a value of 13,771.24.

Both the empirical approach and the Box and Jenkins procedure were used to identify TFN
models (see Section 17.3.1) for forecasting Lac St. Jean inflows using first the rainfall series,
then the snowmelt series, and then both series together. The rainfall series was deseasonalized
by subtracting the seasonal mean from each observation, and then dividing this by the seasonal
standard deviation. The sample autocorrelation function (ACF) calculated using [2.5.9] showed
the resulting series to be white noise. The sample CCF (cross correlation function) between the
descasonalized rainfall and the deseasonalized, logarithmic inflow series is shown in Figure
18.3.1. The 95% confidence limits in this figure are calculated under the assumption that the
sample CCF values are NID(0,n!) where n is the length of the series (see Section 16.2.2).
Because riverflows are caused by rainfall, the values of the sample CCF are significantly large
for zero and negative values in Figure 18.3.1. As a result of the extra large value at lag -1, the
order of the operator in the numerator of the transfer function in [18.2.2] is m = 1. The dying out
effect for negative lags suggests that r = 1 for the operator in the denominator of the TFN in
[18.2.2]. This form of model was fit to the data, and the resulting noise was identified as being
ARMA(2,1). Consequently, the TFN model which gives the relationship between deseasonal-
ized rainfall, x,,, and deseasonalized logarithmic inflow, y,, was selected to be:

(0o = @ B)

»= mxu +N, [18.3.2]

where
_ (1-6,B8)
(1-¢,8 - $,8%)

Table 18.3.1 provides the MLE’s (maximum likelihood estimates) of the parameters and
their corresponding SE’s. Diagnostic checking showed the residuals to be uncorrelated and
approximately normally distributed. The AIC and residual standard deviation for the rainfall and
inflow TFN model were found to be 13,159.76 and 0.583, respectively. These values compare
with 13,771.24 and 0.685, respectively, for the deseasonalized inflow ARMA(3,1) model. Thus,
the inclusion of the rainfall series into the modelling has improved the accuracy of the model for
the inflow series.
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Figure 18.3.1. Sample CCF between deseasonalized, logarithmic inflow
and deseasonalized rainfall series along with the 95% confidence limits.

Table 18.3.1. Parameter estimates and SE’s for rainfall to

inflow TFN model.
Parameters | MLE’s | SE’s
8, 0.608 | 0.034
(0 0.257 | 0.016
W, -0.277 | 0.018
¢ 1.410 | 0.173
& 0.472 | 0.127
0, 0.762 | 0.163

For the case of the snowmelt series, the selected deseasonalization involved only the sub-
traction of the seasonal mean from each observation. The following AR(2) model was identified
and fitted to the deseasonalized series:

(1= 0128 - 6228”2 = apy [18.3.3]

where the estimates of the parameters and their corresponding of SE’s are given in Table 18.3.2.
Diagnostic checking showed that the residuals were uncorrelated and approximately normally
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distributed.

Table 18.3.2. Parameter estimates and SE’s for the AR(2) model of snowmelt.
Parameters | MLE’s | SE’s
612 0.267 | 0.027
622 -0.156 | 0.027

In accordance with the Box and Jenkins identification procedure of Section 17.3.1, the y,

output series was filtered, using [17.3.5] to obtain the estimated AR operator in [18.3.3], to pro-
duce the filtered output

B, = (1 -0.267B + 0.15682)y, [18.3.4]
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Figure 18.3.2. Sample CCF between the filtered inflow and prewhitened
deseasonalized snowmelt.

The sample CCF between the prewhitened deseasonalized snowmelt series and the transformed
output series is shown in Figure 18.3.2. This CCF suggested that the form of the transfer func-
tionbe r =1and m =1in [18.2.2]. Such a model was fitted to the data, and the remaining noise
was identified as AR(1). The TFN model chosen to relate deseasonalized snowmelt, X2, and

deseasonalized logarithmic inflow, y,, was therefore:
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X2+ N, [18.3.5]

where

and the estimates of the parameters and their SE’s are as given in Table 18.3.3. The residuals
were shown to be independent and approximately normally distributed. The AIC and residual
standard deviation for this snowmelt to inflow TFN model were found to be 13,495.36 and
0.664, respectively. These results suggest that a model of inflows including the relationship with
snowmelt is better than a model without snowmelt, but that the rainfall series is of more use than
the snowmelt series in explaining inflow.

Table 18.3.3. Parameter estimates and SE’s for snowmelt to

the inflow TFN model.
Parameters | MLE’s | SE’s
5 0.541 | 0.098
Wy 0.113 | 0.015
w; -0.083 | 0.018
¢ 0.717 | 0.019

In order to further improve the modelling of the Lac St. Jean inflows, a TFN model includ-
ing both the rainfall and snowmelt covariate series was constructed. The form of the transfer
functions in [18.3.2] and [18.3.5] was conserved (i.c., 7 =m = 1), a model was estimated, and an
ARMA(2,1) model was identified for the resulting noise series. The final model for explaining
the deseasonalized logarithmic inflow series, y,, as a function of the deseasonalized rainfall, x,;),

and snowmelt, x,,, series was thus:

_ (@, - ml.lB)x . (g2 - Wy 2B)
NET0=8,.8) T T (1-8.58)

X2 +N, [18.3.6]

where
(1-8,8)
- 2 a‘
(1-¢,B ~¢,B°)

The estimates of the parameters and their SE’s are given in Table 18.3.4 for the transfer func-
tions, and in Table 18.3.5 for the noise term.
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Table 18.3.4. Parameter estimates and SE’s (in brackets) of
estimates for the transfer functions in [18.3.6].

