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CHAPTER 23
NONPARAMETRIC TESTS FOR TREND DETECTION

23.1 INTRODUCTION

As demonstrated by the water quality and quantity applications in Sections 22.4 and 19.2 to
19.5, intervention analysis constitutes a flexible tool for rigorously ascertaining the effects of
interventions upon the mean level of a series. Because the intervention model in [19.5.8] con-
tains parameters which can be conveniently estimated when the innovations are assumed to be
normally independently distributed, this model is referred to as a parametric model. Even when
the data are quite messy and contain many missing values, after employing a technique such as
the seasonal adjustment procedure of Section 22.2 to fill in the missing observations, the water
quality applications of Section 22.4.2 demonstrate that an appropriate intervention model can
then be conveniently calibrated to the estimated series of evenly spaced data. Diagnostic checks
of the model residuals of the fitted water quality intervention model in [22.4.5], as well as all the
other intervention models fitted to time series in Chapters 19 and 22, confirm that the underlying
assumptions of intervention models can be readily satisfied in practical applications. Conse-
quently, the intervention model is a powerful parametric statistical technique for use in environ-
mental impact assessment.

Another family of parametric models for employment in environmental impact assessment
is the regression analysis set of models described in Chapter 24. An advantage of regression
analysis is that it can be used with both evenly or unevenly spaced observations.

In order to lessen the number of underlying assumptions required for testing a hypothesis,
such as the presence of a specific kind of trend in a data set, researchers developed non-
parametric tests. Because a nonparametric test is a method for testing a hypothesis whereby the
test does not depend upon the form of the underlying distribution of the null hypothesis, a non-
parametric test is often referred to as a distribution free or distribution independent method. As
a matter of fact, some distribution free methods assume there are parameters in the models which
form the basis for the tests whereas other distribution free tests do not involve any parameters,
either directly or indirectly in the tests. Although the term nonparametric should be confined to
describing distribution free tests for which there are no parameters, in practice it has been inter-
preted as standing for the set of all distribution free methods. Hence, within this text the more
commonly used phrase of nonparametric tests will be used even though it is more correct to util-
ize the expression of distribution free tests.

Nonparametric tests were developed for use in environmental impact assessment because
scientists were concerned that the statistical characteristics of messy environmental data would
make it difficult to use parametric procedures. As noted by Hirsch and Slack (1984), natural
time series may contain one or more of a number of properties which are undesirable for use
with parametric tests. In particular, hydrologic and water quality data may be nonnormally distri-
buted and follow a distribution which is usually positively skewed. Because the adoption of
proper sampling procedures are often not considered, environmental time series are not com-
monly measured at uniform time intervals. Moreover, data are often censored by only listing
measurements below a certain level as being ‘‘less than’’ or measurements above a specified



854 Chapter 23

level as being ‘‘greater than’’. For instance, concentration values for metals or organic com-
pounds which fall below the detection limits for certain chemical tests are reported simply as less
than the limits of detection. Fortunately, the foregoing and other characteristics of environmen-
tal time series can often be properly accounted for in order to make the data suitable for use with
parametric testing. For example, as noted at many locations in this text, invoking a data
transformation, such as the Box-Cox transformation in [3.4.30], can often help to alleviate non-
normality, although this is not always the case. Depending upon how much data are missing, an
appropriate data filling procedure can be selected from Sections 22.2, 19.3, or 18.5.2 to obtain an
estimated evenly spaced time series. When observations are given as less than the detection
limit, one way to estimate what they should be is to consider them to be missing and estimate
them using a suitable data filling procedure.

Nonparametric tests have few underlying assumptions and tend to ignore the magnitude of
the observations in favour of the relative values or ranks of the data. As a result, a given non-
parametric test which is designed, for instance, for checking for the presence of a trend, may
only provide a yes or no answer as to whether or not a trend may be contained in the data. The
output from the nonparametric test may not give an indication of the type or magnitude of the
trend. In order to have a more precise test about what is occurring, many assumptions must be
made and as more and more assumptions are formulated, nonparametric tests begin to look more
and more like parametric tests. As a matter of fact, as noted by Savage in the encyclopedia
edited by Kruskal and Tanur (1978, p. 637), the dividing line between nonparametric and
parametric tests is not a sharp one. Finally, Conover and Iman (1981) explain how rank transfor-
mations of data sets act as a bridge between parametric and nonparametric statistics.

Because nonparametric tests are usually designed to indicate the presence but not the mag-
nitude of a given statistical characteristic, some authors consider them to be exploratory data
analysis procedures. Nonetheless, as is explained for the nonparametric tests described in Sec-
tion 23.3, and Appendices A23.1 to A23.3, all these tests are designed for specifically testing
certain hypotheses. Since they are utilized for hypothesis testing, within this text nonparametric
tests are deemed to be confirmatory data analysis tools. Of course, after detecting the presence
of a trend using a nonparametric test, a more powerful confirmatory data analysis method such
as the intervention analysis technique of Section 22.4 and Chapter 19, can be employed for
obtaining precise statistical statements about the trends.

Over the years practitioners have argued about whether nonparametric or parametric tests
should be employed. An advantage of nonparametric tests is that they are distribution free and
hence fewer assumptions have to be made about the data. On the other hand, as shown for the
intervention model in Section 22.4, often many difficulties with the data which appear to make
the series unusable with a parametric technique, can, in fact, be overcome. Cox and Hinkley
(1974, Section 6.1) describe a number of drawbacks to nonparametric tests which they say limit
their practical importance. One of the limitations is that when a parametric test is appropriate, a
nonparametric test cannot be as powerful as the most efficient parametric test. Additionally, the
results from a nonparametric test often do not adequately describe what is happening with a data
set. In order to achieve a reasonable description and understanding of the system under investi-
gation in concise and simple terms, a parsimonious parametric model is required where each
parameter describes some important aspect of the system. Keeping in mind the assets and limi-
tations of both parametric and nonparametric tests, a pragmatic approach to data analysis may be
to use whatever tests seem to be most appropriate, whether they are nonparametric or parametric
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tests. For example, when analyzing vast amounts of environmental data for the presence of
trends, in conjunction with the exploratory data analysis tools of Section 22.3, nonparametric
testing can be used to locate the data which contain trends. Parametric techniques for detecting
trends in a time series are referenced in Sections 19.2.3 and 24.2.1. Subsequent to a perusal of
the written historical records to find physical causes for trends in the data, intervention analysis
(Chapter 19 and Section 22.4) or regression analysis (Chapter 24) can be employed for obtaining
rigorous statistical statements about the types and magnitudes of the trends. Bloomfield et al.
(1983), Bloomfield (1992) and Bloomfield and Nychka (1992) present frequency domain
approaches for analyzing trends. Lettenmaier (1976) compares the ability of various non-
parametric and parametric tests for detecting step and linear trends.

From an intuitive point of view, it may be instructive to consider an overall trend to consist
of deterministic and stochastic components such that
deterministic  stochastic
trend + trend
component component

overall
trend =

In fact, this kind of interpretation forms the basis of the general intervention model in [19.5.8].
The stochastic trend is accounted for by the noise component which contains AR and MA opera-
tors to reflect the nonseasonal and seasonal correlation structures of the output and a white noise
term for modelling what is left over when all the linear relationships contained in the output have
been removed. Additionally, the noise component may require nonseasonal and seasonal dif-
ferencing operators for modelling the nonstationary characteristics of a stochastic trend. Notice
for the intervention model in [19.5.8] that when covariate series are available, they can also be
incorporated into the model as extra information which usually increases the accuracy of all the
parameter estimates in the overall intervention model and also removes effects upon the output
which are not due to one or more interventions. Because it models the effects of one or more
known interventions upon the output, the intervention term in [19.5.8] is dependent upon the
time of occurrence of an intervention and therefore can be thought of as being a deterministic
component. However, it should be kept in mind that this component is specifically designed to
statistically describe the effects of known physical causes upon the output. Further discussions
regarding deterministic and stochastic trends are presented in Sections 23.4.4 and 4.6.

When utilizing a statistical test, such as a specific kind of nonparametric test, to ascertain if
there are trends in the data, one should always keep in mind exactly what the test is designed to
detect and what are the underlying assumptions for the test. For example, due to the theoretical
construction of a certain nonparametric test, it may only be designed for discovering the pres-
ence of an overall trend and may be incapable of distinguishing between stochastic and deter-
ministic trend components. Further, as is the case for all of the nonparametric tests described in
Section 23.3 for finding trends, nonparametric tests can only detect if a trend exists between the
beginning and end of a time series and they cannot ascertain when the trends started due to exter-
nal interventions. As a matter of fact, when only a small amount of data is available, the detec-
tion of the presence of trends is often all that one can realistically hope to achieve. Upon the col-
lection of additional data, a more sophisticated procedure, such as intervention analysis, can be
employed to describe more precisely the trend effects of known interventions.
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When employing a nonparametric or parametric test to check for the presence of trends in a
time series, there are different general approaches by which a given statistical test can be
designed and executed. Therefore, a brief review of the stafistical testing procedures consisting
of hypothesis testing and significance testing is presented in the next section. Following a gen-
eral discussion of available nonparametric tests in Section 23.3.1, specific nonparametric tests,
which are used in the water resources literature for discovering trends in water quality and quan-
tity time series (Hirsch et al., 1982; Hirsch and Slack, 1984; Van Belle and Hughes, 1984; Hirsch
and Gilroy, 1985), are described in detail in Section 23.3.2. Of particular importance is the sea-
sonal Mann-Kendall test (Hirsch et al., 1982) which can be used to test for the presence of a
trend in each season of the year for a given data set. When testing for the presence of trends in,
say, monthly data, one may wish to know whether each month should be checked separately or
perhaps different groups of months should be tested together. Consequently, within Section
23.3.3 procedures are discussed for deciding upon how data should be grouped, and, in particu-
lar, the technique suggested by Van Belle and Hughes (1984) is discussed. For combining tests
of hypotheses across seasons or groups of seasons, Fisher’s (1970) method described in Section
23.3.4 is recommended. When dealing with water quality time series, often the effects of water
quantity upon the water quality variables must be properly accounted for and in Section 23.3.5,
regression analysis approaches for accomplishing this are described. In Section 24.3.2, the
robust locally weighted regression smooth of Section 24.2.2 is utilized to allow for the effects of
flow upon water quality when carrying out trend analysis studies of water quality time series
measured in rivers. The Spearman partial rank correlation test is presented in Section 23.3.6 asa
flexible nonparametric test for discovering trends in, say, a water quality variable measured over
time when partialling out the effects of seasonality or riverflows upon the water quality variable.
A nonparametric test is described in Section 23.3.7 for checking for the presence of a step trend
caused by a known intervention in series measured at multiple stations. This test was devised by
Hirsch and Gilroy (1985) and Crawford et al. (1983) and is related to the Mann-Whitney rank-
sum test. In the final part of Section 23.3, procedures are presented for handling multiple cen-
sored data that are to be subjected to nonparametric trend testing. Within Section 23.4, the ACF
(autocorrelation function) at lag one is suggested as a parametric test for finding trends. Using
simulation experiments, the power of Kendall’s tau (or equivalently the Mann-Kendall statistic)
for detecting trends is compared to the power of this parametric statistic. The ACF at lag one is
found to be more powerful than Kendall’s tau for discovering purely stochastic trends while
Kendall’s tau is more powerful for finding purely deterministic trends. To demonstrate clearly
the efficacy of utilizing various nonparametric tests and also some parametric methods in
environmental impact assessment, practical applications are given in Section 23.5. In particular,
nonparametric tests are utilized for discovering trends in water quality variables in Lake Erie
caused by industrial development at the town of Nanticoke situated on the north shore of Lake
Erie in the Canadian province of Ontario.

The nonparametric tests described in Chapter 23 are listed in Table 23.1.1 along with brief
descriptions of their main purposes, equation numbers for the test statistics and the reference
sources. Notice that the first six nonparametric tests are designed for checking for the presence
of trends for a variety of situations and all of the trend tests are explained in Section 23.3. In
addition to handling tied data, it is pointed out how the trend tests can be employed with cen-
sored time series. For the case of the seasonal Mann-Kendall test, procedures for taking care of
correlation are also given. Finally, the last three nonparametric tests given in Table 23.1.1 are
described in the three appendices and can be utilized for various useful tasks within a systematic



Nonparametric Tests

data analysis study.

857

Table 23.1.1. Nonparametric tests described in Chapter 23.

same. Can also be used to check if
a time series possesses seasonality.

NAMES PURPOSES TEST SOURCES
STATISTIC
EQUATIONS
Nonseasonal Mann- | Determine if a time series contains | [23.3.1] and | Mann (1945)
Kendall a monotonic trend over time. [23.34]
Seasonal Mann- | Find out if a seasonal time series | [23.3.7], {23.3.8] | Hirsch et al. (1982),
Kendall contains an overall trend com- | and [23.3.11] Hirsch and Slack (1984),
ponent. Van Belle and Hughes
(1984) and Lettenmaier
(1988)
Aligned rank Ascertain if a deseasonalized time | [23.3.23] Sen (1968), Farrel (1980)
series possesses a trend. and Van Belle and Hughes
(1984)
Spearman’s rho Check if there is significant correla- | [23.3.33] and | Spearman (1904)
tion between 2 variables X and Y. | [23.3.34]
Can also be used as a trend test if
one of the variables is time and the
other is a sequence of observations.
Spearman partial rank | Determine the correlation between | [23.3.35] and | Based upon Spearman
correlation variables X and Y after the effects | [23.3.36] (1904)
of Z upon X and Y are partialled
out. Can be used to check if there
is a trend in a series over time after
seasonality is partialled out.
Step trend Find out if a known intervention | [23.3.38] and | Hirsch and Gilroy (1985)
causes significant step trends in | [23.3.44] and Hirsch (1988)
series measured at multiple sta-
tions. Test is based on Mann-
Whitney rank-sum test on grouped
data.
Kendall rank comela- | Ascertain if two series X and ¥ are | [A23.1.1] Kendall (1975)
tion independent of one another. The
Mann-Kendall trend test is a special
case when one series is time and
the other is sequential observations.
Wilcoxon signed rank | Check if two samples X and Y | [A23.22] and | Wilcoxon (1945)
have the same median. [A23.2.3]
Kruskal-Wallis Determine whether or not the distri- | [A23.3.2] and | Kruskal and Wallis (1952)
butions across k samples are the | [A23.3.3]

As summarized in Table 1.6.4, three general approaches for carrying out trend analysis stu-
dies are presented in Sections 22.4, 23.5 and 24.3. Within each of these methodologies,
appropriate exploratory and confirmatory data analysis tools can be employed, including the
nonparametric techniques of Table 23.1.1. In fact, for the overall trend assessment procedures
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explained using environmental applications in Section 23.5 of this chapter and also Section 24.3,
nonparametric trend tests have a key role to play. Besides the general approaches given in this
book, other methodologies for trend assessment have been devised by researchers. For example,
Montgomery and Reckhow (1984) suggest an overall systematic procedure for determining the
presence or absence of trends in environmental data. Depending upon the characteristics of the
data being analyzed, they suggest various nonparametric and parametric tests which can be used.
Berryman et al. (1988) and Harcum et al. (1992) present systematic procedures for deciding
upon which nonparametric tests to employ for detecting trends in water quality time series.
Hipel and McLeod (1989) explain how both parametric and nonparametric models can be
employed in trend assessment within the overall framework of exploratory and confirmatory data
analyses. Hirsch et al. (1991) put forward procedures for selecting statistical methods to detect
and estimate trends in water quality time series.

23.2 STATISTICAL TESTS

23.2.1 Introduction

Statistical testing can be carried out using nonparametric or parametric tests. However, a
given statistical test, either nonparametric or parametric, can be designed for the purpose of
hypothesis testing or significance testing. Cox and Hinkley (1974) present detailed descriptions
of various kinds of hypothesis and significance tests which are briefly described in this section.
The theory of tests of hypotheses was originally developed by Neyman and Pearson (1928, 1933)
while significance testing is due largely to Fisher (1973).

23.2.2 Hypothesis Tests

Suppose one would like to determine whether or not a data set possesses a certain property.
For example, one may wish to ascertain the existence or nonexistence of a certain kind of trend
in a water quality time series. Typically, the null hypothesis, Hy, which is sometimes called the

hypothesis under test, is that the population from which the sample data set is drawn, does not
possess a specified property like a trend. The alternative hypothesis, H,, which specifies a direc-

tion of departure from Hy, is that the data set does exhibit the property. In order to choose
between Hy and H a test statistic, T, which is a function of the data set X = (x1,%3, . . . , %), is
defined. When the hypothesis Hy is true, the distribution of T must be known, at least approxi-

mately, so that the hypothesis test can be executed. By knowing the probability distribution of
T, the probability of the sample statistic falling within or outside a given interval can be deter-
mined. As shown in Figure 23.2.1, for one sided and two sided tests, let ¢, and ¢; stand for the

right and left values of T, respectively, for the two possible one sided tests, and let ¢', and ¢

define the right and left ends, respectively, of an interval in a two sided test. A chosen signifi-
cance level, a, is the probability that the sample falls outside a specified range of values, given
that H, is true. In practice, a is selected to have a value of 0.10, 0.05, or 0.01, although any

appropriate value can be selected. For the one tailed or one sided tests, & represents the area in
one of the tails of the distribution. In Figure 23.2.1a, Pr(t 2¢,) = a, and, consequently, if one

were checking for the absence of an increasing trend, the hypothesis Hy would be rejected if
t, ¢, and hence H; would be accepted, where #, is the sample or estimated value of T calculated
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using the sample X. Alternatively, H, would be accepted if £, < f,. The one tailed test in Figure
23.2.1b works in a similar manner. Suppose that Hj indicates the absence of a decreasing trend.
If t, < 1), then Hy would be rejected and H, thereby accepted, whereas, when #; > #;, Hy would be
considered to be correct. A two sided test would be used in trend detection when one wishes to

test for the presence of a trend which could be increasing or decreasing. For the case of the two
sided test in Figure 23.2.1c, Hy is accepted when t'; < t, < t’, and is rejected when ¢, 2 ¢, or

St ’l'
Notice from Figure 23.2.1, that the probability of selecting Hy when Hy is true is 1 - a,

which is referred to as the confidence level. When executing a hypothesis test, two types of
errors can arise. The probability of rejecting Hy when Hy is true is called a type I error or error
of the first kind. From Figure 23.2.1, the probability of committing a type 1 error is & for both
one sided and two sided tests. If, as a result of the same test statistic and a chosen significance
level o, the hypothesis Hy is accepted when it should be rejected, this is called a type 2 error or

error of the second kind. Letting B represent the probability of committing a type 2 error, the
probability of not making a type 2 error is 1 — . The probability of rejecting Ho when H, is
true, or equivalently, the probability of not making a type 2 error, is called the power of the
hypothesis test. If, for example, one were testing for the presence of a trend, the power, given by
1 - B, can be interpreted as the probability of detecting a trend when a trend is actually present in
the data. In Section 23.4, the powers of two tests for detecting trends are compared using simu-
lation studies for a number of different data generating models. When performing a hypothesis
test, one of the four situations given in Table 23.2.1 can arise. Notice that two of the four out-
comes to a hypothesis test result in either a type 1 or type 2 error. In Section 23.5, a variety of
practical applications are presented using nonparametric statistics for hypothesis testing when
checking for the presence of trends in water quality data.

