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CHAPTER 21
CONTEMPORANEOUS AUTOREGRESSIVE-MOVING
AVERAGE MODELS

21.1 INTRODUCTION

The contemporaneous ARMA, or CARMA, family of models is designed for modelling two
or more time series that are statistically related to one another only at the same time, or simul-
taneously. For example, two riverflow series that are measured within the same climatic zone
but not at locations where one station is upstream from the other, may be only correlated simul-
taneously with one another. As demonstrated by the applications given in Section 21.5 of this
chapter, a CARMA model is the most appropriate type of multivariate model to describe this
situation mathematically.

Because of the usefulness of CARMA modelling in water resources, this chapter is devoted
entirely to presenting this interesting and simple model. As explained in Section 20.2.2 of the
previous chapter, CARMA models actually form a special type of general multivariate ARMA
models. Besides possessing far fewer parameters than the general multivariate ARMA models
described in detail in Chapter 20, CARMA models can be conveniently fitted to multiple time
series using well developed model construction techniques.

Another useful subset of models from the general multivariatt ARMA family is the group
of TFN models which includes the closely related intervention models. TFN models can be
employed when a single output series is dependent upon one or more input series plus a noise
component. If a single output series is affected by one or more external interventions and
perhaps also some input series, an intervention model can parsimoniously describe this situation.
Along with many interesting applications, TFN models are presented in Part VII while interven-
tion models are discussed in detail in Part VIII and Section 22.4.

Descriptions of the historical development of multivariate models in water resources are
presented in Sections 20.4 and 20.5 as well as in the papers by Salas et al. (1985) and Hipel
(1986). In addition to other types of multivariate models, many references are listed at the end
of Chapter 20 for previous research in CARMA modelling. Much of the material presented in
this chapter is drawn from research completed by Camacho et al. (1985, 1986, 1987a,b,c) and
Camacho (1984).

In the next section, two alternative approaches to deriving the equations for CARMA
models are presented. Following this, a comprehensive set of model construction tools are
described in Section 21.3. To avoid introducing bias into synthetic sequences, a correct method
for generating simulated data from a CARMA model is presented in Section 21.4. The practical
applications in Section 21.5 demonstrate how convenient and simple it is to use the building
methods for properly describing both water quantity and quality time series.
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21.2 DERIVING CARMA MODELS

21.2.1 Introduction

CARMA models can be defined using two distinct viewpoints. Firstly, as noted in Section
20.2.2, the CARMA group of models can be thought of as being a subset of the general mul-
tivariatt ARMA family of models. Instead of going from a more general class of models to a
more specific subset of models, the second approach for defining the CARMA group of models
goes in the reverse direction. In particular, a CARMA model can be considered as a collection
of, say, k univariatt ARMA models with contemporaneously correlated innovations. This
second interpretation is particularly useful for the development of model construction tools,
especially computationally efficient estimation algorithms. The subset and concatenation defini-
tions of the CARMA group of models are now presented.

21.2.2 Subset Definition

The mathematical definition for the general multivariate ARMA family of models is given
in [20.2.1] and [20.2.2]. By constraining the AR and MA parameter matrices to be diagonal
matrices, the CARMA subset of models is defined. More specifically, following the notation of
Section 20.2.2, let k time series at time ¢ be represented by the vector Z, = (Z;,Z,5, . . . Zy)F

where the vector of the theoretical means for Z, is given by p = (1,1, . . ., uk)T. Assuming that

the orders of the AR and MA components are p and q, respectively, the CARMA(p,q) model can
be written as
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is the AR parameter matrix for i =1,2,...,p, having zero entries for all the off diagonal ele-
ments;
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is the MA parameter matrix for i =1,2,...,q, possessing zero values for all the non-diagonal
elements; and
a = (a,l,a,z, e ,a,k)T

is the k dimensional vector of innovations for Z, at time . Notice that the model in [21.2.1] has
the same form as the general multivariate ARMA model in [20.2.1] and [20.2.2], except for the
fact that the AR and MA parameter matrices are diagonal.

After performing the matrix multiplications in [21.2.1], one obtains a set of k simultaneous
difference equations. In particular, the ith difference equation for the variable Z;; is
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Notice from [21.2.2] that only the ith variable and ith innovation series appear in the equation.
The simultaneous correlation among the & variables is incorporated into the CARMA model by
allowing the innovations to be contemporaneously correlated. More precisely, the vector of
innovations given by a, are assumed to be IID vector random variables with a mean of zero and

variance covariance matrix given by A=E [a,-a,T ]. For practical applications, the normality
assumption is invoked and a,~NID (0,A).

The model in [21.2.2] can be more compactly written as

0;BYZ; —n)=6;B)a,;, i=12,....k [21.2.3]
where

0;(B)=1-¢;,B — 0;2B*— - —¢;,B°
is the ith AR operator of order p and

8;(B)=1-6,,B —0;,B2— --- - 6,,B

is the ith MA operator of order g. For the CARMA model to be stationary and invertible, the
zeroes of the characteristic equations ¢;(B) =0 and 6;(B) = 0, respectively, must lie outside the

unit circle.

Example: Consider a bivariate CARMA(1,1) model for connecting the two variables contained
in the vector

Z,= @2z
having theoretical means given by
M= ()"
From [21.2.1], the bivariate CARMA(1,1) model is written as
le—ul] [4’111 0 | |Z-11- ] [ ] [9111
Zo-Ha) | 0 61 lZ12- M2 0 6

After matrix multiplication, the two component equations of the bivariate model are

41,1

a-1,2

] [21.2.4]

.