Series J 51 J @y \J oy J
Deseasonalized Rainfall 1| 0625 0.233 -0.269
(0.033) | (0.016) | (0.018)

Deseasonalized Snowmelt | 2 | 0.579 0.102 | -0.046
(0.090) | (0.013) | (0.017)

Note: Parenthetical figure is SE of estimation.

Diagnostic checking of the residuals from the fitted model in [18.3.6] suggested they were
normally distributed. Figure 18.3.3 shows a plot of the values of the residual autocorrelation
function (RACF) and their 95% confidence intervals, defined in Section 7.3.2. Because all of
the values of RACF except one fall within the 95% confidence limits, the residuals are white.
The large value at lag 26 is probably due to chance and not the lack of a suitable model. Further
diagnostic checking involved cross correlation functions. Figure 18.3.4 shows the cross correla-
tions between the deseasonalized rainfall series and the residuals for the TFN model in [18.3.6],
while Figure 18.3.5 shows the values of the CCF between residuals of the AR(2) deseasonalized
snowmelt series in [18.3.3] and the residuals of [18.3.6]. Because the values of the CCF in Fig-
ures 18.3.4 and 18.3.5 fall within the 95% confidence interval, the noise term in the TFN model
is not correlated with the prewhitened input series.

The AIC for the TFN model in [18.3.6] is 13,074.37, and the residual standard deviation is
0.562. These two measures confirm that the use of both the rainfall and snowmelt covariate
series better explains the inflow series than the employment of either of the series individually.
Table 18.3.6 provides a summary comparison of the AIC values and the residual standard devia-
tions of the four models of the Lac St. Jean uncontrolled inflows developed in this section. Note
that it can be shown theoretically that the MMSE forecasts from the TFN model of [18.3.6] are
more accurate than those from the deseasonalized ARMA model. This fact is confirmed by the
forecasting experiment described in Section 18.3.4.

Finally, in Section 14.6 a PAR model was fitted to the Lac St. Jean quarter-monthly
inflow series. The AIC of this model was calculated as 13,681.61, and this suggested it was
preferable to the deseasonalized ARMA model, but not as good as any of the TFN models.
Nevertheless it was retained for use in the forecasting experiment described in Section 18.3.4.



Forecasting 635
OZOF
Q16
012
008

004 —/-f

ST

-008-

RACF

-0.12-

-016~

-0.20 J ] ]

Figure 18.3.3. RACF and 95% confidence interval for
the TFN model in [18.3.6].

Table 18.3.5. Parameter estimates and SE’s for the

noise model in [18.3.6].
Parameters | MLE’s | SE’s
(N 1.311 | 0.123
¢ -0.382 | 0.092
0, 0.712 | 0.113
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Figure 18.3.4. CCF between the deseasonalized rainfall and
residuals of the TFN model in [18.3.6] along with the
95% confidence interval.
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Figure 18.3.5. CCF between residuals of AR(2) deseasonalized
snowmelt series and residuals of the TFN model in [18.3.6]
along with the 95% confidence interval.

Table 18.3.6. Comparisons of AIC and G, values for
the deseasonalized ARMA and TFN models.

~

Input Series m | s | Noise AIC o,

- - | -] GD | 13,771.24 | 0.685

Deseasonalized Rainfall 1 11] 1) | 13,159.76 | 0.583
Deseasonalized Snowmelt | 1 | 1 | (1,0) | 13,495.36 | 0.664
Deseasonalized Rainfall 1117 (21 | 13,074.37 | 0.562
Deseasonalized Snowmelt | 1 1 . . .

18.3.3 Conceptual Hydrological Model

637

A realtime daily hydrological forecasting system has been developed for use in the opera-
tional management of the hydroelectric system operated by Alcan Smelters and Chemicals Ltd.,
in the Saguenay-Lac St. Jean region of Quebec. The forecasting system (Thompstone et al.,
1981) uses a lumped parametric conceptual hydrological model to simulate the relationship
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between daily meteorological conditions and natural inflows to various reservoirs. When the
forecasting system is executed, recent meteorological conditions are represented using recent
measurements at meteorological stations, and future meteorological conditions are represented
using meteorological forecasts provided by the Atmospheric Environment Service of Environ-
ment Canada. The basic strategy in the selection of a conceptual hydrological model was to
choose a simple and flexible model in preference to more elaborate models, provided no signifi-
cant improvement in the accuracy of the forecasts could be obtained by the more complex
models.