In general, the power, 1 — B, and the confidence level, 1 — a, are inversely related. Conse-
quently, increasing the confidence level decreases the power and vice versa. For a specified sig-
nificance level, o, the power of a test may be made greater by increasing the sample size.

23.2.3 Significance Tests

The type of significance test described here is what Cox and Hinkley (1974, Ch. 3) refer to
as a pure significance test. As is also the case for hypothesis testing, when designing a signifi-
cance test the null hypothesis, Hp, must be precisely formulated in terms of a probability distri-

bution for the test statistic T. On the other hand, the major difference between the two tests is
that a possible departure from H in the form of an alternative hypothesis, H, is not rigorously

defined for a significance test whereas it is assumed to be exactly known for a hypothesis test.
Nonetheless, for a significance test it is necessary to have some general idea about the type of
departure from H,.

When performing a significance test, the acceptance or rejection of Hy, is decided upon in

the same way as it is for a hypothesis test. Hence, as shown in Figure 23.2.1, one can perform
either a one sided or two sided significance test. However, when Hy is rejected only the general

kind of departure from Hy is known because there is no precise statement about an alternative
hypothesis. '
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Figure 23.2.1a. One sided hypothesis test on the right.

DISTRIBUTION OF T

Figure 23.2.1c. Two sided hypothesis test.

Figure 23.2.1. Hypothesis tests.

Most of the diagnostic tests given in Chapter 7 constitute significance tests. For example,
when one is checking whether or not the residuals of a stochastic model fitted to a time series are
white, the null hypothesis may be that the residuals are white. Based upon an appropriate statist-
ical test such as the Pormanteau statistic in [7.3.6], one can decide if H, should be accepted or
rejected. When Hj, is rejected because the residuals are not white, the precise type of departure
from Hy is not explicitly defined. The residuals may be correlated for instance, because an
ARMAC(1,1) model should be fitted to the data instead of a an AR(1) model.
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Table 23.2.1 Possible results of an hypothesis test.

ACTION
TRUE SITUATION Accept Hy Reject Hy
Hyis true No error Type 1 error
(Pr=1-0) Pr=0)
Confidence Level
Hjy is true Type 2 error No error
®r=p) (Pr=1-B)
Power

To avoid using too much statistical jargon and to enhance understanding by practitioners,
hypothesis and significance tests are often not stated in a very formal manner when applying
them to real data. As a matter of fact, statistical tests can be of assistance in the design of infor-
mal statistical tools for use in exploratory data analysis (see problem 22.§ in the previous
chapter).

23.3 NONPARAMETRIC TESTS

23.3.1 Introduction

As noted in Section 23.1, a nonparametric test is also commonly referred to as a distribu-
tion free or distribution independent method. This is because no assumptions are made about the
specific kind of distribution that the samples follow. The only restriction is that the samples
come from the same basic population. Furthermore, a nonparametric test tends to be quite sim-
ple in design and easy to understand. In terms of time series analysis, most nonparametric tests
can be used with both evenly and unevenly spaced observations.

Different types of data are available for use with statistical tests. The kinds of measure-
ments are usually referred to as measurement scales or systems of measurement. From weakest
to strongest, the four types of measurement scales recognized by Stevens (1946) are the nominal,
rank (also called ordinal), interval, and ratio scales. In the nominal scale of measurement,
numbers or other appropriate symbols are used for classifying objects, properties or elements
into categories or sets. For example, when classifying objects according to colour, any number
can be selected as a name for a given colour.

In the rank or ordinal scale, objects are ranked or ordered on the basis of the relative size
of their measurements. A wine taster, for instance, may rank his wines from most to least desir-
able where a wine having a larger number assigned to it is more preferred than one with a
smaller number. However, the amount by which one wine is preferred or not preferred over
another is not specified. When analyzing a real world dispute using the conflict analysis
approach referred to in Section 1.5.3, only ordinal preference information is assumed and hence
each decision maker must rank the possible states or scenarios in the conflict from most to least
preferred.
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Besides the relative ordering of measurements used in the ordinal scale, the interval scale
of measurement takes into account the size of the interval between measurements. An informa-
tive example of an interval scale is the common scales by which temperatures are usually meas-
ured. When using either the Fahrenheit or Celsius scale, a zero point and a unit distance (i.e.,
one degree of temperature) must be specified. Besides the Fahrenheit or Celsius scales, one
could easily define any other temperature scale by stipulating the zero point and the degree unit.
In other words, the principle of interval measurement is not violated by a change in scale or loca-
tion or both.

To convert x degrees Celsius to y degrees Fahrenheit one uses the equation
9
==x+32
y 5 X

When employing the interval scale, ratios have no meaning and one cannot, for instance, state

that 10°C (50°F) is twice as warm as 5°C (41°F). Although the ratio of the two temperatures is
10

? =2 when using the Celsius scale, in the Fahrenheit scale the ratio is Z—(l) =1.22. Because
there is a true or natural zero point in the Celsius scale, the concept of a ratio makes sense in this
scale. When transforming from one ratio scale to another, it is only necessary to multiply one of
the scales by a constant. Thus, for example, to transform x kilometres to y miles one uses the
equation

y =0.62x
One can say, for instance, that 10 km (6.2 miles) is twice as far as 5 km (3.1 miles) because
1?0 = % =2. Other examples of ratio scales include temperature in degrees Kelvin, weight

measured in kg or pounds, and time expressed in hours, minutes and seconds.

Most nonparametric methods are designed for use with data expressed in a nominal or ordi-
nal scale. Because each scale of measurement possesses all of the properties of a weaker meas-
urement scale, statistical methods requiring a weaker scale can be used with stronger scales.
Consequently, time series observations which are always expressed using either an interval or a
ratio scale, can be subjected to nonparametric testing. Most parametric methods can only be
used with values given in an interval or ratio scale and cannot be utilized to analyze data belong-
ing to a nominal or ordinal scale. Due to the foregoing and other reasons, Conover (1980, p. 92)
defines a statistical method as being nonparametric if it satisfies at least one of the following cri-
teria:

The method can be used with data possessing a nominal scale of measurement.

2. The method can be employed with data having an ordinal scale of measurement.

The method may be used with data having an interval or ratio scale of measurement where
the probability distribution function of the random variable generating the data is either
unspecified or specified except for an infinite number of unknown parameters.

In an environmental impact assessment study, usually the investigators have a fairly clear
idea, at least in a general sense, of what they want to accomplish. For example, they may wish
to ascertain if increased industrialization has significantly lowered the water quality of a large
lake in the industrialized region. If data are not already available, a major task would be to
design a suitable data collection scheme (see Sections 1.2.3 and 19.7). Assuming that
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observations are available for a range of water quality variables at different locations in the lake,
a challenging problem is to select the most appropriate set of statistical methods that can be used
in an optimal fashion for detecting and modelling trends in the data. Besides uncovering and
modelling trends in water quality variables at a single site, statistical methods could be used to
model the relationships among variables and trends across sites in the lake. In a large scale
environmental impact assessment study, it is often necessary to use a variety of both non-
parametric and parametric methods (see the applications in Sections 23.5, 22.3, 22.4 and 24.3).

As discussed in the introduction to Part X and also Sections 22.1, 22.3, as well as 1.2.4,
when executing a data analysis study it is recommended to carry out exploratory data analysis
followed by confirmatory data analysis. Usually simple graphical methods are employed at the
exploratory data analysis stage for visually detecting characteristics in the data such as trends
and missing values (see Section 22.3). Both nonparametric and parametric tests can be
employed for hypothesis and significance testing during confirmatory data analyses. Because of
the preponderance and proliferation of statistical methods, it is not surprising that a great number
of statistical textbooks have been published and a significant number of papers have been printed
in journals regarding the development and application of statistical methods (see Section 1.6.3).
In fact, at least two major encyclopediae on statistics are now available (Kruskal and Tanner,
1978; Kotz et al., 1988) and a number of informative handbooks (see, for instance, Sachs (1984))
and dictionaries (Kendall and Buckland, 1971) on statistics have been written.

To assist in choosing the best statistical methods to use in a given study, the techniques can
be classified according to different criteria. In an introductory paper to an edited monograph on
time series analysis in water resources, Hipel (1985), for example, classifies time series models
according to specified criteria. For the case of nonparametric tests, Conover (1980) presents a
useful chart at the start of his book for categorizing nonparametric tests according to the kind of
sample, hypothesis being tested, and type of measurement involved (nominal, ordinal and inter-
val). Keep in mind that a test designed for a weaker type of measurement can also be used with
stronger measurements. Consequently, all of the tests listed under nominal measurements can be
used with both ordinal and interval data. Furthermore, the tests given below ordinal measure-
ments can also be used to analyze interval measurements.

In the remainder of Section 23.3, nonparametric tests which are especially useful for detect-
ing trends in water quality time series are described in detail. More specifically, the first six non-
parametric trend tests listed in Table 23.1.1 are defined in Section 23.3 and other useful non-
parametric procedures are also discussed. Fortunately, these tests can be modified for handling
data sets having tied values as well as censored observations. Other topics in Section 23.3
include grouping seasons in a meaningful way in a trend detection study, procedures for combin-
ing trend tests across groups of seasons and adjusting water quality for riverflows.

The reader should keep in mind that in a trend assessment study, it is often necessary to
employ a wide range of statistical methods. Although this text describes many useful parametric
and nonparametric methods that are frequently used by environmental and water resources
engineers, sometimes it may be necessary to refer to other texts and papers for a description of
other methods. Besides the book of Conover (1980), other texts on nonparametric testing include
contributions by Siegel (1956), Fraser (1957), Bradley (1968), Gibbons (1971, 1976), Hollander
and Wolfe (1973), Puri and Sen (1971), Kendall (1975), and Lehman (1975). Gilbert (1987)
describes a range of both nonparametric and parametric methods for use in environmental pollu-
tion monitoring. Because of the great importance of nonparametric methods in water resources
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and environmental engineering, the American Water Resources Association published a special
monograph on this topic (Hipel, 1988). In the water quality applications in Section 23.5, ways in
which a variety of nonparametric and parametric tests can be used for trend detection in a com-
plex water quality study are explained. Other general methodologies for trend assessment are
listed in Table 1.6.1 and also referenced at the end of Section 23.1.

23.3.2 Nonparametric Tests for Trend Detection

Introduction

In their paper, Van Belle and Hughes (1984) categorize nonparametric tests for detecting
trends into two main classes. The one class is referred to as intrablock methods which are pro-
cedures that compute a statistic such as Kendall’s tau for each block or season and then sum
these to produce a single overall statistic (Hirsch et al., 1982; Hirsch and Slack, 1984). The
second set of nonparametric tests are called aligned rank methods. These techniques remove the
block effect from each datum, sum the data over the blocks and then create a statistic from these
blocks (Van Belle and Hughes, 1984). The foregoing two classes of techniques are designed for
detecting monotonic trends or changes (gradual or sudden) during some specified time interval
but unlike the parametric technique of intervention analysis in Chapter 19 and Section 22.4 they
are not intended for exploring the hypothesis that a certain type of change has occurred at some
prespecified time due to a known external intervention.

Intrablock Methods
Because the tests of Hirsch et al. (1982) and Hirsch and Slack (1984) are based upon earlier
work of Mann (1945) and Kendall (1975), the initial research is described first.

Mann-Kendall Test: Mann (1945) presented a nonparametric test for randomness against time
which constitutes a particular application of Kendall’s test for correlation (Kendall, 1975) com-
monly known as the Mann-Kendall or the Kendall t test. Letting x,x,, . . ., X,, be a sequence of

measurements over time, Mann (1945) proposed to test the null hypothesis, H,, that the data

come from a population where the random variables are independent and identically distributed.
The alternative hypothesis, Hj, is that the data follow a monotonic trend over time. Under Hy,

the Mann-Kendall test statistic is

n-1 n

S=Y ¥ sgn(xj -X) [23.3.1]
k=1j=k+1

where
+1, x>0

sgn(x)=4 0, x=0
-1, x<0

Kendall (1975) showed that S is asymptotically normally distributed and gave the mean and
variance of S, for the situation where there may be ties in the x values, as
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E[S]1=0

p

Var[S]= {n(n -D@n+5) =Y t(t; - 1)(2; +5) }18 [23.3.2]
=

where p is the number of tied groups in the data set and ¢; is the number of data points in the jth

tied group.

When using [23.3.1], a positive value of § indicates that there is an upward trend in which
the observations increase with time. On the other hand, a negative value of S means that there is
a downward trend. Because it is known that S is asymptotically normally distributed and has a
mean of zero and variance given by [23.3.2], one can check whether or not an upward or down-

ward trend is significantly different from zero. If the S is significantly different from zero, based
upon the available information Hy can be rejected at a chosen significance level and the presence

of a monotonic trend, H, can be accepted. For a general review of how to execute a hypothesis
test, the reader can refer to Section 23.2.2.

The exact distribution of S for n <10 was derived by both Mann (1945) and Kendall
(1975). They showed that even for small values of n, the normality approximation is good pro-
vided one employs the standard normal variate Z given by
( §-1

[Var($)1'?
Z =9 0 , ifS=0 [23.3.3]

S+1
—_— if 0
| [Var(s))'? S<

,ifS>0

The statistic S in [23.3.1] is a count of the number of times x; exceeds x;, for j>k, more

than x; exceeds x;. The maximum possible value of S occurs when x;<x< - * - <x,. Let this

number be called D. A statistic which is closely related to S in [23.3.1] is Kendall's tau defined
by

S
T= D [23.3.4]
where

1 1P 12 1 12
D= ?1(,.—1)—-5]_}:;1:,-(:}—1)] [?n(n—l)]

When there are no ties in the data, [23.3.4] collapses to

g -5 [23.3.5]
Lin-n |n
2
2

Due to the relationship between T and S in [23.3.4], the distribution of T can be easily obtained
from the distribution of S. If there are no ties in the data, the algorithm of Best and Gipps (1974)
can be employed to obtain the exact upper tail probabilities of Kendall’s tau, or equivalently S,
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forn 22.

The Mann-Kendall trend test is, in fact, a special case of the Kendall rank correlation test.
Kendall (1975) developed the Kendall rank correlation test for ascertaining if two series are
independent of one another. This test is described in Appendix A23.1.

Seasonal Mann-Kendall Test: Hirsch et al. (1982) defined a multivariate extension of the
Mann-Kendall statistic in [23.3.1] for use with seasonal data, and, as noted by Van Belle and
Hughes (1984), their test possesses some similarities to tests proposed by Jonckheere (1954) and
Page (1963). Although the statistic of Hirsch et al. (1982), is valid for use with data where there
may be missing values and also ties, assume for the present that the time series X consists of a
complete record sampled over n years where there are m seasons per year such that X is given by

4 Y

X11 X12 "7 Xim

X21 X22 7" Xom
X=

Knl X2 " Xom

The null hypothesis, Hy, is that for each of the m seasons the n observations are independent and

identically distributed while the alternative hypothesis is there is a monotonic trend. Let the
matrix of ranks be denoted by

Ry Ry =+ Rip ]
Ry Ry - Ray

_Rnl Ry, + an‘

where the n observations for each season or column in R are ranked among themselves. Hence,

the rank of x;;, which is the jth data point in the gth season, is
Ry =In+1+ f:i sgn(x;y - x;)12 [23.3.6)
i=
and each column of R is a permutation of (1,2, ...,n). The Mann-Kendall test statistic for the
gth season is (Hirsch et al., 1982)
Sg =E‘; '2"':1 sgn(x;, =x;), 8= 1,2,....m [23.3.7]
=1 =i+

Similar to the situation of S in [23.3.1], S, is asymptotically normally distributed where
E[S,1=0
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Var(S,]= 082 =n(n -1)(2n +5)/18 [23.3.8]

Kendall’s tau statistic for the gth season is defined as
S S

- 8 I 1
Ty = 1 , = g [23.3.9]
En(n— )
2

Because 1, is simply a multiple of S, the distribution of T, can be obtained from the distribution
of S,. In particular, T, is asymptotically normally distributed where

Elt,]=0

Varft,] = ] ["(" = 1)@n +3) ] [23.3.10]

[—n(n -1)

Since it is arithmetically more convenient to deal with S, rather than T, and also Hirsch et al.
(1982) use mainly Sg rather than T in their research, the statistic Sg is utilized in the rest of this
section.