Zy -~ 011 — M) =a = 0111011

Zp -~ 9221Zm12 ~ HD) =G = 0218, [21.2.5]
The vector of innovations for the bivariate model is

8, = (@)

where the variance covariance matrix for a, is
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Because G, = O}y, then A is a symmetric matrix. Under the normality assumption a,~NID (0,A).
To satisfy the stationarity assumption, the roots of
¢;B)=1-¢,;,B=0
and
$B)=1-02,B=0
must lie outside the unit circle. Consequently, i¢;,;! <1 and 1¢,5;1< 1. For invertibility, the
roots of
0,B)=1-0,,B=0
and
0,(B)=1-0,,B=0

must lie outside the unit circle. Hence, 10,;;1 < 1 and 10,5, < 1 for satisfying the invertibility
condition.

21.2.3 Concatenation Definition

The clue to discovering the second approach to defining a CARMA model is given by the
form of the component equation in [21.2.2] and [21.2.3]. Notice that the model in [21.2.3] for
the ith variable is in fact an ARMA model and is identical to the ARMA model defined in
[3.4.3] and [3.4.4]. Accordingly, one can consider the CARMA model to consist of a concatena-
tion of k ARMA models where there is a separate ARMA model to describe each of the k series.
In general, the orders of the AR and MA operators may vary across the k models. Therefore, the
ARMA model for Z; can be written more precisely as

0:BYZ; - 1) =8 B)ag, i=12,... .k [21.2.6]
where
0;(B)=1-¢;;B - §; B2 - -+ —¢;,B"

is the ith AR operator of order p; and
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0;(B)=1-6;,B —0;,B%— -+ —0;,B"

is the ith MA operator of order g;. The chain that links the Xt ARMA models together in terms of

contemporaneous correlation is the variance covariance matrix, A, for the innovations
a, =(a,,a., . .. ,a,k)T where a,~NID(0,A). When using the notation CARMA(p,q) to stand for

the overall model, one sets p = max(py,ps, . . . ,pi) and ¢ =max(q,,9y, . - - »q;)- By constraining
appropriate parameters to be zero in the subset definition of the CARMA(p,q) model in [21.2.1],
one can also allow the orders of the AR and MA operators to vary when using this equivalent
definition.

In summary, from [21.2.6], the CARMA model can be thought of as a set of k univariate
ARMA models for which the innovations are contemporaneously correlated. This contem-
poraneous correlation is modelled using the variance covariance matrix, A, which has a typical
entry denoted by o;;. For the situation where none of the series are contemporaneously corre-

lated with each other, 6;; =0 for i # j and the multivariate CARMA model collapses into a col-

lection of k independent univariatt ARMA models. Consequently, one can interpret the
CARMA model as a natural extension of the univariatt ARMA model. Alternatively, under the
subset definition in Section 21.2.2, the CARMA model can be considered to be a special case of
a more general family of models.

21.3 CONSTRUCTING CARMA MODELS

21.3.1 Introduction

Because flexible and simple model construction procedures are now available for fitting
CARMA models to a data set, it is currently possible for practitioners to conveniently employ
these models in practical applications. Some of the techniques used at the three stages of model
construction have naturally evolved from the concatenation interpretation of the CARMA model
presented in [21.2.6]. Consequently, construction methods used for fitting univariate ARMA
models have been cleverly extended for use with CARMA models for which there are contem-
poraneous correlations among the innovation series. Specific details and a comprehensive list of
references regarding the available procedures for use in model fitting can be found in papers by
authors such as Camacho et al. (1985, 1986, 1987a,b,c), Salas et al. (1985), Hipel (1986) and
Jenkins and Alavi (1981). In this section, some of the most useful model construction tools are
described.

21.3.2 Identification

A sound physical understanding of a given problem in conjunction with a thorough appre-
ciation of the capabilities of the various types of multivariate ARMA models, are of utmost
importance in model identification. For instance, when riverflows from different river basins are
controlled by the same general climatic conditions within an overall region, a CARMA model
may be appropriate to use with this multisite data. The residual CCF is a very useful statistical
tool for ascertaining statistically whether or not a CARMA model is needed to fit to two or more
time series and also to decide upon the orders of the AR and MA parameters. In Section 16.2.2,
the theoretical and sample residual CCF functions are defined in [16.2.5] and [16.2.6], respec-
tively, and it is explained how the residual CCF can be used to determine the type of causality
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existing between two series and thereby confirm in a statistical manner what one may suspect a
priori from a physical understanding of the problem. A summary of the use of the residual CCF
in causality studies is given in Table 16.2.1 and also in Section 20.3.2 under the heading Causal-

ity.
Suppose that one has a set of k time series given by
L =ZyZy - 'ztk)T

where each series has n equally spaced observations that are available at the same time as the
other series. For the ith time series, the data set is given as [Z,;,Z,;, . . . ,Z,;]. Using the sample
residual CCF for model identification involves the following two steps.

Step 1 - Fitting Univariate ARMA Models: Using the ARMA model construction procedures
of Part III, the most appropriatt ARMA model is fitted separately to each of the data sets

{Zl,-,Zz,-, cor Ly }, i =1,2,...,k. This step produces a residual series

for each series i = 1,2, . .. ,k, for the univariate ARMA model in [21.2.6] or [3.4.3]. Obtaining
the residuals of an ARMA model fitted to a given series is referred as prewhitening in Sections
16.2.2 and 20.3.2. Besides the residuals, a vector of parameter estimates given by

Bi = @irdiz: - - - r$iip,-v6iil’6ii2' 8T

is found for each of the series i = 1,2, ...,k. The bar above a variable or parameter means that
the variable or parameter has been estimated using an efficient univariate estimation procedure
from Section 6.2.3 or Appendix A6.1.