There exists a multitude of conceptual models which have been used in operational hydro-
logical forecasting, each model having its particular strengths and weaknesses (World Meteoro-
logical Organization, 1975). The conceptual model chosen for the Alcan forecasting system was
originally developed by S.I. Solomon and Associates (1974), and subsequently modified by Kite
(1978), the modified model being called the Water Resources Branch model. It has undergone
further modifications since inclusion in the Alcan system. A detailed description of the model
and the reasons it was chosen are contained in Thompstone (1983) and references therein.

The realtime daily hydrological forecasting system which uses the conceptual hydrological
model provides hydrological forecasts based on meteorological forecasts and long term daily
meteorological statistics (Thompstone et al., 1981). This system, referred to as PREVIS, has
been operational since March, 1979, and it can be executed on a daily basis to provide hydrologi-
cal forecasts for seven days into the future. The meteorological forecasts have been obtained,
interpreted and entered into the forecasting system only on weekdays. Consequently, meteoro-
logical forecasts were not available for use in the proposed forecasting study.

In order to provide a basis for comparison of forecasts from the conceptual hydrological
model, it was decided that observed meteorological conditions would be used in place of the
meteorological forecasts and long term statistics. In other words, the conceptual hydrological
model was used in the simulation mode rather than the forecasting mode. Thus, results of the
forecasting study are biased in favour of the forecasts from the PREVIS system.

In using the PREVIS system, it has been recognized that the model generally follows the
trends of inflows, but during certain periods is consistently higher or lower than the observed
inflows. Consequently, an ad hoc smoothing of the raw hydrological forecasts was introduced
into the system. The inflow forecast for the next seven days is adjusted by adding the average
error of simulated versus observed inflows for the previous seven days. During the spring
period, since inflows vary relatively rapidly, the smoothing period is reduced to the previous
three days. In order to approximate this crude smoothing, a second set of so called forecasts
from the PREVIS system was developed by adjusting the inflow forecast for the next quarter-
month period by the error for the previous quarter-month period. These forecasts are labelled
herein as PREVIS/S.

Note that in order to compare forecasts from the PREVIS and PREVIS/S models in the
same domain as forecasts from the other models, these former forecasts are transformed using
natural logarithms. This is necessary since the Pitman (1939) correlation test (see Section 8.3.2)
used to compare mean squared errors of forecasts is based on the forecast errors being approxi-
mately normally distributed.
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18.3.4 Forecasting Experiments

In order to compare the forecasting abilities of the deseasonalized ARMA models, TFN
model, PAR model and conceptual hydrological model, a split-sample approach was adopted
whereby one-step-ahead quarter-monthly forecasts were generated for three years of data, from
the beginning of 1980 to the end of 1982. Data from these years were not used in either building
the time series models or in calibrating the conceptual hydrological model.

Until recently, a great deal of effort had been devoted to the advancement of forecasting
procedures while relatively little research had been devoted to developing methods for evaluat-
ing the relative accuracy of the forecasts produced by the different procedures (Thompstone et
al., 1985; Noakes et al., 1985, 1988). Granger and Newbold (1973, 1977) have provided useful
comments concerning the evaluation of forecasts and the costs of errors. The mean square error
(MSE) is a cost function which is intuitively simple to understand and has been widely used in
previous forecasting studies. It is the MSE and its square root, the standard error of forecast,
which are used herein to compare the competing forecasting models. Various forecasting tests
are discussed in detail in Section 8.3.2 and utilized in forecasting experiments carried out in
Chapters 8, 15 and 18.

Noakes et al. (1985, 1988) have underlined the importance of not simply ranking models
according to the MSE’s of competing procedures. In their study, they used the test of Pitman
(1939) and a likelihood ratio test as well as a nonparametric test to compare the one-step-ahead
forecasts from different models (see also Sections 8.3.4, 15.3 and 15.4). Since the tests led to
essentially the same conclusions, and the Pitman test is computationally less demanding, it has
been adopted for the current research.

In order to describe the Pitman (1939) test, which is also presented in Section 8.3.2, let e,
and ey, (t=1,2,...,L) denote the one-step-ahead forecast errors for models 1 and 2 respec-
tively. Then, the null hypothesis from [8.3.2] is

H,: MSE (e, ;) = MSE(e,,) [18.3.7]

where MSE(e) = <e?>, and <.> denotes expectation. The alternative hypothesis, H,, is the
negation of Hy.

As explained in Section 8.3.2 just after [8.3.2], for Pitman’s test, let S, =e;, +e,, and
D, =e;, —e,,. Pitman’s test is equivalent to testing if the correlation, r, between S, and D, is
significantly different from zero. Therefore, provided L > 25, H is significant at the 5% level if

Irl > 1.96NL.

The results of the forecasting study are summarized in Tables 18.3.7 and 18.3.8. Table
18.3.8 shows the root mean squared errors (RMSE'’s) of the forecasts of the logarithmic series
for the five different models. The model with the smallest RMSE is the TFN model, while the
second best model is the deseasonalized ARMA model. The worst forecasts are provided by the
PREVIS model, while the PREVIS/S model is second worst.
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- Table 18.3.7. RMSE's of forecasts for the logarithmic quarter-monthly
Lac St. Jean uncontrolled inflows from 1980 to 1982.