Following Hirsch et al. (1982), the seasonal Mann-Kendall test statistic is

= f:Sg [23.3.11]

which is asymptotically normally distributed where
E[S1=0

Var(S']1 = Zc + z [23.3.12]

g2=1
g#h

Using [23.3.8], 62=Var[$,] can be calculated as well as ¢ » =cov(S,S,). For the situation
g g 8 g h

where each season is independent of each of the other seasons, the second summation in
[23.3.12] is zero and

Var[s' = 5 62 (23.3.13]
g=1

As is done in [23.3.3] for the Mann-Kendall test, for n<10 the standard normal deviate Z’ should
be calculated as
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(

S'-1
[Var(sH)'? ’
Z' =4 0 , ifS'=0 [23.3.14]

_§_.4LU2. ,if$’<0
{[Var(§)]

When utilizing [23.3.14], Hirsch et al. (1982) demonstrate that the normal approximation is quite
accurate even for data as small as # =2 and m = 12.

ifS’>0

To handle missing values, sgn(x;; — x;,) is defined to be zero if either x;, or x;, is missing.
Letting n, be the number of nonmissing observations for season g, equation [23.3.6] is modified
as

n
ij = [ng +1+ 'legn(xjg -x,-g)]/2 [23.3.15]
i=
Consequently, the ranks of the known observations remain unchanged and each missing observa-
tion is assigned the average or midrank (n, +1)/2. As is the case when there are no missing
observations, equation [23.3.7] is used to calculate S, and following [23.3.8] the variance of S,
is determined using

62 = ng(n, — 1)(2n, +5)/18 [23.3.16]

S’ and its variance are determined using [23.3.11] and [23.3.12], respectively, where each G, is
zero.

For a censored time series, in which some data are reported to be less than a detection limit,
arbitrarily fix the affected data at some constant value which is less than the limit of detection.
Because nonparametric tests are based upon ranks instead of magnitudes, all censored values are
interpreted as sharing the same rank which is less than the rank of all uncensored observations.
Additionally, this means that handling censored data is equivalent to dealing with fies. Assum-
ing, for the moment, that there are no missing values, the ranked data containing ties can be cal-
culated using [23.3.6], which automatically assigns to each of ¢ tied values the average of the
next ¢ ranks. Following this, S, can be determined utilizing [23.3.7] where, similar to the situa-

tion in [23.3.2], the variance is

VarlS,] =62 = [n(n - 1)@ +5) - $4¢; - DQt; + V18 [23.3.17]
j=1

where n is the number of years of data, p is the number of tied groups for the data x;,,
i=12,...,n,in season g, and ¢; is the size of the jth tied group. The seasonal Mann-Kendall

statistic is calculated using [23.3.7] while its variance is determined by utilizing [23.3.12] where
all the o, are zero. When there are both tied data (due to "tied" censored data and ties of actual

observations) and missing values, the modifications described in this and the previous paragraph
must be combined. Finally, a general description of censored data is presented in Section 23.3.8.

Another problem which can arise when using any of the nonparametric tests in this section,
is how to summarize information when there are several values for a specified season in a given
year. Van Belle and Hughes (1984, p. 135) suggest four possible approaches for accomplishing
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this. One method is to adjust the seasonal length so that there is not more than one observation
per season. This, of course, would mean having a smaller seasonal length, such as biweekly
instead of monthly. A second approach is to take a single value which is closest to the center of
the season in a given year and to ignore the other information. In many applications, a third, and
more reasonable method to follow, is to simply replace the set of values by the median or mean
before calculating the test statistic. As a matter of fact, many water quantity and quality records
which are collected on a daily basis are often released in reports as average monthly values.
Fourthly, an alternative to calculating a mean or median within a given season and year, is to
consider these values as tied in the time index and then to compute the test statistic along with a
modified variance. Van Belle and Hughes (1984, p. 135) present the formulae for carrying this
out.

Recall that for the intervention analysis applications of seasonal data in Chapter 19 and
Section 22.4, it is suggested that an intervention may affect each season or groups of seasons in
different manners. For example, when modelling the impacts of reservoir operation upon the
average monthly flows of the South Saskatchewan River in Section 19.2.5, it is suspected that
the seasonal mean levels would increase during certain months and decrease at other times. To
accurately model an upward or downward step trend as well as the change in magnitude of the
mean for each season, a separate intervention term is incorporated into the intervention model
for each month. In a similar manner, one should examine carefully how Sg in [23.3.7] behaves

for each season. Only if the same type of trend, such as an upward trend, is detected in each sea-
son, will the overall seasonal Mann-Kendall test statistic in [23.3.11] have any meaning. In
other words, S’ should only be calculated for a group of seasons which are expected to behave in
a certain manner where hypothesis testing is done separately for this group. A more detailed dis-
cussion of this problem is presented in Section 23.3.3 where approaches are presented for com-
bining tests of hypotheses across seasons.

Correlated Seasonal Mann-Kendall Test: In practice, environmental data are usually corre-
lated and not independently distributed as is assumed in the previous section. For instance, when
dealing with average monthly phosphorous levels, the phosphorous observations in one month
may be significantly correlated with values in the preceding one or more months. This means
that in order to employ the seasonal Mann-Kendall tests in [23.3.7] and [23.3.11], one must be
able to estimate all the Ogh in [23.3.12].

Based upon research by Dietz and Killeen (1981), Hirsch and Slack (1984) explain how

O,, can be estimated. Assuming, for the moment, that there are no ties or missing values, a con-

8
sistent estimation for G, is

Ogn = Kgn/3 + (3 = n)rgy 9 [23.3.18]
where
n-1n
Kon =Y Y sgnl(x;g = xig)xjh — Xin)] [23.3.19]
i=1j=1
3
Toh="3_, 'stgn [Grjg = Xig)(xjg = X)) 23.3.201
6]y

For the situation where there are no ties and no missing values, the statistic 7, is Spearman’s
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correlation coefficient for seasons g and h (Conover, 1980; Lehman, 1975). If there are no
missing observations, equation [23.3.18] can be written as

" n
Opn = Ky + 4_yiRngj,, -n(n+1)%)/3 [23.3.21]
J=

where each R, is determined using {23.3.6].

To employ the correlated seasonal Mann-Kendall test when there are no ties or missing
data, Sg, g=12,--+,m, and S’ are determined using [23.3.7] and [23.3.11], respectively. Fol-

lowing the estimation of the variance of each S, and o, using {23.3.8] and [23.3.18], respec-

tively, the variance of S’ can be calculated using [23.3.12]. As can be done for the seasonal
Mann-Kendall test, a separate hypothesis can be formulated for each season or each group of
seasons, and, when appropriate, based upon S’ an overall hypothesis can be made. For a given
season or group of seasons, seasonal data are thought to be independently distributed since it is
assumed that a particular data point is not correlated with data occurring one or more years
before during the same season. Consequently, the null hypothesis, Hy, for a given season is the

data are independent and identically distributed while H| is the existence of a monotonic trend in

that season. For the overall correlated seasonal Mann-Kendall statistic, S’, the null hypothesis is
that the data are correlated and identically distributed while H, is the presence of a monotonic

trend. Because the mean, variance and distribution of each S, and also § ’ are known, hypothesis

testing can be executed. As is the case for the seasonal Mann-Kendall test, when employing the
correlated seasonal Mann-Kendall test, the standard normal deviate in [23.3.14] should be calcu-
lated for n £ 10.

To use the correlated seasonal Mann-Kendall test with missing values, the procedure
described for the seasonal Mann-Kendall test is used. The ranks of the data for season g are
determined using [23.3.15], and then S, and its variance are calculated using [23.3.7] and

[23.3.8], respectively. The correlated seasonal Mann-Kendall statistic is determined using
[23.3.11]. To estimate the variance for S’ using [23.3.12], equation [23.3.18] or equivalently
[23.3.21] must be appropriately modified in order to estimate o, for substitution into [23.3.12].
The K, term is determined as before by using [23.3.19]. However, in the presence of missing

values, rg takes a new form which causes the revised version of [23.3.21] to be

n n
g = [Kyh + 4 R g R}y, — n(ng + D(m, + D)3 [23.3.22]
i

where n, is the number of observations for season g and n,, stands for the number of measured

values for season A.

As in the previous section, censored data are handled as ties where data reported as being
less than a limit of detection are assigned a constant value which is less than the limit of detec-
tion. Assuming that there are no missing values, the ranks containing ties can be calculated
using [23.3.6], which automatically assigns to each of ¢ tied values the average of the next ¢
ranks. Next, Sg can be determined by utilizing [23.3.7], while the variance of S, can be calcu-

lated using [23.3.17]. The correlated seasonal Mann-Kendall statistic, S, is determined using
[23.3.11]. To employ [23.3.18] or [23.3.21] for estimating Oy, midranks are used in assigning
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the values of R;,. Hence, if there were ¢; censored values, they would all have a rank of
t(t; - 1)72. Following this, the variance of the correlated seasonal Mann-Kendall statistic can be

determined using [23.3.12]. When there are both tied data, which may be due to censored data
and ties of actual observations, and missing values, the alterations outlined in this and the previ-
ous paragraph must be combined. Lettenmaier (1988) proposes a technique called the covari-
ance cigenvalue method to handle correlation among seasons. He uses simulation experiments to
compare the power of his seasonal trend test to those of Hirsch and Slack (1984) as well as Dietz
and Killeen (1981). Utilizing simulation experiments, Loftis et al. (1991a,b) find that
Lettenmaier’s (1988) technique works well with serially correlated data. Zettergvist (1988) also
proposed a seasonal Mann-Kendall trend test to take care of autocorrelation among data in dif-
ferent seasons, where the observations within each season are assumed to be independent.

El-Shaarawi and Niculescu (1992) extend the Kendall Tau test for handling correlation in
nonseasonal data when the underlying process is MA(1) or MA(2). Moreover, they develop a
test for use with seasonal data having non-zero correlations between successive seasons and
years.

Seasonal Kendall Slope Estimator: The intrablock statistics discussed thus far, are designed
for detecting the presence but not the location or magnitude of a trend in a time series. To esti-
mate the magnitude of a trend, Hirsch et al. (1982) suggest an extension to the seasonal case of
the method proposed by Theil (1950) and Sen (1968). In particular, the seasonal Kendall slope
estimator of Hirsch et al. (1982) expresses the magnitude of a trend as a slope which means
change of the series per unit time. When sufficient data are available, the technique of interven-
tion analysis discussed in Chapter 19 and Section 22.4, constitutes a much more powerful pro-
cedure for accurately estimating the magnitude of trends caused by one or more known interven-
tions. As shown in Figures 19.2.3 and 19.2.4 and explained in Section 19.2.2, the intervention
component contained within the overall intervention model for modelling a trend can be
designed so that the geometric shape of the trend is correctly modelled. Other trend detection
techniques include the exploratory data analysis graphs of Section 22.3, the change-detection
statistics referred to in Sections 19.2.3 and 24.2.1, and the robust locally weighted regression
smooth of Section 24.2.2.

The seasonal Kendall slope estimator is defined to be the median of the differences,
expressed as slopes, of the ordered pairs of data points that are compared in the seasonal Mann-
Kendall test. The computational algorithm for defining the seasonal Kendall slope estimator, SI,
is as follows. Calculate

dij = (xij —xp )G — k)
for all (x;;,x;) pairs i = 1,2, - - ,m, where 1 <k < j <n; and n; is the number of known values in
the ith season. The slope estimator S/ is the median of the d;; values. As noted by Hirsch et al.
(1982), the slope estimator S/ is closely related to S’ in [23.3.11]. If S’>0thenSI20(S! >0if

one or no d;j; =0) and if §” <0, then S/ <0 (S! < 0 if one or no d;j =0). The reason for these

relationships between S” and S/ is that S’ is equivalent to the number of positive dj; values
minus the number of negative dj;;, values and S/ is the median of the d; values.
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As pointed out by Hirsch et al. (1982), because the median of the d;; values is used to

define S/, the estimator is quite resistant to the presence of extreme observations in the data.
Further, since the slopes are always computed between values that are integer multiples of the
seasonal length m, the slope estimator is unaffected by seasonality. If, for example, the magni-
tude of the slope were thought to be different for each season, the slope could be estimated
separately for each season. In situations where groups of seasons are suspected of having the
same magnitude for the slope estimator, the slope estimator could be separately applied to each
group of seasons. A computer program for calculating the seasonal Mann-Kendall statistic and
the seasonal Kendall slope is listed by Smith et al. (1982) and also Crawford et al. (1983).

Aligned Rank Methods

In addition to the intrablock methods, the aligned rank techniques constitute nonparametric
approaches for checking for the presence of trends in a data set. However, unlike the intrablock
methods which can be used with incomplete records, the aligned rank techniques are designed
for use with evenly spaced observations for which there are no missing values. One particular
kind of aligned rank method is described in this section.

Suppose that a time series, X, consists of a complete record sampled over n years where
there are m seasons per year. Hence, following the notation suggested by Van Belle and Hughes
(1984), the data can be displayed in the following fashion:

Season
1 2 . m mean
L lxy X2 o - - Xm | X
2 X2 X2 . . . xzm XZ_
Year
n x,.,l Xn2 . . . Xpm Xy,
mean x_l X2 . . . x_,,, x‘_

When a dot is used to replace a subscript, this indicates the mean taken over that subscript.
Therefore,

n
x.j = ZXij/n
i=1
is the mean of the jth season and
m
x;, = Y x;im
j=1

is the mean for the ith year.
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Based upon the work of Sen (1968), Farrell (1980) proposed the following procedure to test

for the presence of trends which is also described by Van Belle and Hughes (1984).

1.

The data are deseasonalized by subtracting the seasonal average from each data point as in
[13.2.2] in Section 13.2.2. However, because ecach season is suspected of containing a
trend, one may question the validity of deseasonalization which assumes a constant mean
for each season.

The nm descasonalized data points are ranked from 1 to nm. When ¢ values are tied, sim-

ply assign the average of the next ¢ ranks to each of the ¢ tied values. The matrix of ranks
for the deseasonalized data can be written as:

~ Season
1 2 .. m mean
1 | Ry Ry . . . Rim| R
2 Ryy Ry . . . Ry Ry,
Year
n Rnl an . . . an Rn.
mean R.l R.2 . . . R.m R

The average ranks for each season and year are obtained. As is the case for the given set of
data, X, the mean over a subscript is indicated by a dot. Accordingly,

n
R.;= 3 R;in
i=1
is the average rank for the jth season while
m
R,'. = ZRU/M
j=1
is the average rank for the ith year.
For use in hypothesis testing, the following statistic is calculated.

12m? . 1
"l. n+
T= — . Z [1 -
n(n+ DY TR, -R)? i=1
Jj=li=1

R, - ﬁ’"z—”- ” [23.3.23]

In reality, T is the slope of the regression of R; againsti fori =1,2,...,n, standardized by
the square root of the residual error given by
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3 3R, R m(n - 1]

j=li=1

The null hypothesis, H, is that the data are identically independently distributed and,
hence, possess no trends. The alternative hypothesis, H|, is that the data have trends. For large
samples, T approaches normality with a mean of zero under Hj and a variance of unity. Conse-

quently, the test statistic T is approximately a standardized normal variable and, as explained in
Section 23.2.2, cither a one sided or two sided statistical test can be executed.

If a data set is incomplete, the missing observations must be estimated before the aligned
rank method can be employed. Depending upon how many data points are missing, a suitable
data filling procedure from Sections 22.2, 19.3 or 18.5.2, can be selected for obtaining an
estimated evenly spaced time series. Farrell (1980) suggests estimating missing data using a least
squares approach. Subsequent to the data filling, the aligned rank test statistic in [23.3.23] can
be calculated in order to carry out an hypothesis test.

An alternative approach to estimating missing data, is to adjust the seasonal length until
there is at least one observation per season for each year (Van Belle and Hughes, 1984). For
example, suppose that one were examining weekly data for which there are quite a few weeks
containing no data points. However, when a monthly series is considered for the same data set,
there is at least one observation per month of every year. By calculating the mean value for each
month within a given year, a time series of evenly spaced monthly values can be created. The
aligned rank method can then be applied to this monthly series.

As noted earlier, fies of the deseasonalized values can easily be handled using the aligned
rank method. If there are censored values where some data are reported to be below a limit of
detection, the affected data can be arbitrarily fixed at some constant value which is less than the
limit of detection. A drawback of this approach is that the estimates of the yearly and seasonal
means will be biased. Therefore, it should be used only if the relative number of censored values
is not too great. Nevertheless, subsequent to determining the ranks of the deseasonalized data,
the statistic in [23.3.23] can be calculated.

Comparison of Intrablock and Aligned Rank Methods

As pointed out by Van Belle and Hughes (1984), both the aligned rank method and the sea-
sonal Mann-Kendall test are based upon the same model given by

xj=W+a;+bj+e;, i=12,...,n,andj=12,...,m [23.3.24]

where W is the overall mean, a = {a,,4,, .. .,a,}, is the yearly component, b = {b,b,, ...,b,},
is the seasonal component and

n m

Za,- = Zbl =0.

=l j=1
The e;; is the noise term which is independently distributed. For both nonparametric tests, the
null hypothesis is that the yearly component is zero and hence

Hy. a=o0

The alternative hypothesis is
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Hy: ay<ay<a; --- <a, and/or
ag2a,2ay - 2a,

with at least one strict inequality. Accordingly, both approaches are testing for a monotonic
trend over the years where the trend is not necessarily linear. A trend within each year could be
considered as part of the seasonal trend b.