Step 2 - Analysis of the Residual CCF: As explained in Section 16.2.2, to determine statisti-
cally the type of causality existing between two series Z,; and Z,j, one examines the residual

CCF which is calculated for the residuals series [a,;] and [a',j]. Following [16.2.6], the residual
CCF is determined for lag / as

7() = (1) 1 [E:O)E; (0]
where

n-=l
n 'Y a,a,, i, forl20
&= [21.3.1]
n''Y a,d,,;, forl<0
1=1-1

is the estimated cross covariance function at lag / between the two residual series, and ¢;;(0) and
¢;(0) are the estimated variances of the ith and jth residual series, respectively.
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The residual CCF can be calculated for negative, zero and positive lags for all possible
pairs of series. If a CARMA model is adequate for modelling the data, only the residual CCF at
lag zero should be significantly different from zero. If this is not the case, a more complicated
model such as a TFN model (see Chapter 17) or a general multivariatt ARMA model (see
Chapter 20) may be needed. Under the hypothesis that the CARMA model is adequate for
describing the data, the quantities 2/n' can be considered as approximate 95% confidence lim-
its to decide whether a value of the residual CCF is significant or not. The test for the signifi-
cance of the cross correlations can be easily performed by plotting the residual CCF

Flj(l)v l =0,il,:t2, e ,iﬂl

where m < n/4 together with the 95% confidence limits for each distinct pair of residual series.
If a CARMA model is appropriate for modelling the series, only the residual CCF at lag zero
will be significantly different from zero for all pairs of series.

An alternative to plotting the residual CCF’s is to summarize the significance of each value
of the residual CCF in the residual CCF matrix denoted by R(/) = [F;;(/)]. Because there are k

series, the dimension of i(l) is kxk where the (i,j) entry gives the result for the ith 3nd jth
series. Also, since F;;(/) = —F;;(/), one only has to determine the residual CCF matrices R(/) for

zero and positive lags so that / =0,1,2,...,m. For convenience in detecting significant values
in R(/), each 7;;(1) entry can be replaced by a *‘+”’ to indicate a value greater than 2112 or or by
a “‘~”’ to point out a value smaller than 20712 or by a ‘“.”” to indicate a value falling between
-2n712 and 2n'2. Thus, ““‘+**, *->* and **.”” stand for values significantly greater, significantly
less and not significantly different from zero, respectively. If the approximate 95% confidence
interval given by (=2n122n12) is not considered to be accurate enough, exact confidence inter-
vals could be calculated (Li and McLeod, 1981), although this is not usually necessary.

In summary, from Step 1, one knows the number of AR and MA parameters required to
model each series and one has univariate estimates of these parameters. If the residual CCF cal-
culated in Step 2 for each pair of series is only significantly different from zero at lag zero, then
a CARMA model is the most appropriate type of multivariate model to fit to the k series. An
advantage of using the residual CCF as an identification technique is that it may indicate the
direction of departure from the CARMA model, if this model is not adequate to fit the data. For
example, if the residual CCF were significantly different from zero for lag zero and also a few
positive lags but not significant for any negative lags, this may indicate that a TFN model is
required (see Part VII). Although one could also use the model identification techniques
described in Appendix A20.1 of the previous chapter, these techniques are not as convenient to
use as the residual CCF, especially when one suspects from a physical viewpoint that a CARMA
model is needed.

21.3.3 Estimation

After a tentative model has been identified, the next step is to estimate the parameters of
the model. General multivariate ARMA estimation procedures based upon maximum likelihood,
such as the methods of Hillmer and Tiao (1979) and Nicholls and Hall (1979) referred to in Sec-
tion 20.3.2, could be employed to estimate the parameters of the CARMA model. It should be
pointed out, however, that these algorithms are not computationally efficient for the estimation
of the parameters of the CARMA model, and efficient algorithms can be readily obtained, as
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explained below. On the other hand, the univariate estimates [3; obtained for each of the series
Z;,i=12,...,k in Step 1 in Section 21.3.2, do not provide statistically efficient estimators of
the parameters in the overall CARMA model. This is because the variance of the estimated AR
and MA parameters contained in B,- for the ith time series may be quite high. Camacho (1984)
and Camacho et al. (1987a,b) show theoretically that the variances of the univariate estimators
ﬁ,-, i=12,...,k, are greater than the variances of the estimators obtained using the joint mul-
tivariate estimation algorithm described below. In some cases, the univariate estimators are
much less efficient than the joint multivariate estimators.

To overcome the aforementioned inefficiencies of the estimation techniques, Camacho et
al. (1987a,b) developed an algorithm to obtain efficient MLE’s of the model parameters. As is
also assumed at the identification stage, let Z, = (Z,,,Z5, . . . ,Z,k)T fort=1,2,...,n be a sam-

ple of n consecutive observations for the k time series Z,;, i =1,2, ... ,k. Hence, for the ith time
series the set of observations is given as

(Zy} ={Z2yi 2y, - - - 1 Zpi}

Let the parameters of the CARMA model for the ith series be contained in the vector
Bi = @1 iz - - - » biip, B 1:iizs - - - »0iig)

Consequently, the vector of parameters for the complete CARMA model is written as

B=BiBy....Bo"

The CARMA estimation algorithm consists of the following steps:
1. ForeachseriesZ;,i=1,2,...,k, obtain univariate estimates of the ARMA model parame-

ters using univariate ARMA estimation techniques such as those by Newbold (1974), Ans-
ley (1979), Ljung and Box (1979), and McLeod (1977) referred to in Section 6.2.3. The
ARMA estimator of McLeod is described in Appendix A6.1. In Step 1 of the identification
stage of the previous section, the univariate estimates f3;,i =1,2, ...k, are already found
in order to produce the prewhitened series for each fitted ARMA model. Recall that a bar
written above a vector indicates that an efficient univariate estimator has been employed to
obtain estimates of the parameters contained in the vector.