Models RMSE’s
ARMA/DES 0.298

PAR 0.301
PREVIS 0.389
PREVIS/S 0.354
TFN 0.278

Table 18.3.8. Correlation test statistics and forecast errors
for the forecasts for the quarter-monthly logged Lac St. Jean
uncontrolled inflows from 1980 to 1982.

Models ARMA/DES PAR PREVIS | PREVIS/S TFN
ARMA/DES* 0.0296 (=) | 0.2675(+) | 0.1814 (+) | 0.0902 (=)
PAR* 0.0296 (=) 0.2561 (+) | 0.1704 (+) | 0.1000 (=)
PREVIS 0.2675 (-) 0.2561 (-) 0.0995 (=) | 0.3225¢(-)
PREVIS/S 0.1814 (-) 0.1704 (-) | 0.995 (=) 0.2421 (-)
TFN 0.902 (=) 0.1000 (+) | 0.2421 (+) | 0.2421(+)

(1) Table shows Irl.
(2) Difference in MSE’s of forecasts significant at 5% level if Irl > 0.163.

(3) A parenthetical = indicates the difference is not significant, a + indicates the row
model is "better" than the column model (significant difference and smaller MSE),
and a ~ indicates the row model is "worse" than the column model.

(4) *indicates the model is better or equal to all other models.

Table 18.3.8 examines the statistical significance of differences in the mean squared errors
of forecasts from the various models. Using a 5% significance level, it is concluded that each of
the time series models is better than or equal to the PREVIS and PREVIS/S models. There is no
significant difference in forecasts from the ARMA/DES, PAR, and TFN models. However,
since the TFN model has the smallest RMSE of forecasts and is favoured with respect to the AIC
and residual variance, it is recommended that it be adopted for forecasting the Lac St. Jean
inflow on a quarter-monthly basis. The physical relationship known to exist between rainfall,
snowmelt and inflow reinforces this recommendation. Furthermore, a comparison of the
RMSE’s of forecasts in the inflow domain for which the flows are not logarithmic confirms that
forecasts from the TFN model are preferable to forecasts from the conceptual model (RMSE of
512.30 as opposed to 625.85).
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18.3.5 Condlusions

The TFN model described in [18.3.6] provides an effective means of forecasting quarter-
monthly inflows to the Lac St. Jean reservoir based on rainfall and snowmelt. The most recent
statistical techniques and an understanding of the physical processes involved are used to iden-
tify, estimate and verify a reasonable model. Both the empirical approach and the Box and Jen-
kins approach are useful in model identification (see Section 17.3.1). The MAICE procedure
(Section 6.3) indicates the TFN model with both covariate series is better than a deseasonalized
ARMA model, PAR model or TFN model with only one or another of the covariate series. The
split-sample forecasting experiments of Section 18.3.4 demonstrate that the full TFN model pro-
vides better forecasts than a particular conceptual hydrological model. Consequently, the TFN
model is the preferred model for forecasting the quarter-monthly Lac St. Jean inflow series. Itis
interesting to note that Chow et al. (1983) also found flood forecasts from a TFN model to be as
reliable as forecasts generated from a complex conceptual model. Hence, they concluded that
TFN models provide an attractive alternative to conceptual models for use in realtime flood fore-
casting.

18.4 COMBINING HYDROLOGICAL FORECASTS

18.4.1 Overview

Often a variety of models can be fitted to a given data set. For example, in Section 18.3,
time series models consisting of TFN, PAR (Chapter 14) and deseasonalized ARMA (Chapter
13) models, plus two related conceptual models, are fitted to a hydrological time series. Each of
these calibrated models can then be employed for generating forecasts for the series. Although
one model may produce more accurate forecasts than others in the long run, it may not do so in
every instance. Consequently, one may wish to improve the forecasts by combining forecasts
from two or more models in accordance to their relative performances.

The objective of this section is to show how better forecasts can be obtained when TFN
forecasts are combined with other types of forecasts. In particular, a TFN, PAR and two similar
conceptual models are employed to forecast quarter monthly riverflows, as is done in Section
18.3. These models all approach the modelling and forecasting problem from three different per-
spectives and each has its own particular strengths and weaknesses. The forecasts generated by
the individual models are combined in an effort to exploit the strengths of each model. The
results of this case study indicate that significantly better forecasts can be obtained when fore-
casts from different types of models are combined. In particular, the best forecasts are obtained
when TFN and PAR forecasts are optimally combined. These forecasting experiments are also
reported by McLeod et al. (1987).

Formulae for combining forecasts in an optimal manner from competing models are
presented in Section 15.5.2. Additionally, forecasting experiments are presented in Section
15.5.3 for combining forecasts for monthly riverflows using SARIMA (Chapter 12) and PAR
(Chapter 14) models. Because the SARIMA model is not well designed for modelling monthly
riverflows for which there is stationarity within each season (see the introduction to Part VI and
Section 12.1), combining forecasts from this model with the better forecasts from the PAR
model does not produce improved forecasts. '
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18.4.2 Combination Forecasting Experiments

The data used in this section are identical to those employed in the forecasting experiments
of Section 18.3. More specifically, the quarter-monthly inflows for the Lac St. Jean reservoir are
utilized. Recall from Section 18.3.1, that accurate quarterly-monthly forecasts for riverflows are
required so that Alcan can optimally generate hydro-electrical power for use in its aluminum
smelters.