Using the results of Puri and Sen (1971), Van Belle and Hughes (1984) show that the
aligned rank test is always more powerful than the seasonal Mann-Kendall test and that the
difference is greater for smaller numbers of years of data. As mentioned before, when there are
missing data, the intrablock tests can be used without having to estimate the missing observa-
tions. However, in order to use the aligned rank method with an unevenly spaced time series, the
missing observations must be estimated prior to applying the technique. Finally, using simula-
tion experiments, Taylor and Loftis (1989) find that the correlated seasonal Mann-Kendall test is
more powerful than its competitors, including an aligned rank method, for detecting trends.

23.3.3 Grouping Seasons for Trend Detection

As was pointed out in the discussion included with the seasonal Mann-Kendall test, an
intervention may affect each season or groups of seasons in different ways. Based upon a physi-
cal understanding of the problem and using exploratory data analysis procedures such as the time
series plots described in Section 22.3.2 and the box-and-whisker graphs of Section 22.3.3, one
can decide how seasons should be grouped together. For instance, as explained in Section
19.5.4, a physical comprehension of the problem and exploratory data analyses make one suspect
that a forest fire caused the spring flows of the Pipers Hole River in Newfoundland, Canada, to
increase immediately after the fire and to gradually attenuate over the years back to their former
levels as the forest recovered. However, during other seasons of the year the fire did not cause
any trends in the time series after the fire. By employing the technique of intervention analysis,
this behaviour is rigorously confirmed and accurately modelled in Section 19.5.4.

Nonparametric testing can be executed in a fashion similar to the general approach used in
intervention analysis studies. In order to classify seasons into groups where seasons within each
group possess the same kind of trend, one procedure is to rely upon a physical understanding of
the problem and the output from exploratory data analyses. The Kruskal-Wallis test (Kruskal
and Wallis, 1952) can also be used to test for the presence of seasonality and decide upon which
seasons are similar (see Appendix A23.3). The statistic defined for the nonparametric test being
used to detect trends can be calculated separately for each group of seasons to ascertain if a cer-
tain kind of trend is present within the group. Output from the nonparametric tests may suggest
other ways in which the seasons should be grouped and then the statistics can be calculated for
the new grouping of the seasons.

Consider, for example, how the seasonal Mann-Kendall test can be used when seasons are
grouped according to common patterns recognized in trends. The Mann-Kendall statistic, S, for
each season can be calculated using [23.3.7] and the variance, 082, of S, can be determined using

[23.3.8]. Suppose that one of the groups of seasons consists of seasons in the set represented by
G. Then the seasonal Mann-Kendall statistic for the seasons in group G is calculated as
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S6= X S, [23.3.25)
g€G

The variance of Sg is then determined as

VarSgl= ¥ o} [23.3.26]
g2€G
where the expected value of each S, and also Sg is zero. Because S¢ is asymptotically normally

distributed, hypothesis testing can be done to see if the seasons in group G possess a common
trend. Recall that a significantly large positive value of Sg would indicate an increasing trend,

while a significantly large negative value of S would mean there is a decreasing trend. Further,

for small samples one should employ [23.3.14] to caiculate the standard normal deviate where
S replaces S’ in [23.3.14]. In a similar fashion, groups of seasons could be considered when
employing the correlated seasonal Mann-Kendall statistic and also the aligned rank method.

For deciding upon how common or homogeneous trends should be grouped, Van Belle and
Hughes (1984) suggest employing a homogeneity test (Fleiss, 1981, Ch. 10) which is commonly
used in the study of cross-classified data. This test is closely related to the seasonal Mann-
Kendall test of Section 23.3.2. Van Belle and Hughes (1984) propose that the grouping or
homogeneity test should be used as a preliminary test for checking for the homogeneity of trends
and, thereby, classifying the seasons into groups where each group possesses a common trend.
Subsequent to this, an intrablock statistic such as the seasonal Mann-Kendall statistic or the
aligned rank statistic can be calculated for each group to ascertain if there is a significantly large
common trend in the group.

For use in the homogeneity test of Van Belle and Hughes (1984), the statistic Zg2 is defined

Z}=S}hvar(s,] (23.3.27]

where the Mann-Kendall statistic, S, for the gth season is given in [23.3.7] and its variance,
Var(S,] is presented in [23.3.8]. Because Z, is asymptotically normally distributed, Zg2 approxi-
mately follows a chi-squared distribution with one degree of freedom. As in [23.3.9], Kendall’s
tau for the gth season is related to S, by the expression

t =25,/ [ng(ng - 1) 23.3.28)

where n, is the number of data points in the gth season. The null hypothesis, Hy, is there is no
trend in the gth season and it can be written as Hy: T, =0 or, equivalently, Hy: S, = 0.

Notice that because the square of S, is used in [23.3.27], the sign of S, is eliminated in the
calculation of Zgz. Because a positive or negative sign for S, indicates an increasing or decreas-
ing trend, respectively, one should make sure that different kinds of trends are not being com-
bined when Zg2 is summed across seasons. Suppose that a physical appreciation of the problem

in conjunction with output from preliminary data analyses indicate that seasons in a set labelled
G should be included within one group. This group, for example, may stand for the group of
summer seasons where there is an increasing trend in each summer season and, therefore, an
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increasing trend for the entire group G. For the group G, the overall homogeneity test statistic is

B=3 z2 [23.3.29]
geG

which is approximately xz distributed with |G| degrees of freedom where |G| is the number of
seasons in group G. The null hypothesis, Hy, is that there is no trend across the seasons in G
and, therefore, the Kendall T or the Mann-Kendall statistic for each season in G is zero. If, ata
selected level of significance, the statistic calculated using [23.3.29] is significantly different
from zero, one can reject H, and conclude that there is an overall trend across the seasons in the

group G. The statistic in [23.3.29] is, of course, separately calculated for each grouping of sea-
sons where every season is a member of one of the groups.

The foregoing approach is one way of deciding upon how seasons should be grouped.
Other approaches are given by Van Belle and Hughes (1984), Fleiss (1981) and Zar (1974).

In the general situation, one may wish to examine trends in various water quality variables
across an entire river basin or other appropriate geographical entities for which there is a set of
locations where data are collected. Consequently, for a given variable one must not only ascer-
tain how seasons should be grouped at a single station but also how data can be grouped across
stations. For each water quality variable, one procedure is to employ a physical understanding of
the problem and exploratory data analyses executed for data collected at each site to decide upon
which seasons and site locations should be included in G used for calculating a group statistic
such as the Mann-Kendall statistic in [23.3.25] and the homogeneity statistic in [23.3.29]. Based
upon thc_x2 statistic in [23.3.29], Van Belle and Hughes (1984) propose a method for grouping
data for a given variable across seasons and sites.

As noted earlier, one can use a statistical test such as the nonparametric Kruskal-Wallis test
(see Appendix A23.3) to determine whether or not a given time series contains seasonality. If
the data are not seasonal, then, of course, all of the observations fall under one group. One can
then employ the nonseasonal Mann-Kendall test in [23.3.1] or [23.3.5] to check for trends.
However, one should not employ the seasonal Mann-Kendail trend test when seasonality is not
present. This would certainly result in a loss of power in the trend test.

23.3.4 Combining Tests of Hypotheses

One may calculate a test statistic such as the Mann-Kendall statistic S, in [23.3.7] for each

season of the year when examining a seasonal time series. Alternatively, by following one of the
procedures described in Section 23.3.3, one may join seasons together and calculate a separate
statistic, such as Sg in [23.3.25], for each group of seasons. Whatever the case, following the

determination of the test statistic and associated significance level for each season or each group
of seasons, one may wish to then combine tests of hypotheses across seasons or groups of sea-
sons. For explanation purposes, suppose that one wants to calculate a separate Mann-Kendall
statistic for each of the seasons and then combine tests of hypotheses across seasons in order to
arrive at an overall hypothesis test. As noted by Littell and Folks (1971), several authors have
considered the problem of combining independent tests of hypotheses. Using the exact Bahadur
relative efficiency (Bahadur, 1967), Littell and Folks (1971) compare four methods of combining
independent tests of hypotheses. The methods they compare are Fisher’s (1970) method, the
mean of the normal transforms of the significance levels, the maximum significance level, and
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the minimum significance level. Although none of the tests is uniformly more powerful than the
others, according to the Bahadur relative efficiency, Fisher’s method is the most efficient of the
four.

Let the observed significance level of a test of hypothesis be denoted by SL;. For example,
because the distribution of S, in [23.3.7] is known for a given data set, one can calculate SL, for
Sg where g =1.2,...,m. Because of the relationship between Kendall’s T, and S, in [23.3.9],
SL, would be the same for both T, and S, in season g. When there are m independent tests,
Fisher (1970, p. 99) shows that

23 InSL; = %2, [23.3.30]

i=1
For the situation where SL, is the observed significance level for S, or, equivalently, T, in the

gth season, the null hypothesis would be that the data for all of the seasons considered in the test
come from a population where the random variables are independent and identically distributed.
The alternative hypothesis is that the data across the seasons follow a monotonic trend over time.
If, for example, the magnitude of the observed chi-squared variable calculated using [23.3.30]
were larger than the tabulated x%,,, value at a chosen significance level, one would reject the null

hypothesis. In [10.6.7] within Section 10.6.4, Fisher’s combination method is used to demon-
strate that ARMA models fitted to geophysical time series statistically preserve the Hurst coeffi-
cient and hence provide an explanation for the Hurst phenomenon.

23.3.5 Flow Adjustment of Water Quality Data

In [22.4.5] of Section 22.4.2, an intervention model is presented for describing the effects
of cutting down a forest upon a seasonal water quality time series. Notice in [22.4.5] that the
response variable, which represents the water quality variable under consideration, is dependent
upon a number of different components written on the right hand side of [22.4.5]. Of particular
interest is the fact that the riverflows are included as a covariate series in the intervention model
and the manner in which the flows stochastically affect the output is modelled by the specific
design of the transfer function for the riverflows. Accordingly, the influence of water quantity
upon a given water quality variable is realistically and rigorously accounted for by including the
flows as an input series to a water quality intervention model.

When employing a nonparametric test for checking for the presence of trends, a more accu-
rate study can be executed if the impacts of water quantity upon water quality are properly
accounted for. For a long time, scientists have known that many water quality variables are
correlated with river discharge (Hirsch et al., 1982; Langbein and Dawdy, 1964; Johnson et al,,
1969; Smith et al., 1982). Consider, for example, the case of total phosphorous which can have a
rather complex dependence upon riverflows (Reckhow, 1978; Hobbie and Likens, 1973; Borman
et al., 1974). As mentioned by Smith et al. (1982), at base flow conditions in certain watersheds,
much of the phosphorous may be due to point-source loadings and, hence, a decrease in flow
would cause an increase in phosphorous concentrations. Alternatively, in some river basins the
occurrence of a massive rainstorm over a basin may cause the erosion and transport of organic
and inorganic materials which carry large amounts of phosphorous and, therefore, the resulting
increases in riverflows may be combined with increased phosphorous levels. Consequently, for
a given river it is important to have a physical understanding of the type of relationship which
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exists between a given water quality variable and runoff. In some river basins, more than one
physical process may take place where each process is a function of the quantity of riverflow.
As noted by Hamed et al. (1981), streamflow is the single largest source of variability in water
quality data.

Hirsch et al. (1982) and Smith et al. (1982) suggest a general procedure by which the dif-
ferent effects of water quantity upon a water quality variable can be modelled. The purpose of
their procedures is to develop a time series of flow adjusted concentrations (FAC) for the water
quality variable under consideration which can then be tested for trends using appropriate non-
parametric tests described in Section 23.3 and elsewhere. Depending upon the physical charac-
teristics of the problem being studied, an appropriate filter can be designed to obtain the FAC
series. In general, an equation for determining concentrations may have the form

X=f(Q)+¢ [23.3.31]

where Q is the flow, f(Q) gives the functional relationship of the flows upon the water quality
variable under consideration and also contains the model parameters, € is the noise, and X
represents the concentration. For the situation where increased flows causes dilution of the
water quality variable, f(Q) may have one of the following forms (Hirsch et al., 1982):

A

=h + —

f@=n+ 0
- ——

where A; is the ith parameter. If increased precipitation and hence runoff increase the concentra-
tion of a water quality variable, it may be reasonable to model f(Q) as

f@) =% + 20,0 +2;0?

As explained by Hirsch et al. (1982) and Smith et al. (1982), regression analysis can be
employed to determine which form of f(Q) is most appropriate to use. Given that a significant
relationship can be found using regression analysis, the FAC for year i and season j is calcu-
lated as

Wij = Xij = Xij

where w;; is the estimated FAC, x;; is the observed concentration and X is the estimated concen-

tration which is determined using linear regression with the best form of f(Q) in [23.3.31]. The
FAC series can then be subjected to nonparametric tests in order to check for trends.

When obtaining the FAC series, one is in fact using a parametric procedure to properly
filter the original observations for use with a nonparametric test. An advantage of this approach
is that it can be used with unevenly spaced time series. A drawback is that in regression analysis
the noise term is assumed to be white. If sufficient data are available so that an estimated evenly
spaced series can be obtained, the technique of intervention analysis constitutes a single
parametric approach which is a much more flexible and powerful procedure for modelling water
quality series. Note only does the intervention model account for the stochastic effects of flows
upon the water quality variable but it also rigorously models the forms and magnitudes of trends
caused by known interventions. Indeed, if it is suspected that the manner in which flows affect
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the water quality variable depends upon the season of the year, appropriate dynamic components
can be designed to model this behaviour. Further, as explained for the intervention model in
[22.4.5] and elsewhere in Chapter 19, any number of input series and trends can be modelled and
the noise can be described by a correlated process such as an ARMA model.

In Section 24.3.2 a general methodology is presented for analyzing trends in water quality
series measured in rivers. To remove the effects of riverflow upon a given water quality vari-
able, the robust locally weighted regression smooth described in Section 24.2.2 is employed as
one of the steps in the overall procedure. Subsequently, the Spearman partial rank correlation
trend test described in Section 23.3.6 and other appropriate trend tests are employed for formally
testing for the presence of trends in the water quality series. Other approaches for compensating
for discharge when evaluating trends in water quality one provided by Harned et al. (1981).
Bodo and Unny (1983) explain how stratified sampling can improve the estimation of load-
discharge relationships.

23.3.6 Partial Rank Correlation Tests

Introduction

The previous subsection deals with the problem of adjusting water quality data in a river
for the impacts of flow before checking for the presence of a trend in the water quality data. To
eliminate, hopefully, the effects of flow, various regression models can be used, as described in
Section 23.3.5 and also Section 24.3.2 in the next chapter.

The removal of flow effects from a water quality time series when testing for a trend, is
part of a more general statistical problem. More specifically, when studying the dependence
between two variables X and Y, one may wish to know if the correlation between X and Y is
caused by the correlation of both X and Y with a third variable Z. For instance, one may want to
find out if a possible trend in a water quality variable, as manifested by the correlation of the
water quality variable over time, is independent of riverflows. Hence, one would like to remove
or partial out the influence of water quantity when testing for a trend in the water quality vari-
able over time. Another example for which eliminating certain effects is desirable, is when one
wishes to check for trend in a seasonal water quality variable against time when the seasonality
has been partialled out.

The objective of this section is to present a nonparametric trend test in which undesirable
effects can be removed. In particular, the Spearman partial rank correlation test (McLeod et al.,
1991) is suggested as a useful trend test for employment in environmental engineering. Because
this test utilizes some definitions used in the Spearman’s rho test, this latter test is first
described. Additionally, the Spearman partial rank correlation test is compared to the seasonal
Mann-Kendall test of Section 23.3.2 as well as the Kendall partial rank correlation coefficient
(Kendall, 1975). Applications of the Spearman partial rank correlation test to a seasonal water
quality time series are given in Section 24.3.2.

Spearman’s Rho Test

In 1904, Spearman introduced a nonparametric coefficient of rank correlation denoted as
pxy Which is based upon the squared differences of ranks between two variables. Spearman’s

rho can be employed as a nonparametric test to check whether or not there is significant
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correlation between two variables X and Y.
Let the sample consist of a bivariate sample (x;,y;) fori = 1,2, ..., n, where n is the sample

size. Suppose that the values of the X variable are ranked from smallest to largest such that the
rank of the smallest value is one and that of the largest value is n. Let R represent the rank of

the X variable measured at time i. Likewise, the values of the Y variable can be ranked and RV

can represent the value of the rank for the Y variable at time i. The sum of the squared differ-
ences of the ranks is

S@)=D*= ¥ RX -RI [23.3.32]

i=1
Spearman’s rho is then defined for the case where there are no ties in X and Y as

‘ 2

oy =1- _1_165; d [23.3.33]
n’—n

When the two rankings for X and Y are identical, then pxy = 1 whereas pyy =~1 when the rank-

ings of X and Y are in reverse order.

If some values of X or Y are tied, these values are simply assigned the average of the ranks
to which they would have been assigned. Let p be the number of tied groups in the X data set
where ¢; is the number of data points in the jth tied group. Likewise, let g be the number of tied

groups in the Y sequence where u; is the number of observations in the jth tied group. Then the
formula for calculating p,, when there are ties in either or both time series is (Kendall, 1975, p.
38, Equation 3.8)

o3 ey L&y Ldu3ou
(v~ n) = 5@ - = j)_:l(t, =25 L@ - u)

pxy = — =1 172 [23.3.34]
{%(n’ - - é(r,-’ 1) }{‘:{"’3 —m)- —;—Jz":l @} - u,-)}

When using pyy in a statistical test to check for the absence or presence of correlation, the
null hypothesis, H, is that there is no correlation, For large samples, pyy is distributed as

N

0,:1.- - 1] where n is the sample size. The alternative hypothesis, H|, is that there is correla-

tion between the X and Y variables.