2. Calculate
B* =B - v{B)@s/aB)|, = [21.3.2]
ik
where B- = (Bl,ﬁz, ..., PO is the vector of univariate estimates for which B,- is the vector

of univariate estimates of the ARMA model for the ith series;
VP! =p1im(aZS/aBaBT)| -
B-p

is the inverse of the variance-covariance matrix for the parameters contained in 8, which is
the information matrix;
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@SB 85

denotes the vector of partial derivates of the sum of squares function, S, with respect to the
CARMA parameter [3, evaluated at the point $=f. The sum of squares function S, is
defined as

n
S=YaTA™a,2n

=1
where
= T
a,=(an82 .., au)
A= (o)
is the variance covariance matrix of a,, and a;; is defined in
a; =Z = 0inZi—1,i = QinZy2; =~ QipLipyi
+0;0a, 1+ 000 0+ - +65,8 4, t2p;

Initial values for a,; can be calculated using the algorithm given by McLeod and Sales

(1983) or can be set equal to zero. To calculate the information matrix or, equivalently,
V(B)~! which is the inverse of the variance-covariance matrix of 3, the algorithm given by
Ansley (1980) and Kohn and Ansley (1982) can be employed. Camacho (1984) proves that
B* is asymptotically efficient. Using [ as the initial point, the estimation procedure
corresponds to one iteration of the Gauss Newton optimization scheme. To obtain the max-
imum likelihood estimator, B, for the complete CARMA model, iterations can be continued
until convergence is reached.

Camacho et al. (1985, 1987a) extend their estimation algorithm for CARMA models to
include the situation where the multiple time series have unequal sample sizes. In this way, the
modeller can take full advantage of all the available data and none of the observations in any of
the series have to be omitted from the analysis. This estimation algorithm is outlined in Appen-
dix A21.1.

Camacho et al. (1986) consider the effect on the estimation of the parameters when a
bivariate series Z, = (Z,,,Z,;)T is incorrectly modelled as a general multivariate AR(1) model
using [20.2.1] when a CARMA(1,0) model from [21.2.1] would suffice. As pointed out in Sec-
tion 20.4, the general multivariate AR(1) model has been proposed for utilization in hydrology.
Using simulation studies, they show that the loss in efficiency of the parameter estimates
obtained using the full multivariate model can be very substantial and in many cases can be well
over 50%.

21.3.4 Diagnostic Checks

After obtaining efficient estimates for the model parameters, possible inadequacies in the
fitted model can be found and subsequently corrected by examining the statistical properties of
the residuals. As explained in Section 20.3.2, a range of tests are available for ascertaining
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whether or not the residuals are white (Li and McLeod, 1981), homoscedastic (see Section 7.5.2)
and normally distributed (Royston, 1983).

For detecting misspecifications in the model, the residual CCF is both informative and sen-
sitive. In addition to the joint estimates for the model parameters, one can obtain the model resi-
duals d;, i =1,2, ... ,k, using the efficient estimation procedure of Section 21.3.3. To calculate
the residual CCF, 7;;(!), at lag / between two residual scries, one simply replaces a,; and &;; by d;;
and d‘,j respectively, in [21.3.1]. Each entry in the residual CCF matrix, ﬁ(l ), should not be sig-
nificantly different from zero for / > 1. As is done at the identification stage, it is convenient to
use the symbols “‘+”’, “-*, and *‘.”” in R(/) to indicate entries that are significantly larger, signi-
ficantly smaller, and not significantly different from zero, respectively.

Based upon the work of Li and McLeod (1981), Camacho et al. (1985) suggest a modified
Portmanteau test statistic to test for the independence of the residuals. As in Section 21.3.3, let
A=Ela, -a,T] be the variance-covariance matrix of a, = (a,1,4;3, . . . » a,k)T and let

HOEIGTIONL O NN AT RTI( RCYI() RN 71 () R ,r“kk(l))T

The modified Portmanteau test statistic is then written as

N R P N 2
O =nYr() A ®A Y()+k°L(L +1)2 [21.3.3]
I=1

Under the assumption that the residuals are white noise, Q; _ is approximately %2 distributed with
k2L - k(p + q) degrees of freedom for large values of L and n.

If the residual CCF possesses significantly large values at lags other than zero, the
CARMA model must be appropriately redesigned. Perhaps it may be only necessary to add
additional AR and MA parameters to the CARMA model. If the CARMA class of models itself
is not adequate, a more complex family of multivariate models, such as the TFN set of models,
may have to be considered. When the residuals are not approximately normally distributed
and/or homoscedastic, it may be required to transform one or more of the series using an
appropriate transformation such as the Box-Cox transformation in [3.4.30]. Subsequent to this,
the parameters of the CARMA can be estimated again using the algorithm in [21.3.3].

21.3.5 Seasonality

The CARMA(p,q) model presented in Sections 21.2.2 and 21.2.3 is defined for handling
nonseasonal series and the model construction techniques of this section are explained for the
nonseasonal case. When one wishes to fit a CARMA model to seasonal data, the two
approaches described in more detail in Section 20.3.3 can be used. In particular, one can first
deseasonalize each series using a technique from Section 13.2.2 and then fit a nonseasonal
CARMA model to the deseasonalized data. An alternative approach is to employ a periodic ver-
sion of the CARMA model to fit directly to the seasonal data.

As explained in Part VI for univariate models, usually deseasonalized (Chapter 13) or
periodic (Chapter 14) models are the most appropriate types of seasonal models to fit to natural
time series. This is because data within a given season for a natural time series are usually sta-
tionary across the years. However, when the data within seasons are nonstationary over the
years, it may be appropriate to seasonally and perhaps also nonseasonally difference the data to
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remove the nonstationarity (see Chapter 12). For example, a seasonal economic time series may
possess an upward trend which causes the overall level of the series to increase over the years.
After appropriately differencing the series, a seasonal ARMA model can be fitted to the resulting
stationary data in order to obtain the parameter estimates for the seasonal ARIMA model.

In a manner similar to that for the univariate seasonal ARIMA model of Chapter 13, a
CARIMA model containing differencing operators can be easily defined. To accomplish this, one
simply introduces seasonal and nonseasonal differencing operators along with seasonal AR and
MA operators into [21.2.7]. A model containing differencing operators could also be defined for
the general multivariate ARMA models of the previous chapter.