Thirty years of quarter-monthly riverflows are available from 1953 to 1982, inclusive. As
is done in Sections 18.3.2 and 18.3.3, models are fitted to the first twenty-seven years of the data
and then used to forecast the one-step-ahead forecasts for the last three years. Prior to fitting
models to the riverflows, the data are first transformed using natural logarithms.

The calibrated models used in the study are already described in Sections 18.3.2 and 18.3.3.
In particular, the finite difference equation for the best TFN model is given in [18.3.6] while its
parameter estimates are listed in Tables 18.3.4 and 18.3.5. The most appropriate PAR model is
identified using graphs of the sample periodic ACF and PACF (defined in Section 14.3.2). The
two versions of the conceptual model used in the combination forecasting study are the PREVIS
and PREVIS/S conceptual models described in Section 18.3.3.

The RMSE’s of the logarithmic forecast errors are presented in Table 18.3.7. As can be
seen, the TFN model has the smallest RMSE of all the models considered. As such, this value
will be used as a basis for comparison of the various techniques employed to combine the indivi-
dual forecasts.

Notice that the deseasonalized ARMA and PAR models have almost the same RMSE’s in
Table 18.3.7. Because the PAR model is generally better to use than the deseasonalized model
for modelling seasonal riverflows for which there are sufficient data (see discussion in Part VI),
the deseasonalized ARMA model is not employed in the combination experiments of this sec-
tion.

- The equations for combining forecasts are given in Section 15.5.2. In this study, the
weights for combining the individual forecasts were calculated using both [15.5.2] and [15.5.4]
with V=4, 8 and 12. Since the model residuals were not employed, the first v forecasts were
combined using equal weights. The weights were then recalculated for each subsequent forecast
using the previous v forecast errors.

The forecasts from the four models were combined in a pairwise fashion with the exception
of the two conceptual models (PREVIS and PREVIS/S). The resulting RMSE’s of the combined
forecasts using [15.5.2] to calculate the combining weights are given in Table 18.4.1. The sub-
scripts associated with the RMSE’s indicate the number of previous forecast errors that were
employed to calculate the weights. For example, when the previous four forecast errors were
used to combined the TFN and PAR forecasts, the resulting RMSE was 0.142. In most cases,
the greater the number of previous forecast errors employed to calculate the weights, the smaller
the resulting combined RMSE.
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Table 18.4.1. RMSE’s of the combined quarter monthly forecasts
with combining weights calculated using [15.6.2].

Model Combinations | RMSE, | RMSE; | RMSE,

TFN -PAR 0.142 0.120 0.119
TFN - PREVIS 0.787 0.524 0418
TFN -PREVISS 0.994 0.318 0.271
PAR -PREVIS 0.243 0.229 0.222
PAR -PREVIS/S 0.217 0.186 0.187

The smallest RMSE was obtained when the TFN and PAR forecasts were combined using
the previous 12 forecast errors to calculate the weights. The resulting RMSE was less than half
the value of the smallest RMSE for the individual models suggesting that significant benefits can
be obtained by combining the forecasts from these two models. Conversely, the largest RMSE’s
were found when the TFN forecasts were combined with the PREVIS or PREVIS/S forecasts.
Only when the previous 12 forecast errors were employed to calculate the weights did the com-
bined TFN and PREVIS/S forecasts yield a smaller RMSE than the best individual model. Even
then, the difference was only in the third decimal place.

The resulting RMSE’s of the combined forecasts when [15.5.4] was employed to calculate
the combining weights are given in Table 18.4.2. In this case, only one combination had a larger
RMSE than the best individual model. Once again, the smallest RMSE was found when the
TFN and PAR forecasts were combined using the previous 12 forecast errors to calculate the
combining weights. The largest RMSE’s were found when the TFN forecasts were combined
with the forecasts from the two conceptual models. These RMSE’s did, however, represent a
significant improvement when compared to the RMSE’s obtained when [15.5.2] was used to cal-
culate the combining weights. In the previous case, poor estimates of I in [15.5.3] resulted in
the calculation of one negative weight and one weight greater than one. As a result, the
corresponding RMSE’s were more than three times as large as the RMSE of the best individual
model. It is therefore recommended that, unless reasonably good estimates of I can be obtained,
the suboptimal estimates of the combining weights calculated using [15.5.2] be employed.

As a test of combining forecasts from more than two models, the forecasts produced by the
TEN, PAR and PREVIS/S models were combined using equal weights. The resulting RMSE
was 0.136. Although this does not represent the lowest RMSE, even this naive combination of
forecasts produced a RMSE which was less than half the RMSE of the best individual model.
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Table 18.4.2. RMSE’s of the combined quarter-monthly forecasts
with combining weights calculated using [15.5.4).

Model Combinations RMSE, | RMSE; | RMSE,,
TFN -PAR/PACF | 0.146 | 0.124 | 0.122
TFN - PREVIS 0275 | 0251 | 0.247
TFN -PREVIS/S | 0283* | 0252 | 0.250
PAR/PACF - PREVIS 0244 | 0230 | 0222
PARPACF -PREVIS/S | 0214 | 0.187 | 0.188

*Larger RMSE than TFN forecast error in Table 18.3.7.