By letting one of the variables represent time, Spearman’s rho test can be interpreted as a
trend test. In particular, replace (x;.y;) by (t,x,) for which t=1,2,...,n, and x, consists of
X1.Xp - . -, X, Equations [23.3.32] to [23.3.34] can then be employed to calculate a statistic for
use in a trend test. If, for example, the estimated value of pyy is significantly different from

zero, then one can argue that time and the X variable are significantly correlated, which in turn
means there is a trend.
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Spearman Partial Rank Correlation Test

When examining dependence between two variables X and Y, the question arises as to
whether or not the correlation between X and Y is due to the correlation of each variable with a
third variable Z. For example, one may wish to ascertain if an apparent trend in a water quality
variable, as reflected by the correlation of the water quality variable over time, is independent of
seasonality. Therefore, one would like to eliminate or partial out the effects of seasonality when
testing for a trend in the water quality variable over time.

The purpose of the Spearman partial rank correlation test presented in this section is to
determine the correlation between variables X and Y after the effects of Z upon X and Y
separately are taken into account and are, therefore, removed. The notation used to represent this
type of partial correlation is corr(XY/Z) or pxy z.

Let the sample consist of a trivariate sample (x;.y;,z;) for i =1,2,...,n, where n is the
sample size. As is also done for the Spearman’s rho test, suppose that the values of the X vari-

able are ranked from smallest to largest such that the rank of the smallest value is one and that of
the largest value is n. Let Ri(x) represent the rank of the X variable at time i. Likewise, the

values of the Y and Z variables can be ranked separately to produce R,m and Ri(z), respectively.
The test statistic for the Spearman partial rank correlation test is calculated using
Pxr ~ PxzPyz

(1-pf)" (1 - pip)"?

Each rho term on the right hand side of the above equation is calculated using [23.3.33] when
there are no ties in any variable or [23.3.34] where there are ties.

[23.3.35]

Pxrz=

Under the null hypothesis, there is no correlation between X and Y when the effects of Z
are partialled out. To test the null hypothesis that E(pyyz) =0, one calculates

I i %
(1-pir2)"

where pyyz is defined in [23.3.35). Under Hy, ¢ follows a student ¢ distribution on (n —2)
degrees of freedom (Pitman’s approximation), which is the same as pyy in [23.3.33] and
[23.3.34]. The alternative hypothesis, H, is there is correlation between X and Y, after account-

ing for the influence of Z separately upon X and Y. If, for example, the SL for the test statistic
were calculated to be very small and less than 0.05, one could reject the null hypothesis that X
and Y are not correlated when Z is partialled out. When the X, Y and Z variables represent a
given water quality time series, time and seasonality, respectively, then a significantly large
value of the Spearman partial rank correlation coefficient means that there is a trend in the series
over time when seasonality is removed. Besides checking for trend after removing seasonality,
the Spearman partial rank correlation test can be used for other purposes. For example, it can be
extended to take into account correlation when testing for the presence of a trend.

[23.3.36]

The partial Spearman correlation test can be used with data for which there are missing
values, ties and one level of censoring, either on the left or right. If the data are multiply cen-
sored, one can use the expected rank vector approach of Hughes and Millard (1988) before
applying the test, which is discussed in Section 23.3.8. Some theoretical developments and
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simulation experiments for the partial Spearman correlation test are reported by Valz (1990).

Comparison to the Seasonal Mann-Kendall Test

Besides the Spearman partial rank correlation test of this section, recall that the seasonal
Mann-Kendall test of Section 23.3.2 can also be used to check for trend in a seasonal time series.
However, the Spearman partial rank correlation test has advantages over the seasonal Mann-
Kendall test including:

1. simulation experiments demonstrate that it has more power,
2. it is more flexible and can be extended, for example, to take into account correlation,

3. and it provides an estimate of the magnitude of the trend through the coefficient in
[23.3.35). For example, when one is using the Spearman partial rank correlation coeffi-
cient, to check for a trend in a variable X over time when seasonality is partialled out (see
explanation in last subsection), larger positive and negative values indicate bigger upward
and downward trends over time, respectively.

Kendall Partial Rank Correlation Coefficient

Another coefficient for determining the correlation between two variables X and Y when
the effects of Z upon each of these variables is taken into account is the Kendall partial rank
correlation coefficient (Kendall, 1975, Ch. 8). However, because of the way the statistic is
defined, it possesses some serious theoretical drawbacks. The end result is the distribution of the
statistic is not known so that it cannot be used in hypothesis testing (Valz, 1990).

Before describing in more detail specific disadvantages, some notation is required. Let
Txy, Tzy and Tyz represent the Kendall rank correlation coefficient between X and Y, Z and Y

and X and Z, respectively. Also, let Tyyz be the Kendall partial rank correlation statistic to

determine the rank correlation between X and Y, taking into account the effects of Z upon these
variables. Finally, let p’yyz be the Pearson partial rank correlation coefficient. For equations

defining these statistics, the reader can refer to Kendall (1975).
The disadvantages of using the Kendall partial rank correlation coefficient include:

1. If the X, Y and Z variables are multivariate normally distributed and the Pearson partial
rank correlation coefficient p’yyz =0, it can be shown using simulation and also from the

relationship
E(tyyz) = %sin"lp’xy 2 [23.3.37]

that Tyy 7 is different from zero. This does not occur with the Spearman partial rank corre-
lation coefficient.

2. The variance of the estimate for Tyy ; depends on Tyy, Tzy and Tyz. The analogous undesir-
able property does not hold for the Pearson or Spearman partial rank correlation coefficient.

3.  On intuitive grounds, it appears that the Kendall partial rank correlation coefficient does
not eliminate in a linear way the effects of Z.
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Because of the foregoing disadvantages, the Kendall partial rank correlation coefficient is not
used in applications by the authors.

23.3.7 Nonparametric Test for Step Trends

The statistical tests described in Sections 23.3.2 to 23.3.4 as well as 23.3.6 are designed
solely for discovering trends in a data set. These techniques do not take into account when
trends may have started due to external interventions. In this section, the nonparametric test of
Hirsch and Gilroy (1985) and Crawford et al. (1983) is described for ascertaining if a known
intervention causes a significantly large step trend for series measured at multiple stations. This
test is closely related to the Mann-Whitney rank-sum test. As noted by Hirsch and Gilroy
(1985), their test does not depend on parametric model assumptions, does not require complete
data sets and is resistant to the effects of outliers. Nevertheless, if an evenly spaced data set can
be estimated from incomplete records, the technique of intervention analysis could be used for
accurately modelling trends. Recall from Chapter 19 and Section 22.4 that intervention analysis
can be employed to estimate the exact magnitude of a step trend or, for that matter, many other
types of trend created by known interventions.

In their paper, Hirsch and Gilroy (1985) examine the detectability of step trends in the
monthly rate of atmospheric deposition of sulphate. A downward step trend in the sulphate lev-
els would be due to a sulphate emission control program which came into effect at a known date.
Prior to employing the statistical test, it is recommended that the original data set be appropri-
ately filtered to remove unwanted sources of variation. When dealing with a water quality vari-
able such as phosphorous, the technique described in Section 23.3.4 is a procedure for filtering
the phosphorous data so the effects of water quantity upon water quality are taken into account.
For the case of removing unwanted variation from a time series describing the rate of atmos-
pheric deposition of sulphate, Hirsch and Gilroy (1985) present a specific type of filtering to
remove the portion of the variance in sulphate loading rates which is due to the variance in pre-
cipitation rates and also to the variance in the seasonally varying mean values. In particular, the
filtered sulphate loading series consists of the residuals obtained from the regression of loga-
rithmic sulphate loadings on the logarithmic precipitation series.

Hirsch and Gilroy (1985) apply the nonparametric test for step trends to filtered sulphate
loading series available at n, measuring stations. The nonparametric test is the Mann-Whitney

rank-sum test on grouped data which is described by Bradley (1968, p. 105). To apply the test to
the same physical variable measured across seasons at n; sites, the following steps are adhered

to:
1. If it is not advisable to test the original series, obtain a filtered series by utilizing an
appropriate filter. As just noted, for the case of sulphate loading series, one may wish to

employ the filter presented by Hirsch and Gilroy (1985) while one may wish to use one of
the filters described in Section 23.3.5 when dealing with certain kinds of water quality data.

2. Calculate the Mann-Whitney rank-sum statistic and other related statistics for data which
are grouped according to season and station. In particular, by letting the subscripts i, j, and
k represent the year, season and station, respectively, for group jk (season j and station k),
the Mann-Whitney rank-sum statistic is
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n
W = ;;R,-,,, 23.338)

i=
where n; and n, are the number of years before and after the known intervention, respec-
tively, for which data are collected, and R;; is the rank over the entire n years of the fil-
tered data, X;;, i = 1,2, - - - ;n = ny + n, which are ranked for the jth season and kth station.
The statistic in [23.3.38] is determined for every season at each of the stations. If one
assumes the null hypothesis that there is no trend in group jk, the statistic W has the

expectation of
W=ny(ny +ny+1)/2 . [23.3.39]

and variance of
6% = nyny(ny + ny+ 1)/m [23.3.40]

where m is the number of seasons. Note that the previous three equations assume that all
groups have the same record length. However, the test described in this section can be used
with data sets where the numbers of data points are different across groups. Although extra
notation could be used to allow for varying record lengths across the groups, for simplicity
of explanation the foregoing and upcoming equations are explained for the situation where
each group has the same record length.

If the data are independent, the mean and variance of the sum of the Mann-Whitney
rank-sum statistics across all the groups can be easily determined. In particular, the mean

m N,
and variance of ¥ 3\ W), are given by m-n;-jL and m -ns-cz, respectively.
j=lk=1
The variance in [23.3.40] is based upon the assumption that the data and, hence, the
W;, are independently distributed. Hirsch and Gilroy (1985) describe the following
approach for estimating cﬁ when the data are correlated. The covariance between W, and

W, is given by
CWi. W) = 2P (X Xigh) [23.3.41]

where p(X;j;.X;,5) is the rank correlation between data in season j station k and data in sea-
son g station k. The variance of the sum of the W, ’s is determined using

m n, m m n, n,
Var |EIWi =X X X T CWj, W) [23.3.42]
j=1k=1 j=1g=1k=1h=1

By assuming that the serial correlation of the ranks is lag one autoregressive and the same
correlation coefficient can be used at all the stations, the estimation of the covariances can
be greatly simplified. Based upon these assumptions, the estimated correlation coefficient,
ry, can be easily calculated. All of the ranks, R;;, except the last one, R ,,, for each station
k=12,...,n,, are paired with the rank, R; ;,,;, of the succeeding filtered observations
except when j =m it is R;,; ;4. The product moment correlation coefficient of all of the
pairs determines 7;. The covariances C(W;;,W,,) between different seasons at the same
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station are estimated using
CWy.Wy)=0r g —il

The covariances C (Wj,‘ ,Wj,,), k # h, for different stations and the same season are estimated
as

CWj..W;,) = 0°ro(k.h)
where rg(k,h) is the product moment correlation coefficient of the concurrent ranks
RigRijn),i=12,...,n; j= 1,2,...,m

for stations k and h. For different stations and different seasons, the covariances
C(W;z.Wei), j # 8, k # h, are estimated using

CW ;i W,y) = S2rolk,h)ry1g — il

When considering the same season and station, the covariance C(W;,W) is simply the

variance 62 given in [23.3.40]. Based upon the foregoing, to estimate the variance of the
sum of the W, statistics in [23.3.42], the following expression is utilized

m n, m m B, N, a .
Var [Z IWi |=Z X X ECW;u, W) [23.3.43]
j=lk=1 j=lg=1k=1h=1

Perform a hypothesis test to ascertain if there is a significantly large step trend in the time
series due to a known intervention. The null hypothesis, Hy, is that there is no step trend

while the alternative hypothesis is that there is a step trend. This test could be restricted to
a certain group of seasons of the year if it were expected that the intervention only affected
the seasons within that group. For example, a pollution spill may only influence certain
physical variables when the temperature is above a certain level and, therefore, the data
from the winter months may be excluded from the group. For the purpose of the test
described here, it is assumed that a step trend may be formed for data in each season across
all of the stations due to a single known intervention.

The test statistic for checking the validity of the null hypothesis is

m n,
Z’= [/Z T Wi — Wi ]/ij [23.3.44]
j=1k=1
where p; and oﬁ are the mean and variance, respectively, of
m n,
2 XWi
j=lk=1

For the situation where the filtered series and hence the W, are independent, the mean and
variance are given by m-n it and m-n,-oz, respectively, where p and o2 are presented in
[23.3.39] and [23.3.40], respectively. When the data are correlated, the mean is still given
as m-n -} but the variance is calculated using [23.3.43]. Because Z’ is asymptotically nor-
mally distributed one can compare the estimated value of Z’ to the value of a standard
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normal distribution at a selected significance level. If, for example, the estimated value of
Z’ were significantly different from zero, based upon the available evidence one could
reject Hy and thereby conclude that there is a significant step trend in the data. Because the

W in [23.3.38] are calculated for the ranks before the intervention, a negative value of Z’

would indicate an upward step trend after the intervention whereas a positive value of Z*
would indicate a downward step trend after the intervention. To demonstrate the efficacy
of the aforesaid test for detecting a step trend caused by a known intervention, Hirsch and
Gilroy (1985) perform simulation studies. For the situation where the data are indepen-
dently distributed, Crawford et al. (1983) present a computer program to calculate the test
statistic. Research on comparing statistical methods for estimating step trends and their use
in sampling design is presented by Hirsch (1988).

23.3.8 Multiple Censored Data

Introduction

As noted in Section 23.3.2, often water quality data are reported as being less than a detec-
tion level. These observations are referred to as censored data. If a single limit of detection is
used for a specified time series, the data is said to be singly censored. When there is more than
one detection limit, the observations are multiple censored.

To apply a nonparametric test to singly censored data, the version of the test modified for
use with ties can be employed. In Section 23.3.2, for instance, it is explained how the seasonal
Mann-Kendall trend test can be applied to a time series with one detection limit by simply treat-
ing the censored observations as being tied. If, however, the detection limits vary within a time
series and, therefore, the data are multiple censored, then one should follow other approaches in
order to employ nonparametric tests.

Because multiple detection levels occur frequently in practice, the purpose of this section is
to put this problem into perspective and point out procedures for handling multiple censored
observations so that one can apply a given nonparametric test to the data set. In this way, practi-
tioners will be able to make the most efficient use of the data available to them for estimating
test statistics or parameters, even though the observations may possess the undesirable property
of being multiple censored.

There are a variety of reasons as to why water quality and other kinds of data have multiple
detection levels. As noted by authors such as Millard and Deverel (1988) and Helsel and Cohn
(1988), these include:

1. The detection level changes because different methods are used to measure water quality
samples at various time periods, either in the field or in the laboratory. For example, over
time analytical methods may improve so that the detection levels are lowered.

2. To reduce costs, management may at different points in time request the use of cheaper
measurement techniques which have higher detection levels. '

3. A range of methods may be available for measuring a given water quality variable at any
given time. However, each technique may have a range of the concentration of the variable
for which it can provide the optimal measurement. Hence, each method has a different
detection level.
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4. Multiple detection levels can be caused by the process of dilution. For example, because of
time constraints, a laboratory technician may adhere to a procedure whereby he can only
have a specified maximum number of dilutions for any single sample. Since the detection
limit is dependent upon the amount of dilution, this procedure may create multiple detec-
tion limits.

5. When data are sent to several agencies or laboratories for analyses, these organizations may
have different reporting levels. Often environmental bodies such as the Environmental
Protection Agency in the United States and Environment Canada are obligated to send their
samples to many different private and government laboratories for analyses in order to treat
everyone fairly. However, this may result in having multiple censored data.

As mentioned by Millard and Deverel (1988) as well as other authors in the field of water
resources, an impressive array of techniques for handling censored data was originally developed
within the areas of swrvival analysis and life testing (see, for example, Kalbfleisch and Prentice
(1980)). Consequently, the basic censoring definitions and methods developed in these areas are
outlined and then the censoring techniques that are suitable for use with water quality and other
types of environmental data are pointed out in the next section. An attractive procedure to use
with multiple censored data is the expected rank vector method first suggested for use in
environmental engineering by Hughes and Millard (1988).

Censoring Definitions in Survival Analysis

Before defining censoring, first consider the meaning of truncation. A sample of data is
said to be truncated on the left if only observations above a specified truncation point are
reported. Likewise, a data set is truncated on the right when only measurements below a given
truncation level are used. If, for example, a phosphorous sample is left truncated at 5 mg//, then
only the measurements that are greater than 5 mg/l would be reported.

A sample consisting of n observations is singly censored on the left if n_ of these measure-
ments, where 5,21, are known only to fall below a censoring level c. The remaining (n—n,)
uncensored observations would thus lie above the censoring or detection level and would be
fully reported. A sample of n measurements is multiple censored on the left with m censoring
levels if n.y, 1.5, . . ., and n, observations are censored on the left at levels ¢;,c5, . . ., and ¢,,,
respectively.

In a similar fashion, one can also define singly or multiple censored observations on the
right. For instance, a sample of n observations is singly censored on the right if n. of these
observations are known only to fall above a specified censoring level ¢” while the remaining
(n—n) observations are reported exactly.

One can further characterize censoring according to type I and type II censoring. A singly
censored sample of n measurements constitutes type I censoring on the left if a given censoring
level ¢, is specified in advance and values below ¢, are only reported as less than c;. Likewise, a
singly censored sample of n observations arises from type I censoring on the right when a speci-
fied censoring level is fixed in advance and observations lying above c; are simply reported as

being greater than c;.
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When there is type II censoring on the left, only the r largest observations of a sample of
size n, where 1 <r < n, are reported, and the remaining (n — r) measurements are known to lie
below the rth largest values.