21.4 SIMULATING USING CARMA MODELS

21.4.1 Introduction

Comprehensive techniques for generating synthetic sequences using ARMA and ARIMA
models were developed by McLeod and Hipel (1978b) and are presented in detail in Chapter 9.
To avoid the introduction of systematic bias into the simulated series by employing fixed start-
ing values, the simulation methods described in Sections 9.3 and 9.4 are designed such that ran-
dom realizations of the underlying model are used for starting values. The simulation techniques
developed for the univariate ARMA and ARIMA models can be extended for use with CARMA
models.

Originally, McLeod (1979) suggested a simulation algorithm for use with CARMA models
possessing no MA parameters while Camacho (1984) presented the algorithm for the general
case. Simulation experiments which employ this new algorithm are given by McLeod (1979),
Camacho (1984), and Camacho et al. (1985, 1986). A similar type of simulation algorithm can
be developed for use with the general multivariate ARMA models of Chapter 20.

21.4.2 Simulation Algorithm

Overall Algorithm
Suppose that there are k time series and at time ¢ the vector of time series is denoted by

2,=2Zy2Zp, - .- 'Ztk)T

For the ith time series, let the order of the AR and MA parameters needed in [21.2.6] be p; and
g;, respectively. Now, define

— T
Zp.,_,- =2yl - - - 'Zp.-.i)
and
- T
8yi = @p—g41,i8p—g+2,is - - 1B, i)

for series i =1,2,...,k. Then, the values contained in the vectors Z,, ; and a, ; represent the

starting values for the ith series where i =1,2, ... ,k.
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Suppose that it is required to generate N synthetic observations for the CARMA model in
[21.2.6]). Without loss of generality, it is assumed that the mean of each of the k series is zero.
The following algorithm provided by Camacho (1984, pp. 57-68) is used to obtain simulated
values Z,Z,, ..., Zy where Z, =(Z,,,Z,, . .. ,Z,)'. Moreover, this algorithm is exact in the

sense that it is not subject to inaccuracies associated with fixed initial values.
1. Determine the lower triangular matrix M by Cholesky decomposition such that (Ralston,

1965)
A=MM’ [21.4.1]
where A is the variance-covariance matrix for a, = (a,1,, . . . ,a,k)T in [21.2.6].
2. Obtain the vectors of initial values Z,, ;8. ;, i =1,2,...,k. (See next subsection for the

method used to calculate the initial values.)

3.  Following the two steps given next, generate a,.1,8,.), . . ., 8y Which is a sequence of
N —p vectors each of which has dimension k and is NID(0,A). As in [21.2.6], the
p =max(pyPo, . . ., Pp)-
(i) Simulate e,;.e,, ..., ey, which is a sequence of N —p vectors each of which has

dimension k and is distributed as NID(0,1) where 0 is a kx1 vector consisting of k
zeroes, 1 is diagonal matrix of dimension kxk having entries of unity along the main
diagonal.

(i) Calculate

i
a; = ymjje; [21.4.2]
j=1
fori=12,...,kandt=p+1,...,N.
4. Obtain Z,,,,Z,,,, . .., Zy, where each vector of observations at a given time has k entries,
by using :

Zi=0inZiyi+iniit " FOiplyp it Gy

=011 =900y 0 — 1 =00 [21.4.3]

fori=12,...,kandt =p+1p+2,...,N.
5.  If another series of length N is required return to step 2.

The above algorithm is described for simulating stationary series having no Box-Cox
transformations. If the original set of series were differenced and also were transformed using
Box-Cox transformations, the techniques of Sections 9.5 and 9.6, respectively, could be
employed in conjunction with the algorithm of this section to obtain synthetic sequences in the
original untransformed domain.
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Calculation of the Initial Values
The joint distribution of Z,, ; and a,,;,i =1,2,...,k, is used to generate the starting values
for the simulation algorithm for a CARMA model. As demonstrated by Camacho (1984, p. 59),
the joint distribution of
= T
v= (ZPI»I’ZP2-2’ T sz.t’aQIJ'aqz»z' AR GAJC)

is multivariate normal having a mean of zero and variance covariance matrix given by

th(i - .1) Ggh"’g(i _J)
V= [21.4.4]

Symm ARI,,

where
'th(r) = <Zl,gzl+r.h> ’ g7h = 192» L ’k
&;B)y;B)=6,B), i=12,....,k [21.4.5]

Ansley (1980) and Kohn and Ansley (1982) provide an algorithm to obtain the theoretical auto-
covariance function of the general multivariate ARMA model. This algorithm could be
employed to calculate the terms ¥,,(i—)) in [21.4.4]. However, due to the diagonal structure of

the CARMA model, Camacho (1984, p. 61-62), has developed a computationally efficient algo-
rithm for the calculation of the theoretical autocovariance function of the CARMA model.

The following algorithm can be used to obtain the initial values required in step 2 of the
overall algorithm for simulating using the CARMA model given in Section 21.4.2.

1. Calculate W, (s),g=1,...,k;s=0,1,... , max{p,q} from [21.4.5].
2. Calculate the theoretical autocovariance functions Yeh r),
r=1-p,...,0,...,p-1, 1<g<h<k

3.  Form the variance-covariance matrix V of v given by [21.4.4] and obtain the lower triangu-
lar matrix L by Cholesky decomposition such that

v=LLT

4. Generate e;e,, . . ., €444 a sequence of k(p+g) NID (0,1) random variables and deter-
mine the vector of initial values by:

J
Uj = le'e‘ , j: 172: ce JC(P"‘Q)

i=1

Note that if another series is required only step 4 is needed.
21.5 PRACTICAL APPLICATIONS

21.5.1 Introduction

In order to clearly demonstrate the usefulness of CARMA modelling in water resources and
environmental engineering, three case studies are presented. The first and third applications
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involve water quantity data while the second one deals with water quality time series. All three
applications show how the model construction techniques of Section 21.3 can be conveniently
used in practice to obtain models that adequately describe the series and possess efficient param-
eter estimates. In the third example where one series has more data points than the other, the
estimation algorithm of Appendix A21.1 is employed so that all of the measurements can be
used for efficiently estimating the CARMA model parameters. These three applications were
originally presented by Camacho et al. (1985).