18.4.3 Conclusions

Combining economic forecasts from various models has become fairly common practice.
However, the case studies presented in Sections 18.4.2 and 15.5.2 as well as by McLeod et al.
(1987) represent the first reported experiments dealing with the combination of riverflow fore-
casts. Combining forecasts from conceptual models, a TFN model and a PAR model resulted in
a significant reduction in the RMSE’s of the forecasts. These three models approach the model-
ling problem from three distinctly different perspectives. The relative strengths of each model
were enhanced by combining the individual forecasts. Thus, based upon the results of this case
study, it would appear that significant improvements in forecasting performance can be obtained
when the forecasts from different types of models are combined.

18.5 RECORD EXTENSIONS, CONTROL AND SIMULATION

18.5.1 Overview

The main objectives of this chapter are to explain how reliable forecasts can be calculated
using TFN models and to demonstrate how forecasting can be conveniently carried out in prac-
tice using the hydrological forecasting experiments of Sections 18.2.3, 18.3 and 18.4. The pur-
pose of this section is to outline how TFN models can be employed for three other kinds of
applications: extensions of hydrologic records, control and simulation.

18.5.2 Record Extensions

Using natural time series records from the Arctic, Baracos et al. (1981) explain how
hydrometric records can be extended using TFN models. In particular, weather records have
been kept in the Arctic for a much longer period of time than have hydrometric or riverflow
measurements. Based on a knowledge of the dynamic relationship between riverflow series and
meteorologic series, it is possible to give an estimate of the values the hydrometric series is
likely to have taken during the period when weather data are available, but before flow records
were kept. This may be thought of as an artificial extension of the hydrometric record and can
be considered to be a type of back forecasting. The true values of the unmeasured flows can of
course never be obtained by this method, but likely values, given the covariate meteorologic
input series, can be calculated. These estimates are simply the output of the TFN model with the
noise term set to its conditional expectation of zero.
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Baracos et al. (1981) develop ARMA, TFN and intervention models (see Chapter 19) for
modelling 16 average monthly riverflow series as well as precipitation and temperature series
from the Northwest Territories in the Canadian Arctic. The data sets are available from the
Water Survey of Canada which is part of Environment Canada in Ottawa. To explain how river-
flow records can be extended using meteorological inputs, consider the TFN model developed
for the flows of the Tree River. Average monthly flows for the Tree River are available for 8
years from the start of 1969 to the end of 1976. However, the two meteorologic input series con-
sisting of precipitation and temperatures from the Coppermine weather station are 44 years in
length and span the years from the start of 1933 to the end of 1976. For the years in which the
riverflows overlap with the meteorologic data, a TFN model can be developed to model how the
meteorologic inputs dynamically affect the riverflow output series. The TFN model can then be
employed for extending or back forecasting the riverflow series for the years during which there
are only meteorological records.

The calibrated TFN model for the Tree River is written as

1-0.32B +0.258%
1+0.57B

¥ =0.0012x,, +0.04x,, — 0.031Bx,3 + [18.5.1]

where

Yr  is the Tree River series which is first transformed by taking natural logarithms and then
deseasonalized by removing the monthly means for the logarithmic series using [13.2.2].

X1 is the Coppermine rainfall series which is deseasonalized by subtracting the appropriate
monthly mean from each observation. Snowmelt is included as part of the rainfall series.
In order to produce a plausible representation of snowmelt input to a riverflow series, the
monthly snowfalls are summed over each winter, and then the total snowfall for the winter
is introduced as a pulse input to the rainfall series during the first month that the mean tem-
perature rises above zero Celsius for each year. Snowfalls that occur during months when
the mean temperature is above zero Celsius are assumed to have melted immediately, and
are added to the rainfall series rather than to the winter’s snow accumulation.

X2 is the Coppermine temperature series which is deseasonalized by removing monthly means.
Because the temperature is below zero in the winter and hence does not melt the snow, the
values from January, February, March, November and December are set to zero.

X3 is input series containing the deseasonalized temperature only for the month of April. All
other months are set equal to zero. The reason for including the x,3 series in the third term
on the right hand side of [18.5.1] is because for the month of April there is a large negative
cross correlation at lag one between the prewhitened Tree riverflows and the Coppermine
temperature series.

@ is the noise term for the TFN model which is NID(0,62).

To employ the calibrated TFN model for extending the riverflows, the conditional expecta-
tion of the noise is assumed to be zero and hence one uses only the dynamic component on the
right hand side of [18.5.1] to calculate y, as
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¥ =0.0012x,; + 0.04x,, — 0.031Bx,3 [18.5.2]

By substituting in known values of x;,, x,, and x,3 in [18.5.2], one can determine y,’s for any

desired values of ¢. Subsequently, to find the values of the flows in the original untransformed
domain one simply takes the inverse deseasonalization and logarithmic transformation of the
generated y,’s from [18.5.2]. '

Using the above procedure, the average monthly flows for the Tree River can be predicted
for any period during the years for which meteorological records exist from 1933 to 1976. By
utilizing graphical and numerical results, Baracos et al. (1981) demonstrate that the predicted
flows using [18.5.2] produce reasonable results. In particular, during the time period for which
the flows are known, from 1969 to 1976, the predicted flows are close to the known historical
flows.