For type II censoring on the right, only the r smallest measurements of a sample of size n,
where 1<r<n, are reported, while the remaining (n—r) observations are known to lie above the
rth smallest value. As an example of type II censoring, consider a situation where one is deter-
mining the failure times of n electronic components which are started at the same time. This
experiment is stopped under type II censoring after r of the components have failed.

When dealing with environmental data, only some of the definitions developed in survival
analysis and life testing are required for practical purposes. In particular, environmental time
series having detection lifits almost always fall under the category of type I left censoring for
either single or multiple censoring. Within the field of survival analysis, usually right censored
data are encountered. Fortunately, many statistical techniques developed for use with right cen-
sored data can be converted for use with data censored on the left. The reader may wish to refer
to texts by authors such as Kalbfleisch and Prentice (1980), Lee (1980) and Miller (1981) for a
description of statistical censoring techniques used in survival analysis and life testing.

Multiple Censoring in Environmental Engineering

In the area of environmental research, work has been carried out for estimating parameters
when the data sets are singly censored (Kushner, 1976; Owen and DeRouen, 1980; Gilbert and
Kennison, 1981; Gilliom et al., 1984; Gleit, 1985; Gilliom and Helsel, 1986; Gilliom and Helsel,
1986; El Shaarawi, 1989; Porter and Ward, 1991). For the case of the seasonal Mann-Kendall
trend test of Section 23.3.2, Gilliom et al. (1984) demonstrate the effects of censoring with one
detection limit upon the power of the test.

Although less research has been carried out in the environmental area for handling multiple
censored data, some valuable contributions have been made. Helsel and Cohn (1988) use Monte
Carlo methods to compare eight procedures for estimating descriptive statistics when the data are
multiple censored. They show that the adjusted maximum likelihood technique (Cohn, 1988)
and the plotting position method (Hirsch and Stedinger, 1987) perform substantially better then
what are called simple substitution methods. Millard and Deverel (1988) discuss nonparametric
tests for comparing medians from two samples, explain how multiple censored data can be han-
dled when using these tests, and then employ Monte Carlo studies to compare the tests.

An innovative approach to extend the nonseasonal and seasonal Mann-Kendall trend tests
of Section 23.3.2 for use with multiple censored data is the method proposed by Hughes and
Millard (1988) which is referred to as a tau-like test for trend in the presence of multiple censor-
ing points. The first step is to assign an average rank for each observation and thereby obtain a
rank vector, by taking into account all permissible combinations of ranks in the presence of mul-
tiple censoring. Second, after the expected ranks are obtained for each observation in order to
get the overall expected rank vector, a standard linear rank test can be applied to the expected
rank vector. Hughes and Millard (1988) show in detail how this approach is carried out with the
Mann-Kendall trend test.

To explain how the procedure of Hughes and Millard (1988) works in practice, consider the
situation presented below in Table 23.3.2 where measurements are available at four points in
time. The symbol X~ indicates a left censored observation at detection level X. For this simple
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example, notice that there are the two detection levels: 10 and 4. Below the vector of observa-
tions are the possible three rank vectors that could occur for the data set. In each rank vector, the
observations are ranked from 1 to 4, where the smallest value is assigned a 1 and the largest
observation a 4. Notice that the observation at time 4 is always the largest value and, therefore,
is assigned a rank of 4 in each of the three rank vectors. However, depending upon how far
below a detection level the unknown actual observation may fall, one can obtain the possible
rankings as shown in the table. The expected rank vector listed in the last row of Table 23.3.1
simply gives the average rank across the three possible rank vectors at each point in time.

Table 23.3.1. Hypothetical example for calculating the expected rank vector.

Time ¢

1 2 3 4
ObservationX, | 100 9 4 18
Possible 3 2 1 4
Rank 2 3 1 4
Vectors 1 3 2 4
Expected
Rank Vector 2 27 13 4

To apply a nonparametric test to data having multiple censoring levels, one simply calcu-
lates the test statistic or parameters using the expected rank vector. As pointed out by Hughes
and Millard (1988), the expected rank vector method furnishes the justification for employing
the commonly accepted technique of splitting ranks when there are tied data (see Section 23.3.2).
However, the conditional test statistic calculated using expected ranks does not have the same
null distribution as in the case where there are no ties. In particular, the variance of the test
statistic is smaller when ties are present (Lehmann, 1975). Consequently, a variance correction is
usually required for test statistics when dealing with multiple censored data and data having ties.

Hughes and Millard (1988) present formulae for calculating expected rank vectors when
there are two or more censoring levels. Additionally, they explain how to calculate the statistic
required in the Mann-Kendall trend test of Section 23.3.2 and how to determine the expected
value and variance of the test statistic. More specifically, for the case of nonseasonal data, one
can use [23.3.1] or [23.3.4] to calculate the Mann-Kendall test statistic S or T, respectively, using
the expected rank vector. As would be expected, the Mann-Kendall test statistic is asymptoti-
cally normally distributed. Assuming that the method of censoring is independent of time, one
can calculate the expected value and variance of S or T. The expected value of S when there is
multiple censoring is a function of the true value of t, the sample size n and pattern of censoring.
This expected value is determined as

E(S)=1ln(n - D2 - $1; - 1)2] [23.3.45]
j=1

where p is the number of tied groups in the data set and ¢; is the number of data points in the jth
tied group. Usually, p is the same as the number of censoring levels while the number of
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observations ¢; in the jth tied group is the same as the corresponding number of censored obser-
vations. One can employ [23.3.2] to determine the variance of S. By computing expected ranks
separately within each season, one can utilize the expected rank vector method with the seasonal
Mann-Kendall test.

In some applications, the censoring levels may not be independent of time. For example,
censoring levels may decrease over time due to better laboratory methods. Hughes and Millard
(1988) explain how simulation can be used to determine the approximate distribution of the test
statistic for this situation. Further research is still required in order to obtain theoretical results.

23.4 POWER COMPARISONS OF PARAMETRIC AND NONPARAMETRIC TREND
‘TESTS

23.4.1 Introduction

The objective of this section is to employ Monte Carlo experiments to compare the powers
of a specific parametric and nonparametric test for detecting trends. In particular, the ACF at lag
one given in [2.5.4] and Kendall’s tau in [23.3.5] constitute the parametric and nonparametric
tests, respectively, which are utilized in the simulation studies. Following a brief review of these
two statistics in the next two subsections, the six models that are used for generating data con-
taining trends are described. In Section 23.4.5, the abilities in terms of power of the ACF at lag
one and Kendall’s tau for detecting trends are rigorously compared. Simulation experiments
demonstrate that the ACF at lag one is more powerful than Kendall’s tau for discovering purely
stochastic trends. On the other hand, Kendall’s tau is more powerful when deterministic trends
are present. The results of these experiments were originally presented by Hipel et al. (1986).

23.42 Autocorrelation Function at Lag One

Although the ACF test at lag one could perhaps be considered to be a nonparametric test, it
could also be thought of as a parametric test since according to the Yule-Walker equations in
[3.2.12] the ACF at lag one is the same as the AR parameter in an AR(1) process. Nevertheless,
it is presented here, because, like the nonparametric tests described in Section 23.3, it is only
used for discovering the presence of trends. Unlike the intervention model, for example, the
ACF test is not designed for modelling the shapes and magnitudes of trends caused by known
interventions.

The theoretical definition for the ACF at lag k is given in [2.5.4] while the formula, r;, for

estimating the ACF at lag k is presented in [2.5.9]. In Section 22.3.6, the ACF at lag k is sug-
gested as an exploratory data analysis tool and the statistical properties of r, are discussed. Of

particular interest in this section is the ACF at lag one, denoted by ry, which can be used for sig-

nificance testing in trend detection at the confirmatory data analysis stage. The ACF at lag one
is often referred to as the serial correlatzon coefficient at lag one or the first serial correlation
coefficient.

The estimate for the ACF at lag k for an evenly spaced annual series, x,, t =12, ...,n,can
be calculated using [2.5.9] (Jenkins and Watts, 1968) as
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n—k

Z(xx "x.)(xt-o-k -X)
ry=— , k>0 [23.4.1)
Z(xx -f)z

t=1

where 7 is the estimated mean of the x, series. When k =1 in [23.4.1], one obtains the value of
r,. For samples as small as 10, Cox (1966) observed that ry has an approximate normal null dis-

tribution for both normal and some nonnormal parent distributions. Knoke (1977) found empiri-
cally that the normal distribution provides an adequate approximation for determining the critical
regions (the subset of the sample space for which the null hypothesis is rejected if the data fall
there). The asymptotic distribution of r; was established by Wald and Wolfowitz (1943) and
Noether (1950). In this section, critical regions for r; are determined by the normal approxima-

tions with the following moments (Kendall et al., 1983; Dufour and Roy, 1985)

mean =-1/n
and
_ 2
variance = -(:—2)— [23.4.2]
n“(n-1)

Knoke (1975) noted that r, is a powerful test for detecting nonrandomness for first order autore-

gression alternatives and that it performs reasonably well for a wider class of alternatives includ-
ing the first order moving average model.

When dealing with seasonal data, a separate ACF can be estimated for each season. In Sec-
tion 14.3.2, this is referred to as the periodic ACF. Let x;; be a time series value for the ith year

and jth season where there are n years of data for each of the m seasons. As in [14.3.4], for the
Jjth season, the ACF is estimated using

n—k
X O = X Xijk =% k)
= ——= - =, k=12, [23.43]
X (x; —X,j)z] Y (X — X, H)z]
i=1

i=1

where x ; is the mean of the jth season.

The ACF for season j is asymptotically normally distributed with a mean of zero and a
variance of 1/n. To be more accurate, the formula in [23.4.2] could be used for calculating the
mean and variance of r9 for each season. To check if there is a trend in the jth season, one can

calculate r,(j) using [23.4.3] and then perform a significance test to ascertain if r,‘j) is signifi-
cantly different from zero at the chosen level of significance. If r,(j) were significantly large, this
may indicate the presence of a trend. This kind of test can be done separately for each of the sea-
sons in order to check for a trend in each season of the year. Note that when rj(l) is determined
using [23.4.3], only the data within seasons j and j-1 are employed in the calculation. To pro-
duce an overall test for trends across seasons, Fisher’s formula in [23.3.30] can be utilized.
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23.4.3 Kendall’s Tau

For the case of nonseasonal data, Kendall’s tau, denoted by t, is defined in [23.3.5] in
terms of the Mann-Kendall statistic S given in [23.3.1]. When dealing with seasonal time series,
one can use Kendall’s tau for the gth season which is presented in [23.3.9]. However, for the
purpose of this discussion, the nonseasonal version of Kendall’s tau is entertained. Rather than
defining T in terms of a test statistic as in [23.3.5], an interesting interpretation is to express T
using probabilities. Specifically, for any two pairs of random variables (X;,Y;) and (X iYi)s
Kendall's tau is defined as the difference (Gibbons, 1971)

— [23.4.4]
where

®. = Pri(X; < X,)n(¥; < Y))1 + Pr((X; > X;)\(¥; > Y)]
and

14 = PriCX; < X)A(; > Y1+ Pr{(X; > X)A(Y; <Y))]

In the case of no possibility of ties in either the X’s or the ¥’s, the T can be further
expressed as ‘
t=2r.-1=1-2x,
As in Section 23.4.2, let an evenly spaced yearly time series be denoted as x;,

t=12,...,n. For this sequence of observations, Kendall’s T is estimated by (Gibbons, 1971,
1976; Conover, 1980; Kendall, 1975; Hollander and Wolfe, 1973)

S N, =Ny
T= =

n n

2 2

where N, Ny and S are given by

[23.4.5]

n
N.= Ze'i
i<j
for which
1, ifx,- < Xj
9"‘ =
0, otherwise
and
n ’
N,=Y9
i<j

for which
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1, ifx,- > xj
8’,‘ =
0, otherwise
and
n ’
S=39;
i<j
for which
1, ifx; <x;
¢'i= 0, ifx,- =X;
—1, otherwise .

The statistic S can also be expressed as

n
S=1,

Under the assumption that the x;’s are IID (identically independently distributed), the

means and variances for S and 7, respectively, are given in [23.3.2] and [23.3.10], respectively.
Kendall (1975) and Mann (1945) derive the exact distribution of S for n < 10, and, for samples
as small as 10, show that the normal assumption is adequate. However, for use with the normal
approximation, Kendall (1975) suggests a continuity correction which is the standard normal
variate given in [23.3.3].

n
—2'Nd =Nc _Nd = [2]1:

23.4.4 Alternative Generating Models
The six models defined in this section are used for simulating the nonseasonal data
employed for comparing the powers of the ACF at lag 1 which is 7, in [23.4.1] and Kendall’s tau

in [23.4.5). The first three models contain only deterministic trends while the last three have
purely stochastic trends. Furthermore, under the null hypothesis it is assumed that the time series
X, t=12,...,n, consists of IID random variables. As noted in Section 23.3.2, the Mann-

Kendall statistic S, equivalently defined in both Section 23.4.3 and [23.3.1], is often used in
place of T which is defined in [23.4.4], [23.4.5] and [23.3.5] (Kendall, 1975; Hirsch et al., 1982;
Hirsch and Slack, 1984; Van Belle and Hughes, 1984). In fact, T and § are statistically
equivalent.

For the case of a purely deterministic trend component, the time series, x,, may be written

X =f{)+a, [23.4.6]

where f(¢) is a function of time only and hence is a purely deterministic trend, while g, is an [ID
sequence. On the other hand, a time series having a purely stochastic trend may be defined as
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X =fx1 X2, 7 ) + 4 [23.4.7]

where f(x,_1,X_2,...) is a function of the past data and g, is an innovation series assumed to be
IID and with the property

E[d, 'x‘._k] = 0, k = 1,2, ctt . [23-4.8]

In actual practice, it may be difficult to distinguish between deterministic and stochastic
trends. For example, the series plotted in Figure 23.4.1 was simulated from the model

(1-B)x, =aq, [23.4.9]

where B is the backward shift operator, g, = NID(0,1) and the starting values are x; =100,
x, = 101 and x; = 102. The model in [23.4.9] is an ARIMA(0,3,0) model and the procedure for

simulating with any type of ARIMA model is described in detail in Chapter 9. Based upon the
shape of the graph in Figure 23.4.1, the series could probably be adequately described using a
purely deterministic trend even though the correct model is purely stochastic. The same com-
ments are also valid for the simulated sequences in Figures 4.2.1, 4.2.2, 4.3.4, and 4.3.5 of
Chapter 4. Moreover, a discussion regarding deterministic and stochastic trends is provided in
Section 4.6. ‘
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SEQUENCE NUMBER

Figure 23.4.1. Simulated sequence from an ARIMA(0,3,0) model.
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Box and Jenkins (1976) suggest that for forecasting purposes it is usually better to use a
purely stochastic trend model provided that such a model appears to be reasonable a priori for
fitting to a given time series and also provides an adequate fit. However, in water quality studies
it is often of interest to test if the level of the series has changed in some way and in this case a
model with a possible deterministic trend component may secem more suitable beforehand.
Three deterministic models, followed by three purely stochastic models are now defined.

Linear Model

In the water resources literature, using linear regression models as alternative hypotheses is
quite common (Lettenmaier, 1976; Hirsch et al., 1982; Hirsch and Slack, 1984; van Belle and
Hughes, 1984). Assume x, is given by the linear model which is also writterr in [4.5.2] as

x,=c+bt+a,,t=12,...,n [23.4.10]

where a, = NID (0,03), and ¢ and b are constants. Without loss of generality, let ¢ =0.0.

Logistic Model
Because it is possible for a series to change rapidly at the start and then gradually approach

a limit, a logistic model constitutes a reasonable choice for an alternative model. This model is
defined as (Cleary and Levenbach, 1982)

x,=M/1- c{exp (- bt)}l +a,,t=12,...,n [23.4.11]
where a, = NID(0,1), M is the limit of x, as ¢ tends to infinity, and b and c are constants.

Step Function Model
Following [4.5.1], the step function model is defined as

a;, if0st<ni2
X = [23.4.12]
c+a, ifn/2<ts<n

where a, = NID (0,062) and ¢ is the average change in the level of the series after time ¢ = n/2.

The step function model is a special type of intervention model. The unit step function is
defined in [19.2.3] while an intervention model that can handle step interventions is given in
[19.2.9]. Besides Chapter 19, applications of intervention models to water quality and quantity
time series are presented in Section 22.4.

Barnard’s Model
The Barnard model is defined as (Barnard, 1959)

n,
X=X+ 28, +a,t= 1,2,...,n [23.4.13]

i=1

where n, follows a Poisson distribution with parameter A, §; =NID(0,67) and a, =NID(0,1).
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Without loss of generality, let x; = ;. Barnard (1959) developed this model for the use in qual-
ity control where there may be a series of 1, correctional jumps between measurements.

Second Order Autoregressive Model
From [3.2.4] or [3.2.5], an AR(2) model may be written as

Xy = ¢1x,_1 + ¢2X,_2 + a , t= 1,2, PP | [23.4.14]

where a, =NID(0,62). For the simulation studies executed in Section 23.4.5, 67 =1.0 and
E(x,)=0.0. In Section 3.2.2, the general expression for the theoretical ACF of an AR(p) process

is given in [3.2.10] and the approach for solving for the theoretical ACF using the Yule-Walker
equations in [3.2.12] is explained. Because of the correlation structure present in an AR(p)
model or the AR(2) model in [23.4.14], simulated data from an AR model will contain stochastic
trends. In the graph of a series simulated using an AR model such as the one in [23.4.14], a
sequence of high values will often be grouped together and low values will often follow other
small data points. '

Threshold Autoregressive Model

The development of the threshold autoregressive (TAR) model is due to Tong (1977, 1978,
1983), Tong and Lim (1980) and Tong et al. (1985). Tong (1983), Tong and Lim (1980), and
Tong et al. (1985) found TAR models to be suitable for modelling and forecasting riverflows.