21.5.2 Fox and Wolf Rivers

Average annual riverflows in m>/s for the Fox River near Berlin, Wisconsin, and the Wolf
River near London, Wisconsin, are available from Yevjevich (1963) and also the hydrological
data tapes of Colorado State University at Fort Collins, for the years from 1899 to 1965. A plot
of the data is given in Figure 21.5.1, where the overall shapes and dependencies of the data can
be compared. In order to facilitate these comparisons, the y-axes have been purposely deleted
and the data have been scaled so that each of the two series takes up half the graph (these con-
siderations were also taken into account to produce the plots given in Figures 21.5.3 and 21.5.5).

L L ! | ! L I _J
0 10 20 30 40 50 60 70

OBSERVATION NUMBER
Figure 21.5.1. Annual riverflows for the Fox and Wolf Rivers (m3/s).

Because the Fox and Wolf Rivers lie within the same geographical and climatic region of
North America, a priori one may expect from a physical viewpoint that a CARMA model would
be more appropriate to use than separate univariate ARMA models. Subsequent to taking a
natural logarithmic transformation of the observations in both time series, univariate identifica-
tion results from Chapter 5 suggest that it may be adequate to fit a MA model of order one G.e.,
MA(1)) given in [3.3.1] to each data set. After prewhitening each series using the calibrated
MA(1) model, the residual CCF for each series is calculated using [21.3.1] with the prewhitened
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Fox and Wolf riverflows in order to obtain the graph of the residual CCF shown in Figure 21.5.2,
along with the 95% confidence limits. Because the residual CCF in this figure is only signifi-
cantly different from zero at lag zero, this indicates that a CARMA model could be fitted to the
logarithms of the bivariate series. Additionally, the fact that each series can adequately be
described by a univariate MA(1) model suggests that the following CARMA(0,1) model should
be used.

logZ,; -, =(1-6;ay;, i=12 [21.5.1]

where i =1, and i =2 refer to the Fox and Wolf logarithmic riverflows, respectively, Y; is the
theoretical mean of the logarithmic series for Z,;, and the general definitions of all parameters
and variables follow [21.2.7].
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Figure 21.5.2. Residual CCF for the Fox and Wolf Rivers.

Table 21.5.1 lists the parameter estimates along with their standard errors appearing in
brackets, using the univariate approach (Appendix A6.1) and the joint estimation algorithm
described in Section 21.3.3. As can be observed in Table 21.5.1, there is a significant reduction
in the variance of the parameter estimates when the joint estimation is employed. This in turn
means that the relative efficiency of the univariate estimates with respect to the joint multivariate
estimator is much less than unity. This relative efficiency is calculated using

eff =var(®;)/var(®;,) [21.5.2]
where ;;; and 6;;, are the joint and univariate estimates, respectively, for the parameter 6;;;. The

correlation between d,; and d, is calculated to be 0.78. When the residuals of the CARMA(0,1)
are subjected to residual checking, no misspecifications of the fitted model are detected.
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Table 21.5.1 Parameter estimates for the CARMA model and
univariate models for the Fox and Wolf Rivers.

Fox River Wolf River

Univariate -0.483 -0.411
Estimates of 0;;; (0.110) (0.111)
Joint -0.626 -0.543
Estimates of 9;;; (0.075) (0.080)
Efficiency of
Univariate Estimator 0.465 0.519
Mean of Log Z; 3.39 3.84

(0.037) (0.042)
Residual Variance 5.52x102  7.5x1072

21.5.3 Water Quality Series

In the second example, two series corresponding to different measurements of the concen-
tration of nitrogen in the Middle Fork Creek near Seebe, located in the Province of Alberta,
Canada, are modelled. The series represent monthly measurements of total nitrogen and nitro-
gen Kjeldahl from 1972 to 1979 and are part of an overall data set that are studied using both
exploratory and confirmatory data analysis tools in Sections 22.3 and 22.4, respectively. The
seasonal adjustment algorithm of Section 22.2 was used to obtain the monthly means of the
series from data available at irregular time intervals. A plot of the estimated monthly series is
given in Figure 21.5.3.

Following Chapter 5 and Section 12.3.2, univariate identification techniques suggest that
an adequate model for describing the natural logarithms of the total nitrogen series, Z,, is a sea-

sonal AR(1)¢ model of the form

(1 - 0116B%)(l0gZ;y — W) = ayy (21.5.3]

where B%logZ,, = logZ,_¢ . An appropriate model to fit to the nitrogen kjeldahl series, Z,, is an
AR(1) model of the form

(1 = ¢221B)(0gZ;; — W) =ay, [21.5.4]
The univariate estimated parameters and their SE’s given in brackets are are listed in Table
21.5.2.

A perusal of the residual CCF for the fitted models from [21.5.3] and [21.5.4], shows that
only the CCF at lag zero is significantly different from zero. This identification result implies
that a CARMA model is appropriate for fitting to the bivariate series. The specific parameters
required in the two component equations of the overall CARMA model are the same as those
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i

0 12 24 36 48 60 72 84 96
OBSERVATION NUMBER
Figure 21.5.3. Concentration of total nitrogen and nitrogen kjeldahl
(mg/!) for the Middle Fork Creek, near Seebe, Alberta, Canada.

used in [21.5.3] and [21.5.4]. Following the joint estimation procedure of Section 21.3.3, the
efficient estimators for the CARMA model are calculated and displayed in Table 21.5.2. The
reduction in the variances of the joint estimators compared with the variances of the univariate
estimators is quite substantial. If only univariate series were used to estimate the parameters of
the model for each one of the series, it would be necessary to increase the sample size of the
series by a factor of four in order to obtain the same reduction in the variances of the parameters
estimates. This increase in the sample size of the series is very expensive and in some cases
infeasible. Consequently, this demonstrates that the CARMA model could also be employed to
increase the accuracy of the parameters of the univariate models. The correlation at lag zero
between d,; and d,, for the models given in [21.5.3] and [21.5.4], respectively, is found to be

0.88.