Following a similar procedure to the one described in this section, Beauchamp et al. (1989)
extend daily riverflow records of a downstream station based upon a TFN noise model that con-
nects the downstream flows to a longer upstream time series of daily riverflows. They also
employ regression analysis for extending the same riverflows. However, they point out that the
regression model was found to have a significant amount of correlation in the residuals which
the TFN could eliminate, since the noise in a TFN model can be modelled as an ARIMA model.

Snorrason (1986) employs a TFN model to extend seasonal riverflow records for a river in
Iceland. A longer temperature series constitutes the input to the TFN model which has the river-
flows as the output.

18.5.3 Control

This chapter deals mainly with employing TFN models for forecasting or predicting the
future values of the response variable. As pointed out by Young (1984, p. 104), another impor-
tant application area of TFN models is designing control and management schemes for the sys-
tem that is currently being studied. In the chemical industry, for example, TFN models are
employed extensively for scientifically controlling processes for optimally producing a wide
range of chemical products. The key reason why TFN models are ideally suited for control pur-
poses is that they mathematically describe how the inputs dynamically affect the response in the
presence of correlated noise.

In a control problem, one often wishes to keep a response variable as close as possible to a
target value in a system subject to the inputs and noise. One could attempt to design control
schemes which minimize an overall measure of error at the output such as the mean square error.
As explained by Box and Jenkins (1976, Chapter 12), one can categorize control procedures into
three main domains - feedforward control, feedback control and a mixture of these two. In feed-
Sforward control, one or more sources of disturbances (inputs) are measured and these observa-
tions can be employed for compensating for potential deviations in the output. Because input
into the system is used to control the output of the system, this is referred to as feedforward con-
trol. On the other hand, in some applications the only information available about the existence
of the input disturbances is the deviation from the target which they cause in the response. If
only this deviation is utilized for deciding upon how to adjust the system, the action is called
feedback control. A combination of the aforementioned two methods of control is referred to as
Seedforward-feedback control.
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For a detailed discussion of discrete control schemes, the reader may wish to refer to Part
IV of Box and Jenkins (1976). Certainly, the design of control schemes has many potential
applications in water resources and environmental engineering. For example, to maximize the
hydroelectrical output of a system of reservoirs, good control and management plans are
required. The efficient operation of a sewage treatment facility that handles both industrial and
residential liquid wastes poses many interesting control problems.

18.5.4 Simulation

Besides forecasting, a TFN model can, of course, also be employed for simulation pur-
poses. To simulate with a TFN model, it is most convenient to use the model as given in
(18.2.13] or [18.2.20] where appropriate multiplications have been made so that no operators
appear in the denominator in any term on both sides of the equation. For explanation purposes,
consider the TFN model having one input series and ARMA noise which is written in [18.2.13]
for time ¢ as

$(B)3(B); - 1y) = 6(BYNB)(x, — 1,) + 8(B)B(B)a (18.5.3]

The main steps to follow in simulating with a TFN model are:
1. By employing the ARMA model that is separately fitted to the x; series in [18.2.4], use the
simulation techniques of Section 9.3 or 9.4 to simulate the x,’s.

2. To simulate the g,’s needed in the second term on the right hand side of [18.5.3], employ
an appropriate method from Section 9.2.3 to simulate the a,’s which are NID(O,G}).

3. If starting values are needed for the y,’s in [18.5.3], these can be generated using a separate
ARMA model fitted to the y, series in conjunction with a simulation technique from Sec-
tion 9.3 or 9.4.

4.  Use the simulated x, and a, series from steps 1 and 2, respectively, as well as the starting
values for y, from step 3, in the TFN model in [18.5.3] to simulate the y, series.

18.6 CONCLUSIONS

The TFN model of Chapter 17 is particularly well designed for use in the natural sciences
such as hydrology and water quality modelling. This is because the TFN model in [18.2.18]) and
{17.5.3] can formally describe, using a finite difference equation, the dynamic relationships
existing between a single output series and one or more input series. For instance, the TFN
model in [18.3.6) describes how the input or covariate series consisting of rainfall and snowmelt
cause riverflows. Furthermore, the correlated noise in the model can be modelled using an
ARMA(2,1) model.

Because the structure of the TFN model in an equation such as [18.3.6] realistically reflects
the physical relationships among the variables, one would expect the model to provide good
forecasts. In addition, since the TFN model incorporates more information into its structure by
means of the input series, one would think that better forecasts should be obtained using this
model. Indeed this is exactly what happens. The forecasting experiments of Section 18.3
demonstrate that the TFN noise model forecasts seasonal riverflows better than its competitors.
In particular, the TFN model of [18.3.6] provides more accurate forecasts of the quarter-monthly
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riverflows into Lac St. Jean than the descasonalized ARMA, PAR or either of the two conceptual
models. Moreover, as shown by the forecasting results in Section 18.4, even better forecasts can
be obtained when the TFN forecasts are optimally combined with those provided by the PAR
model.