The particular model considered here (Tong, 1983; Tong et al., 1985) is given by

1.79 + 0.76x,_, — 0.05x,_, + V), ifJ, <=1
X = [23.4.15]
0.87 + 1.3x,_; — 0.71x,_; + 0.34x,_; + a,®, otherwise

where x, is the volume of riverflow in cubic metres per second per day, J; is the temperature in
degrees centigrade, and 4" = NID(0,0.69) and a® =NID(0,7.18). The above model was
estimated for the Vatnsdalsa River in Iceland for the period from 1972 to 1974.

23.4.5 Simulation Experiments

The procedures and algorithms for simulating with ARMA and ARIMA models are
described in detail in Chapter 9. When a trend component is present, which is the case for the
first three models of Section 23.4.4, the noise component is simulated separately and the deter-
ministic component at each point in time is added to this. Note that for the first three models of
Section 23.4.4, the noise component is white (i.c., it is independently distributed). Because of
the white noise component, the first three models are deemed to have purely deterministic
trends. However, if the noise component were correlated and were, for example, an ARMA
model, a model containing a deterministic trend component plus the correlated or stochastic
noise component would no longer possess purely deterministic trends. This is because the AR
and MA components of the ARMA model would create a stochastic trend component and when
this is added to the deterministic trend part of the model, the overall result would be a mixed-
deterministic-stochastic trend. In fact, as already pointed out in Section 23.1, the general
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intervention model in [19.5.8] contains both deterministic trend components (i.e., the interven-
tion terms) and a stochastic trend component (i.c., the correlated noise term). In order to be able
to clearly discriminate between the powers of r; and Kendall’s tau for detecting trends, only

purely deterministic trends (the first three models in Section 23.4.4) and purely stochastic trends
(the last three models in Section 23.4.4) are entertained in the simulation experiments of this sec-
tion.

For each of the six generating models of the previous section, sample sizes of length 10, 20,
50 and 100 are considered. For each sample size or length of series, 1000 sequences of the same
length are simulated. The null hypothesis is that each replication of a given length is IID while
the alternative hypothesis is the replication contains a deterministic or stochastic trend com-
ponent. For both the ACF at lag one, ry, in [23.4.1] and Kendall’s tau, T, in [23.3.4] or [23.4.5]
and a specified sample size, power functions are estimated for a significance level of 5% by the
proportions of rejection of the null hypothesis from 1000 replications. As explained in Section
23.2.2 and Table 23.2.1, the proportion of rejections can be interpreted as the probability of
accepting the alternative hypothesis which is the power.

For the estimated significance level, the test is said to be conservative if the estimated level
is clearly less than the nominal level (in this case 0.05). On the other hand, if the estimated level
is clearly greater than the 0.05, the test is said to be optimistic. Otherwise, the test is said to be
adequately approximated.

Empirical significance levels and powers are given in Tables 23.4.1 to 23.4.6 for the six
models defined in Section 23.4.4, respectively. Notice that except for the TAR model, for each
model a range of values is used for each of the parameters and the estimated powers are given
for T and r, for sample sizes or series having lengths of 10, 20, 50 and 100. The standard error
of any entry in the tables is ‘/1:(1 - n)/N (Cochran, 1977), where N is the number of replications
and x is the true rejection rate. For example, for the estimated significance level of 5%, the stan-

. 10.05(1 - 0.05)
dard error is [——1 000

regions are adequately determined by the null approximate distribution. The results of the simu-
lation experiments are discussed separately for each model.

=0.0069. The entries in the tables suggest that the critical

Linear Model

The findings of the simulation study for the linear model in [23.4.10] are presented in Table
23.4.1. Notice that the two tests, consisting of Kendall’s tau and r; perform better when the
standard deviation, G, for the white noise term, a,, is smaller. This implies that the better the fit
of a linear regression to a time series, the greater the chance of detection of nonrandomness. For
instance, for samples as small as 10, the tests are very powerful for small standard deviations.
An encouraging aspect of this model is that both tests attain asymptotic efficiency quite rapidly.
For example, there is considerable improvement in the power functions from n =10 to n =20.
A noteworthy point is that T is generally more powerful compared to r;, even though the differ-

ence is almost negligible for n = 50 and n = 100 when both tests approach asymptotic efficiency.
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Table 23.4.1. Power comparisons for the linear models with an empirical
rejection rate at the S percent level of significance.

n

Parameter
Values 10 20 50 100

0.00 | 0.05 | 0.052 | 0.041 | 0.035 | 0.044 | 0.040 | 0.045 | 0.048 | 0.051
0.01 | 0.05 {| 0.335 | 0.138 | 0.995 | 0.749 | 1.000 | 1.000 | 1.000 | 1.000
0.01 | 0.50 § 0.057 | 0.039 | 0.072 | 0.043 | 0.487 | 0.080 | 1.000 | 0.690
0.01 | 1.00 }| 0.053 | 0.040 | 0.050 | 0.043 | 0.146 | 0.042 | 0.769 | 0.131
0.01 | 2.00 {| 0.050 | 0.041 | 0.036 | 0.047 | 0.073 | 0.042 | 0.268 | 0.065
0.05 | 0.05 } 1.000 | 0.990 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.05 | 0.50 {| 0.121 | 0.063 | 0.632 | 0.194 | 1.000 | 1.000 | 1.000 | 1.000
0.05 | 1.00 || 0.066 | 0.049 | 0.208 | 0.064 | 1.000 | 0.655 | 1.000 | 1.000
0.05 | 2.00 || 0.050 | 0.040 | 0.084 | 0.043 | 0.669 | 0.121 | 1.000 | 0.927
0.10 | 0.05 || 1.000 | 1.000 | 1.000 | 1.000 { 1.000 | 1.000 | 1.000 | 1.000
0.10 | 0.50 || 0.335 | 0.138 | 0.995 | 0.749 | 1.000 | 1.000 | 1.000 | 1.000
0.10 | 1.00 || 0.121 | 0.063 | 0.632 | 0.194 | 1.000 | 1.000 { 1.000 | 1.000
0.10 | 2.00 || 0.066 | 0.049 | 0.208 | 0.064 | 1.000 | 0.655 { 1.000 | 1.000

Logistic Model

The results for the logistic model in [23.4.11] are given in Table 23.4.2. As is the case for
the linear model, the tests perform better for the logistic model when there is a good fit, indicat-
ing nonrandomness. When M < 1.0, obviously the standard deviation of 1.0 used in the simula-
tion studies tends to have a greater impact on the simulated data than the other parameters of the
model. Hence, a substantial component of x, is determined by g,, which is random. For
M 2 1.0, the two tests (especially t) prove effective for detecting the presence of trends. Finally,
it can be seen that t is more powerful than r,, especially for cases where the logistic model
describes the data fairly well (M 2 1.0). There is, however, not much difference between the two
tests when n = 100.

Step Function Model

As can be seen in Table 23.4.3, the output for the step function model in [23.4.12] indicates
greater power for relatively small standard deviations (and hence fairly good fits). What is
remarkable about this model is the great power of both tests even for samples as small as 10.
For example, for ¢ =5, the power is at least 50% for all sample sizes. The power functions also
improve as ¢ increases. Both tests are very effective in detecting trends for even a slight shift of
0.5 in the mean level of the series. For a change of S in the mean level, both tests are very
powerful. Even though t is more powerful than r,, both tests are almost equally powerful for

n 2 50.
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Table 23.4.2. Power comparisons for the logistic models.
n

Parameter
Values 10 20 50 100

0.01 | 0.01 | 0.0 § 0.052 | 0.041 | 0.035 | 0.044 | 0.040 | 0.045 | 0.048 | 0.051
0.01 | 001 | 0.1 | 0.052 | 0.041 | 0.035 | 0.044 | 0.040 | 0.045 | 0.048 | 0.051
0.01 | 0.01 | 1.0 || 0.052 | 0.041 | 0.035 | 0.044 | 0.041 | 0.045 | 0.047 | 0.050
0.01 | 001 | 50 | 0.052 | 0.041 | 0.037 | 0.045 | 0.041 | 0.045 | 0.047 | 0.050
0.01 | 0.50 | 0.0 | 0.052 | 0.041 | 0.035 | 0.044 | 0.040 | 0.045 | 0.048 | 0.051
0.01 | 0.50 | 0.1 | 0.053 | 0.042 | 0.037 | 0.047 | 0.043 | 0.047 | 0.050 | 0.048
0.01 | 0.50 | 1.0 | 0.051 | 0.042 | 0.049 | 0.040 | 0.166 | 0.057 | 0.514 | 0.075
0.01 | 0.50 | 5.0 || 0.096 | 0.046 | 0.375 | 0.078 | 1.000 | 0.771 | 1.000 | 0.999
0.01 | 0.90 | 0.0 || 0.052 | 0.041 | 0.035 | 0.044 | 0.040 | 0.045 | 0.048 | 0.051
0.01 | 090 | 0.1 || 0.057 | 0.045 | 0.072 | 0.045 | 0.174 | 0.060 | 0.279 | 0.057
0.01 | 090 | 1.0 | 0.825 | 0.431 | 1.000 | 0.950 | 1.000 | 1.000 | 1.000 | 1.000
0.01 | 090 | 5.0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 { 1.000 | 1.000
0.10 | 0.01 | 0.0 | 0.052 | 0.041 | 0.035 | 0.044 | 0.040 | 0.045 | 0.048 | 0.051
0.10 | 0.01 | 0.1 } 0.052 | 0.041 | 0.035 | 0.044 | 0.040 | 0.045 | 0.048 | 0.051
0.10 | 0.01 | 1.0 | 0.053 | 0.041 | 0.037 | 0.047 | 0.040 | 0.044 | 0.047 | 0.050
0.10 | 0.01 | 5.0 || 0.053 | 0.041 | 0.037 | 0.047 | 0.043 | 0.045 | 0.046 | 0.050
0.10 | 0.50 | 0.0 | 0.052 | 0.041 | 0.035 | 0.044 | 0.040 | 0.045 | 0.048 | 0.051
0.10 | 050 | 0.1 || 0.054 | 0.046 | 0.040 | 0.047 | 0.045 | 0.048 | 0.047 | 0.049
0.10 | 0.50 | 1.0 || 0.076 | 0.044 | 0.092 | 0.045 | 0.155 | 0.063 | 0.153 | 0.053
0.10 | 0.50 | 5.0 || 0.622 | 0.272 | 0.934 | 0.579 | 0.983 | 0.893 [ 0.951 | 0.905
0.10 | 090 | 0.0 | 0.052 | 0.041 | 0.035 | 0.044 | 0.040 | 0.045 | 0.048 | 0.051
0.10 | 0.90 | 0.1 } 0.052 | 0.045 | 0.047 | 0.045 | 0.058 | 0.047 | 0.053 | 0.045
0.10 | 090 | 1.0 | 0.603 | 0.239 | 0.745 | 0.366 | 0.733 | 0.490 | 0.583 | 0.464
0.10 | 090 | 5.0 || 1.000 | 0.976 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000

Barnard’s Model

The results in Table 23.4.4 for the model in [23.4.13], are very consistent and easily
comprehensible. For all sample sizes and all combinations of lambda (A) and standard deviation
(0,), r; has greater power than . For n as small as 50, r; attains asymptotic efficiency, while T

is only about 80% efficient. The power of the two tests can be well appreciated by considering
the results for n = 10. While the power of 1 is about 50% that of r, is always greater than 50%.
Second Order Autoregressive Model

From Table 23.4.5, one can see that the findings for the AR(2) model in [23.4.14] parallel
fairly closely those of Barnard’s model. The main difference between the two models is that the
results here are not as dramatic as in Table 23.4.4. Here too, r| is more powerful than T. Asn

increases, the power of r; increases faster than that of t. For n =100, ry attains almost 100% of
efficiency while T performs fairly poorly in some cases. For example, for ¢; =—0.2 and ¢, =0.5
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Table 23.4.3. Power comparisons for the step function models.
n

Parameter
Values 10 20 50 100

[ O, T n T ry T n T r

0.00 | 0.05 || 0.052 | 0.041 | 0.035 | 0.044 | 0.040 | 0.045 | 0.043 | 0.051
0.05 | 0.05 || 0.199 | 0.121 | 0.382 | 0.152 | 0.803 | 0.281 | 0.983 | 0.520
0.05 | 0.50 | 0.058 | 0.040 | 0.038 | 0.048 | 0.051 | 0.039 | 0.069 | 0.051
0.05 | 1.00 § 0.053 | 0.040 | 0.036 | 0.047 | 0.046 | 0.044 | 0.055 | 0.049
0.05 | 2.00 | 0.053 | 0.040 | 0.035 | 0.045 | 0.045 | 0.045 | 0.052 | 0.050
0.50 | 0.05 | 0.711 | 1.000 | 0.994 | 1.000 | 1.000 | 1.000 [ 1.000 | 1.000
0.50 | 0.50 || 0.199 | 0.121 | 0.382 | 0.152 | 0.803 | 0.281 | 0.983 | 0.520
0.50 | 1.00 | 0.090 | 0.057 | 0.131 | 0.064 | 0.283 | 0.070 | 0.525 | 0.113
0.50 | 2.00 || 0.055 | 0.048 | 0.060 | 0.042 | 0.103 | 0.043 | 0.160 | 0.059
1.00 | 0.05 |j 0.711 | 1.000 | 0.994 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
1.00 | 0.50 | 0.490 | 0.352 | 0.887 | 0.594 | 1.000 | 0.958 | 1.000 | 1.000
1.00 | 1.00 || 0.199 | 0.121 | 0.382 | 0.152 | 0.803 | 0.281 | 0.983 | 0.520
1.00 | 2.00 | 0.090 | 0.057 | 0.131 | 0.064 | 0.283 | 0.070 | 0.525 | 0.113
5.00 | 0.05 || 0.711 | 1.000 | 0.994 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
500 | 050 || 0.711 | 1.000 | 0.994 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
500 | 1.00 || 0.711 | 0.943 | 0.944 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
5.00 | 200 || 0.596 | 0.507 | 0.960 | 0.821 | 1.000 | 0.998 | 1.000 | 1.000

the power of r, is 0.881 while that of T is only 0.061 for n = 100.

Threshold Autoregressive Model

The specific TAR model used in the simulation experiments is given in [23.4.15]. From
Table 23.4.6, one can see that the results for this TAR model are very similar to those for
Barnard’s model and the AR(2) model in Tables 23.4.4 and 23.4.5, respectively. The ry test is

obviously more powerful than T. Moreover, while the power of r; increases very rapidly with
increasing n, the power of T only makes a slow progression. Finally, the r, test is about 90%

efficient for n = 20 and it attains 100% efficiency at n = 50. On the other hand, the power of T is
less than 50% even for » = 100.

23.4.6 Conclusions

The general deductions from the simulation experiments presented in Section 23.4.5 are
that the nonparametric test, using T, is more powerful for detecting trends for data generated
from the first three models while the parametric test, utilizing ry, is more powerful for discover-
ing trends in synthetic sequences from the last three models. As noted in Section 23.4.4, the first
three models contain deterministic trends and the last three have stochastic trends. Therefore, it
is reasonable to conclude that T is more powerful for detecting deterministic trends while ry is

more powerful for discovering stochastic trends.
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Table 23.4.4. Power comparisons for Barnard’s models.

n
Parameter

Values 10 20 50
A O, T r T n T r

1.0 | 0.05 §| 0.484 | 0.579 | 0.681 | 0.933 | 0.809 | 1.000
1.0 | 0.50 § 0.459 | 0.579 | 0.667 | 0.944 | 0.819 | 1.000
1.0 | 1.00 § 0.482 | 0.571 | 0.680 | 0.944 | 0.817 | 1.000
10 | 200 | 0.486 | 0.579 | 0.655 | 0.955 | 0.800 | 1.000
20 | 0.05 § 0477 | 0.573 | 0.688 | 0.937 | 0.802 | 1.000
20 | 0.50 § 0.575 | 0.586 | 0.690 | 0.946 | 0.789 { 1.000
20 | 1.00 | 0.467 | 0.586 | 0.683 | 0.954 | 0.798 | 1.000
20 | 2.00 § 0.460 | 0.571 | 0.669 | 0.958 | 0.784 | 1.000
50 | 0.05 || 0485 | 0.560 | 0.689 | 0.935 | 0.812 | 1.000
50 | 0.50 |f 0.469 | 0.562 | 0.670 | 0.937 | 0.802 | 1.000
50 | 1.00 | 0.491 | 0.577 | 0.680 | 0.948 | 0.802 | 1.000
50 | 200 |} 0478 | 0.591 | 0.674 | 0.952 | 0.783 | 1.000
10.0 | 0.05 §| 0.488 | 0.565 | 0.690 | 0.938 | 0.796 | 1.000
10.0 | 0.50 }| 0.501 | 0.628 | 0.677 | 0.961 | 0.802 | 1.000
100 | 1.00 || 0.472 | 0.603 | 0.665 | 0.946 | 0.790 | 1.000
10.0 | 2.00 || 0.480 | 0.586 | 0.665 | 0.960 | 0.796 | 1.000
200 | 0.05 || 0.473 | 0.569 | 0.689 | 0.941 | 0.801 | 1.000
200 | 0.50 | 0.501 | 0.612 | 0.658 | 0.949 | 0.804 | 1.000
20.0 | 1.00 }| 0.498 | 0.593 | 0.654 | 0.950 | 0.811 | 1.000
20.0 | 2.00 || 0.506 | 0.607 | 0.666 | 0.946 | 0.819 | 1.000

In practice, it is advantageous to have both a sound physical and statistical understanding of
the time series being analyzed. This will allow one to decide whether one should employ models
possessing deterministic trends or whether one should use models having stochastic trends. For
example, it may be better to describe certain kinds of water quality measurements using models
having deterministic trends. On the other hand, for modelling seasonal riverflows, models hav-
ing stochastic trends, such as a TAR model, may work well (Tong, 1983; Tong et al., 1985). In
other cases, one may wish to use a model which possesses both deterministic and stochastic
trends. As a matter of fact, most of the intervention models used in the water quality and quan-
tity applications of Chapter 19 and Section 22.4 have components to model both deterministic
and stochastic trends.