21.5.4 Two Riverflow Series Having Unequal Sample Sizes

As an example of two riverflow time series possessing unequal numbers of observations,
consider the French Broad River at Asheville, North Carolina and the French Broad River near
Newport, Tennessee, which have average annual flows from 1896 to 1965 and 1921 to 1965,
respectively. As is the case for the application in Section 21.5.2, these flows are available from
Yevjevich (1963) and also the hydrological data tapes of Colorado State University.

A plot of the 70 observations of the flows at Asheville and the 45 observations of the flows
near Newport are displayed in Figure 21.5.5. Univariate MA(1) models like the ones in [21.5.1]
were found to be adequate to fit the logarithms of the series. A plot of the residual CCF is given
in Figure 21.5.6 Although the flows near Newport are measured downstream from the flows at
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Figure 21.5.4. Residual CCF for the total nitrogen and nitrogen kjeldahl.

Table 21.5.2. Parameter estimates for the CARMA model and
univariate models for the total nitrogen and nitrogen
kjeldahl series for the Middle Fork Creek.

Total Nitrogen  Nitrogen Kjeldahl

Univariate Estimates of 0.310 0.294
6116 and ¢2, (0.097) (0.097)
Joint Estimates of 0.141 0.141
6116 and ¢, (0.049) (0.049)
Efficiency of Univariate Estimator 0.255 0.255
Mean of Log Z,; -1.33 -1.59

0.084) (0.104)
Residual Variance 0.131 0.152
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Asheville, implying that a TFN model (see Chapter 17) may be required to model the bivariate
series, it is observed from the plot of the residual CCF that a CARMA model would suffice,
(only the residual CCF at lag zero is significantly different from zero). This is due to the fact
that annual riverflows are being considered and this temporal aggregation of the data, by its very
nature, incorporates some of the lagged relationships, which would be expected to hold in the
model of the system (Granger and Newbold, 1977). If monthly data or less temporal aggregated
data were considered, a TFN model would probably be required to model the data. The algo-
rithm given in Appendix A21.1 is used to jointly estimate the parameters of the model. These
estimates are given in Table 21.5.3. The significant reductions in the variances of the estimators
compared with the univariate estimates can be observed. The correlation at lag zero between the
residuals of the two series is calculated to be 0.91.

21.6 CONCLUSIONS

As illustrated by the practical applications of the previous section, the CARMA family of
models can be used to model efficiently hydrological and other types of environmental series.
When taking the physical characteristics of the system being modelled into account along with
output from the identification methods of Section 21.3.2, the CARMA class of models is often
found to be the most appropriate type of multivariate model to use. The application of Section
21.5.4 shows that the CARMA model can be ideal for modelling time series formed by temporal
aggregation. Another attractive feature of fitting this kind of model is that well developed, yet
simple, model construction tools are currently available for use in practical applications. For
example, when estimating the parameters of time series having equal and unequal sample sizes,
the estimation procedures presented in Section 21.3.3 and Appendix A21.1, respectively, can be
utilized. Furthermore, the flexible algorithm described in detail in Section 21.4.2 can be used for
simulating synthetic sequences from a CARMA model.

Besides environmental series, the CARMA class of models has been successfully employed
to model and forecast economic time series. Umashankar and Ledolter (1983), Moriarity and
Salomon (1980) and Nelson (1976) used CARMA models to increase the efficiency of the
estimated parameters and to improve the accuracy of the forecasts. Risager (1980) fitted
CARMA models to mean annual ice core measurements. Research related to the development
and application of CARMA models in hydrology was referred to throughout this chapter as well
as Section 20.4.

Research in CARMA modelling can be extended in a variety of directions. For instance, as
mentioned in Sections 21.3.5 and 20.3.3, model construction methods could be developed for
various kinds of periodic CARMA models. Camacho (1984, Section 2.4) defines a contem-
poraneous TFN model in which the innovations among a set of k¢ TFN models are contem-
poraneously correlated. If practical applications dictate the need for this rather sophisticated
type of contemporaneous model, appropriate model construction methods could be developed.
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Figure 21.5.5. Annual riverflows for the French
River at Asheville and near Newport (m3/s).
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Figure 21.5.6. Residual CCF for the French Broad
River at Asheville and near Newport.



800 Chapter 21

Table 21.5.3. Parameter estimates for the CARMA model and univariate models
for the French Broad River at Asheville and near Newport.

At Asheville  Near Newport

n=170 n=45
Univariate Estimates of -0.283 -0.469
01 (0.115) (0.131)
Joint Estimates of -0.170 -0.470
0;i1 (0.087) (0.081)
Efficiency of Univariate
Estimator 0.572 0.382
Mean of Log 401 4.36
Z (0.040) (0.048)
Residual Variance 6.72x1072 5.79x1072

APPENDIX A21.1

ESTIMATOR FOR CARMA MODELS HAVING
UNEQUAL SAMPLE SIZES

Within this appendix, an estimator is presented for obtaining maximum likelihood esti-
mates for the parameters of a CARMA model [21.2.1] or [21.2.6] when the k time series used to
calibrate the model do not have the same lengths. This algorithm was originally developed by
Camacho et al. (1985). The CARMA estimator to be used with samples having the same number
of observations over the same time period is given in Section 21.3.3.