Forecasting experiments with a range of nonseasonal models are furnished in Section 8.3.
For a description of forecasting experiments with the seasonal models of Part VII, the reader can
turn to Sections 15.3 and 15.4. Experiments with combinations of forecasts from seasonal
models are also given in Section 15.5.3.

In addition to handling multiple input series, the TFN model of Part VII can be expanded to
take care of other situations that arise in practice. More specifically, the intervention model of
Part VIII constitutes a general type of TFN model that can be used to model the effects of exter-
nal interventions upon the mean level of a series, estimate missing observations and also to
describe the dynamic relationships between multiple input series and a single output. Besides
Part VIII, further interesting applications of intervention and TFN modelling are presented in
Chapter 22.

PROBLEMS

18.1 Suppose that a TFN model is written as

9By (8B
(1-5,8) ¢ M T o8y %

For this model, carry out the following tasks:

.Y:‘Hy=

(a) Using formulae, clearly explain how to iteratively calculate MMSE forecasts for
leadtimes/=1.2,...,

(b) Derive the formula for determining the variance of the forecast error for (/).

18.2 Carry out the instructions of Problem 18.1 for the following TFN model having three

input series.
o,(B) @,(B)
0)3( ) e(B)
83(8) a3 = He3) + ¢(B)
18.3 For the TFN model written below, execute the instructions given in Problem 18.1.
(w9 - @,B)B> (1-6,8)

N =8B -58Y " (-eB)X1-B)"
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18.4

18.5

18.6

18.7

188

18.9

18.10
18.11

18.12

Consider the situation where one has monthly observations for both a response vari-
able, Y,, and an input series, X,. Each series is first transformed by taking natural loga-

rithms and then deseasonalized using [13.2.3]. Next, the TFN model fitted to the
resulting nonseasonal series is
= (oo-cole + 1 a
-8B (1-¢,B) °

where y, and x, are the deseasonalized response and covariate series, respectively. By
employing suitable equations, explain how to calculate MMSE forecasts for y, and x,
as well as forecasts for the original Y, and X, series.

In Chapter 14, periodic models are defined for application to a single seasonal time
series for which there are s seasons per year. Assuming one input series and an
ARMA noise term, write down the difference equations to define a periodic TFN
model. Explain the drawbacks of this type of model and how these disadvantages
could be overcome.

The field of econometrics deals with the development of statistical and stochastic
methods for application to economic data. Find an article in the econometrics litera-
ture where one or more leading indicators are used to forecast some aspect of the econ-
omy. Outline the procedure that is employed and explain how you think it could be
improved.

Within the water resources literature, locate a paper where TFN modelling is used for
forecasting. Briefly describe how the forecasting study was carried out and point out
any interesting facts that you discover.

Often an overly complex model does not forecast as accurately as a much simpler time
series model such as a TFN model. Explain why you think this could happen. Find a
paper in a field which is of interest to you where a TFN model provides better fore-
casts than a more complicated model, such as a conceptual model. Describe the main
findings of the paper and emphasize the most interesting results.

Fit a TFN model to a nonseasonal data set where you have a response series and one
input series. Employ the calibrated model to calculate MMSE forecasts for lead times
from 1 to 12. Plot the forecasts along with the 95% confidence limits.

Carry out the instructions of the previous question for two monthly time series.

Find two seasonal series designated by y, and x, for the response and input series,
respectively. Omit the last three years of the data set and then fit SARIMA (Chapter
12), deseasonalized ARMA (Chapter 13) and PAR (Chapter 14) models to the y,
series. Also, fit a TFN model to the y, and x, series for which the last three years of
the data are not used for calibration purposes. Following the approach of Section 18.3,
determine which of the four models produces the best one step ahead MMSE forecasts
of the last three years of the series.

Employ the combination methods of Section 18.4 to determine if the accuracy of the
forecasts obtained using the four models in Problem 18.11 can be improved by
optimally combining the forecasts. Clearly explain your findings.
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18.13  Select a response series for which you have a longer record for one or more input
series. Fit a TFN model to the data for the time period during which the response and
input series overlap. By following the procedure of Section 18.5.2, use the TFN model
to extend the response series for the time interval for which only the input data are
known.

18.14  Snorrason (1986) employs a TFN model to extend scasonal riverflow data from a gla-
ciated basin in Iceland. A longer temperature record is used as the input to the TFN
model while the output is the riverflows. His record extension technique is a slightly
different variation of the one presented in Section 18.5.2. Describe the data extension
approach of Snorrason and compare it to the one presented in Section 18.5.2.

18.15  Using equations and diagrams, explain the feedforward, feedback and mixed control
schemes put forward by Box and Jenkins (1976, Chapter 12). Describe how each of
these schemes could be possibly employed for modelling a water resources or environ-
mental system.

18.16  Fit a TFN model to a data set for which you have one input series and, of course, a sin-
gle response series. Follow the procedure of Section 18.5.4 to simulate a sequence of
values that has the same length as the historical series. Clearly explain all of the steps
that you follow and compare a graph of the simulated y, sequence to a plot of the his-

torical response series.
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