When fitting models to multivariate hydrological data, it is common to find series with
unequal numbers of observations. What is customary in this circumstance is to eliminate the
additional information available in the longer series so that all the series end up with an equal
number of observations. For example, Risager (1980) considered the modelling of a bivariate
time series of mean annual ice core measurements for which data were available for the years
1861-1974 and 1169-1975, respectively. In his analysis, only data for the common period
1861-1974 could be used to jointly estimate the parameters of the model. Another possibility is
to consider some of the observations of the shorter series as missing and use a procedure such as
that given by Ansley and Kohn (1983) to estimate the parameters of the model. This approach,
although sensible, is not computationally efficient for a large number of missing observations or
for series having a large sample size. Another disadvantage of this procedure is the introduction
of many additional parameters to be estimated, which reduce the accuracy of estimators. Ifa
CARMA model is sufficient to fit to the data, the estimator described below can be employed for
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estimating the parameters of the CARMA model using all the available information in a very
efficient way.

Suppose that the set of observations available for the series Z,;, i = 1,2, ..., k, is given by

{Z”'} = {Zl—m.-,i' . ,Zo,,',zl‘,', e ,Zn"'} fori = 1,2, . ,k,
where ¢t = 1-m;,1-m;+1, ...,0,1,2, .. ., n, are the times at which the m;+n observations in series
i occur, t=1,2,...,n, are the common times for which all k series have measurements and

hence n is the number of common observations across all k series. Although it is assumed that
all the series go up to the same time n, it is possible to extend the procedures given below to
include the case where not all the series end at the same time.

As in Section 21.3.3, let the parameters of the CARMA model for the ith series be con-
tained in the vector

Bi = @irBiiz - - - » GiipBii1Biizs - - -+ 0iig)
Hence, the vector of parameters for the complete CARMA model is written as
B=BiBs....BO"

An approximate log-likclihood function of the CARMA model in [21.2.1] or [21.2.6] is

kS
1(B.5) = ——1og8 2 L logo; +§ — —F =%
i=1 :— 8"
where
12 _
S = ?E T8 la,
a,=(a,,a1 - -- ’alk)T
o= (o,-,-) and
Z a,,
t—l—m.

Using this approximation, it is possible to modify the algorithm given in Section 21.3.3 to esti-
mate the parameters of a CARMA model when an equal number of observations are available for
each series, to handle the case where the sample sizes are unequal.

The algorithm is as follows:
1. For each series Z;, i =1,2,...,k, obtain MLE’s of the ARMA model parameters in

[21.2.6] using an appropriate univariate ARMA estimation technique, such as one of those
given by Newbold (1974), Ansley (1979), Ljung and Box (1979) or McLeod (1977)
referred to in Section 6.2.3, with the complete set of observations {Z;},

t=1-m;,1-m+1,...,0,1,...,n. Let the vector of univariate estimates be given by
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E= (BI’BZ' cees Ek)r
and set
Bo = (EI’BZ' e ’Ek)r

Estimate 0 = (o) by solving the system of nonlinear equations
2": my, s§ é So
no; + ——0,;,0;, =SS;; + ——0;04
j i) i ihj
h=1 Ohh h=1 Ohh

where

n
SS,] = Za,,-a,j

=1

Calculate
=P+ V(81/8|3)| .
B-p
where V is obtained as follows: Let
nly, = plim(3*S/0B,9B))

Then

1 h . my my m;
V™' =[0*"I_,]+ Dia I+ I+ - +
gh 8 11 2
noy noy nGyy

L

where 8! = (6%*) and Diag[ - - - ] indicates a block diagonal matrix. The [Gg"lg,,] can be

determined using the algorithm provided by Ansley (1980) and Kohn and Ansley (1982).
Iterations of the algorithm are continued until convergence is reached for giving the
approximate MLE’s of B. An application of the estimator in this appendix for fitting a
CARMA model to two annual riverflow series having unequal sample sizes is furnished in
Section 21.5.4. ’

PROBLEMS

In Sections 21.2.2 and 21.2.3, the subset and concatenation definitions are given for
CARMA(p,q) models. For the following CARMA(p,q) models, write down the sub-
set and concatenation definitions, the stationarity and invertibility conditions, and
the entries in the variance covariance matrix for the innovations:

(@ CARMAQ3,0)

(b) CARMA(0,4)
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21.2

213

214

215

21.6

21.7

21.8

219

21.10

21.11

(c) CARMA(Q2,2)
(d) CARMA®4,3)
Select two annual time series that you think could be adequately modelled using a

CARMA model. Follow the identification procedure of Section 21.3.2 to ascertain
whether or not your supposition is justified.

Carry out the instructions of problem 21.2 for the situation when you have three
time series.

Describe in detail how the estimation algorithm of Section 21.3.3 works for the fol-
lowing bivariate CARMA models:

(@ CARMA(1,0)

(b) CARMA(0,2)

(¢) CARMA(,1)

Find two annual time series that are only contemporaneously correlated with one

another as indicated by the residual CCF. Fit a CARMA to these series and check
that the calibrated model provides an adequate fit.

Carry out the instructions of problem 21.5 for the case when you have three time
series.

Suppose that in a set of k seasonal time series, each time series has s seasons per
year. Using both the subset and concatenation definitions of CARMA models from
Sections 21.2.2 and 21.3.2, write down the equations for the periodic CARMA
model.

Carry out the instructions of problem 21.7 for the case of a seasonal CARIMA
model.

Suppose that you wish to simulate 10 values for a bivariate CARMA model. Using
the algorithm of Section 21.4.2, explain in detail how these are calculated for the
following bivariate CARMA models

(a) CARMA(L,0)
(b) CARMA(Q,1)
(¢) CARMA(1,1)

Select a CARMA which is of direct interest to you. After setting the model parame-
ters at some reasonable values or else using a model that you have already calcu-
lated, simulate three synthetic series of lengths 100, 500 and 1,000. Now fit a
CARMA model to each of these series. Compare your modelling results for the
three sets of simulated sequences and draw appropriate conclusions.

Explain how you would calculate minimum mean square error forecasts for a
CARMA model.
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