23.5 WATER QUALITY APPLICATIONS

23.5.1 Introduction

When executing a complex environmental impact assessment study, usually a wide
variety of statistical tests are required in order to check a range of hypotheses regarding the sta-
tistical properties of the data. The main objective of this section is to clearly explain how both
nonparametric and parametric tests can be employed in an optimal fashion to extract
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Table 23.4.5. Power comparisons for the AR(2) models.
n

Parameter
Values 10 20 50 100

¢1 ¢2 T ry T ry T ry T r
-1.40 | -0.80 || 0.000 | 0.731 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000
0.70 | -0.80 || 0.002 | 0.009 | 0.000 | 0.154 | 0.000 | 0.975 | 0.000 | 1.000
0.70 | -0.80 || 0.031 | 0.170 | 0.009 | 0.485 | 0.002 | 0.991 | 0.000 | 1.000
1.40 | -0.80 || 0.247 | 0.881 | 0.132 | 0.998 | 0.067 | 1.000 | 0.045 | 1.000
-120 | 0.50 || 0.000 | 0.660 | 0.000 | 0.989 | 0.000 | 1.000 | 0.000 | 1.000
0.60 | 0.50 || 0.007 | 0.064 | 0.002 | 0.279 | 0.000 | 0.900 | 0.000 | 0.998
0.60 | 0.50 f| 0.072 | 0.223 | 0.050 | 0.470 | 0.036 | 0.932 | 0.031 | 1.000
120 | 0.50 | 0.305 | 0.745 | 0.264 | 0.985 | 0.285 | 1.000 | 0.230 | 1.000
0.80 | -0.20 || 0.001 | 0.422 | 0.001 | 0.866 | 0.000 | 1.000 | 0.000 | 1.000
0.40 | -0.20 || 0.009 | 0.082 | 0.004 | 0.210 | 0.002 | 0.645 | 0.002 | 0.939
0.40 | 020 {| 0.082 | 0.137 | 0.091 | 0.267 | 0.089 | 0.684 | 0.103 | 0.951
0.80 | -0.20 f| 0.260 | 0.456 | 0.290 | 0.850 | 0.264 | 1.000 | 0.268 | 1.000
-0.40 0.10 || 0.010 | 0.207 | 0.010 | 0.470 | 0.008 | 0.840 | 0.007 | 0.991
0.40 0.10 J| 0.180 | 0.180 | 0.187 | 0.386 | 0.248 | 0.814 | 0.245 | 0.985
0.80 0.10 {f 0.390 | 0.452 | 0.536 | 0.872 | 0.633 | 1.000 | 0.625 | 1.000
0.50 | 030 || 0.013 | 0.500 | 0.005 | 0.788 | 0.002 | 0.990 | 0.005 | 1.000
-0.30 0.30 | 0.024 | 0.239 | 0.023 | 0.466 | 0.023 | 0.776 | 0.028 | 1.000
0.30 030 | 0.193 | 0.138 | 0.297 | 0.306 | 0.335 | 0.701 | 0.348 | 0.934
0.50 0.30 || 0.309 | 0.243 | 0.401 | 0.585 | 0.524 | 0.975 | 0.527 | 0.999
-0.40 0.50 {| 0.017 | 0.615 | 0.013 | 0.824 | 0.005 | 0.984 | 0.008 | 1.000
0.20 | 0.50 || 0.046 | 0.319 | 0.059 | 0.470 | 0.088 | 0.682 | 0.061 | 0.881
020 | 0.50 { 0.175 | 0.143 | 0.302 | 0.250 | 0.377 | 0.578 | 0.421 | 0.831
0.40 0.50 || 0288 | 0.211 | 0.470 | 0.513 | 0.610 | 0.933 | 0.686 | 0.999

Table 23.4.6. Power comparisons for the TAR model.
n
10 20 50 100
T r T r T ry T r
0.320 | 0.499 | 0.435 | 0.904 | 0.320 | 1.000 | 0.338 | 1.000

systematically relevant information from a set of water quality time series. In particular, the
effects of industrial development at Nanticoke, Ontario, upon the nearshore Lake Erie water
chemistry are examined in a comprehensive statistical study. This undertaking was originally
carried out by the authors in conjunction with Acres Intemational Limited of Niagara Falls,
Ontario, for the Ministry of the Environment in the Canadian province of Ontario. Some of the
statistical findings for the Lake Erie study given in Section 23.5.2 are also presented by Hipel et
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al. (1988).
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Figure 23.5.1. Location of the Lake Erie water quality study.

A map of the Long Point Bay region of Lake Erie which contains the Nanticoke study area
is displayed in Figure 23.5.1. Notice that Nanticoke is situated on the north shore of Long Point
Bay in Lake Erie. From the late 1960’s and onwards, major industrial development took place at
the town of Nanticoke. In January, 1972, Ontario Hydro’s (the provincial company that gen-
erates almost all of the electrical power in Ontario) 4000 MW fossil-fueled thermal generating
station commenced operations. Texaco Canada Inc. constructed an oil refinery which came into
operation in November, 1978. Finally, the Steel Company of Canada (Stelco) built a steel mill
that started to produce steel in May, 1980. Because the foregoing industrial projects could
adversely affect the water quality of Lake Erie, the goal of the Nanticoke study was to detect
trends in various water quality variables.

Water quality monitoring began in 1969 at eight (stations 112, 501, 648, 518, 810, 1008,
1016, and 994) of the fifteen sampling stations shown in Figure 23.5.2. Since 1969, the remain-
ing seven of the fifteen stations were added to the network. Many of the stations were sampled
at more than one depth, such as near the surface and near the bottom. Unfortunately, as is also
the case for the water quality data examined in Chapter 22 and Section 24.3.2, the water quality
series measured in Lake Erie contain observations separated by unequal time intervals, many of
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Figure 2. Sampling Stations at Long Point Bay in Lake Erie.

Figure 23.5.2. Sampling stations at Nanticoke in Long Point Bay, Lake Erie.

which are relatively long. Although not all of the water quality variables were assessed for
trends, about 50 different water quality variables were sampled across all of the stations and the
more important variables were collected at each of the stations. Detailed statistical testing for
the presence of trends and other statistical characteristics were carried out for 14 water quality
variables (see Table 23.5.6 for a list of these 14 variables) measured at Stations 501, 810, 994,
1085 and 1086. In the next section, the statistical procedures used in the study are outlined and
some representative results are given. Finally, the trend analysis methodology put forward in the
upcoming section constitutes one of the three overall trend procedures described in the book and

summarized in Table 1.6.1.

23.52 Trend Analysis of the Lake Erie Water Quality Series
Selecting Appro;.)riate Statistical Tests

To detect trends and uncover other statistical properties of the Lake Erie water quality time
series, appropriate statistical tests must be employed. In order to have the highest probability of
discovering suspected statistical characteristics which may be present in the time series, one



906 Chapter 23

must select the set of tests that possess the best capabilities for uncovering the specified statisti-
cal properties. To accomplish this, one must be cognizant of both the general statistical proper-
ties of the data and the main attributes of the statistical tests. For example, with respect to the
characteristics of the data, one should be aware of properties such as the quantity of data, large
time gaps where no measurements were taken, outliers and data which fall below the detection
limits (see Section 23.3.2 for discussions about detection limits in water quality time series). As
discussed in Sections 19.2.3 and 22.3, often these properties of the data are known in advance or
else are revealed using exploratory data analysis tools. From the point of view of a statistical
test that can be used, one should know key facts which include the specific null and alternative
hypotheses that the given statistical test is designed to check, the major distributional assump-
tions underlying the test, the types of samples with which the test can be used, and the kinds of
measurements that can be utilized with the test. By being cognizant of the properties of the data
and the main capabilities of a wide range of both parametric and nonparametric tests, one can
choose the most appropriate statistical tests for testing specified hypotheses such as the presence
of trends. As mentioned in Section 23.3.1, summaries and charts regarding the capabilities of
both nonparametric and parametric tests are available in many well known statistical texts. The
handbook of Sachs (1982), for instance, is very helpful for locating the most appropriate
parametric and nonparametric tests to employ in a given study. Table 23.1.1 provides a list of the
nonparametric tests described in Chapter 23. The tests that are eventually selected can then be
used at the confirmatory data analysis stage for hypothesis testing (see Section 23.2 for a general
discussion of statistical tests).

The particular statistical methods used in the Lake Erie study are listed in Table 23.5.1.
Notice that for each statistical method, the general purpose of the technique is described and the
specific reason for using it in the Lake Erie study is explained. Furthermore, if the method is
described in the text, the location is cited. Otherwise, an appropriate reference is given. The
first four statistical methods in Table 23.5.1 constitute exploratory data analysis tools while the
remaining methods are usually employed at the confirmatory data analysis stage. The non-
parametric tests given in the table are marked with asterisks. Notice that the last statistical
method, regression analysis, is discussed in detail in Section 24.2.3. All of the statistical
methods listed in Table 23.5.1 were applied to each of the 14 specified water quality variables at
cach of the 5 stations, consisting of Stations 501, 810, 994, 1085 and 1086. To clearly explain
how an environmental impact assessment project is carried out, some of the informative results
of the Lake Erie study are now presented for the methods marked with a cross in Table 23.5.1.
For explaining how the techniques are used in practice, the chloride water quality (mg//) and
total phosphorous (mg//) variables are used the most. Finally, for a description of water quality
processes, the reader can refer to the book of Waite (1984), as well as other authors.

Data Listing

For the chloride variable at Station 501 in Figure 23.5.2, 173 observations are available in
mg// from July 13, 1970, to November 19, 1979. The first 25 of these measurements are listed
in Table 23.5.2. To calculate the day number, the start of January 1, 1969, is taken as day
number 0.0. The component to the right of the decimal for a day number refers to the fraction of
a 24 hour period at which the measurement was taken. Consequently, from Table 23.5.2, the
first observation was taken on July 13, 1970, at 16 hours and 40 minutes, which has the day
number 558.611. The gap, expressed in number of days between adjacent observations, is given
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Table 23.5.1 Statistical methods used in the Lake Eric water quality study.

(Section 22.3.2).

METHOD GENERAL PURPOSE SPECIFIC PURPOSE
in the Study
Data listing For each series, want to know exact values, dates of | Same as under general purpose.
measurements, depths of measurements, and station
number (Section 23.5.2, Table 23.5.2).
Graphs of the datat Visually detect main statistical characteristics of a series | Visually detect trends and see spacing of the observa-

tions.

Tukey five number
summaryt

Describe how the observations in a series are distributed
in each season (Section 23.3.3).

Describe how measurements in a water quality series
are distributed in each month.

Box and whisker

See a graphical display of the five number summary for

Sec a plot of the five numbers for each month in a

graphst each season in a senies (Section 23.3.3). series.
Seasonal Mann- | Check for trends in s serics for cach season of the year | Check for trends in a series for each month.
Kendall test*+ (Section 23.3.2).

Fisher's combination
test}

Combining tests of hypotheses (Section 23.3.4).

Test for a trend across all the months in a series by com-
bining the significance levels from the scasonal Mann-
Kendall tests for each moath into a ¥ statistic (see
[23.3.30]).

Wilcoxon signed rank

D ine whether the medians of two samples are the

test*t

same (Appendix A23.2).

Find out whether or not measurements taken at two dif-
ferent depths at exactly the same time possess the same
median.

Confidence  interval
for the median*t

Calculate a confidence interval for the diff in the

Calculate 95% confidence interval for the difference in

medians between two samples (Appendix A23.2).

dians between ts taken at two different
depths at exactly the same time. If zero is not contained
in the confidence interval, the two medians are signifi-
cantly different from one another.

Kendall rank correla-
tion*

Determine whether or not two series are independent of
one another (Appendix A23.1).

Ascertain if measurements taken at the same time at
altemate depths are correlated with one another.

Determine whether or not two series are independent of
one another (see Section 22.3.4 and also Kendall (1975,
Ch. 2)).

Find owm if measurements taken at the same time at
aliernate depths are correlated with one another.

Cross correlation
functiont
Pitman's  test for

equality of corrclated
variance

Ascertain whether or not two correlated vaniances are
the same (Pitman, 1939).

Determine if the variances of samples taken at two dif-
ferent depths are the same.

One way analysis of
variance

Determine if the means across kK samples are signifi-
cantly different from one another (Sachs, 1984, pp.
501-509). It is assumed that the k populations are nor-
mally independently distributed and have equal vari-
ances.

Find ow whether or not the means among replicated
samples are the same.

Kruskal-Wallis test*t

Nonparametric test to check whether or not the distribu-
tions or means across k samples are the same (Appen-
dix A23.3). The observations are assumed to be
independent of one another and follow the same distri-
bution.

Detemmine if the means among replicated samples are
the same.

Regression analysist

Parametrically model relationships within a series and
among series.

Determine the best data transformation, ascertain the
components required in a regression model, and esti-
mate both the average monthly and annual values for a
series (see Section 24.2.3).

* . nonparametric test

1 - applications for this method are given in the text

in the third column. Each measured value in mg/l along with the depth in meters at which the
sample was taken are presented in the fourth and fifth columns, respectively. Notice that the
extreme values consisting of the outside and far-out values defined in Section 22.3.3 are marked.

Table 23.5.3 shows the number of available chloride measurements by month and year for
Station 501. Notice, for example, that no measurements were taken during January, February
and March across all of the years. Additionally, no observations are available for the years 1969,
and 1980 to 1983.
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Table 23.5.2. Data listing of chloride measurements (mg/D)
at Station 501, Long Point Bay, Lake Erie.

Day Date Gap | Measured | Depth
Number Value (m)
558.611 | July 13, 1970 27.0% 4.80
588.604 | Aug. 12,1970 30 26.0* 6.20
859.726 | May 10,1971 | 271 35.0%* 6.10
887.632 | June 7,1971 28 250 6.20
915.736 | July §,1971 28 240 6.70
944.635 | Aug. 3,1971 29 240 6.40
971.615 | Aug. 30,1971 27 23.0 6.20
999.625 | Sep. 27,1971 28 250 6.40
1028.604 | Oct. 26, 1971 29 25.0 6.00
1197.628 | Apr. 12,1972 | 169 25.0 6.00
1223.802 | May 8,1972 26 25.0 6.50
1253.660 { June 7, 1972 30 240 6.20
1280.708 | July 4, 1972 27 240 6.50
1308.618 | Aug. 1,1972 28 240 6.30
1338.646 | Aug. 31,1972 30 25.0 6.00
1365.503 | Sep. 27,1972 27 24.0 6.50
1419.635 | Nov. 20, 1972 54 23.0 5.50
1622.521 | June 11,1973 | 203 23.0 1.00
1622.521 | June 11,1973 0 240 10.60
1650.635 | July 9, 1973 28 23.0 1.00
1650.635 | July 9,1973 0 23.0 10.60
1679.545 | Aug. 7,1973 29 23.0 1.00
1679.545 | Aug. 7,1973 0 240 10.60
1707.597 | Sep. 4,1973 28 240 1.00
1707.597 | Sept. 4,1973 0 25.0 11.00
Remarks:
1. January 1, 1969 at 0:00 AM is taken as Day Number 0.0.
2.  Outside values are indicated by *.
3. Far-outside values are indicated by **.
4. For independent and identically distributed normal variables, the expected percentages of

outside and far-outside values are 0.76% and 0.000013%, respectively.

The Tukey 5-number summary defined in Section 22.3.3 is also listed in Table 23.5.3. In
addition, the numbers of observed and expected outside and far-out values are given. The
expected number of outside and far-out values are calculated by assuming that the data follow a
normal distribution (see Section 22.3.3). To calculate the expected number of outside values,
one multiplies 173 (the total number of observations in Table 23.5.3) times 0.0076 (the probabil-
ity of having outside values if the data are NID) to obtain the expected figure of 1.3148 shown in
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Table 23.5.3. Number of chloride measurements (mg//) at
Station 501 according to the month and year.

Number of measurements available by month and year
69 70 71 72 73 74 75 76 77 718 79 80 81 82 83 TOTAL

Jan 0
Feb 0
Mar 0
Apr 1 2 2 2 2 2 3 14
May 1 1 4 2 5 4 8 6 31
Jun 1 1 2 2 2 2 4 3 17
Jul 1 1 1 2 4 2 2 4 2 3 22
Aug 1 2 2 2 2 4 171 2 1 29
Sep 1 1 2 2 2 2 4 2 3 19
Oct 1 2 2 2 2 4 3 16
Nov 1 2 2 3 4 6 3 21
Dec 2 2 4
TOTAL 0 2 7 8 12 20 16 25 22 37 A4 0 0 0 0 173

Tukey five-number summary: 19.0 20.4 21.0 22.5 35.0

Observed  Expected
Number of Outside values 2 1.314800
Number of Far-outside values 1 0.000225

Table 23.5.3. Likewise, to determine the expected number of far-outside values one multiplies
13x1073 times 173 to get 0.000225.

Graphs of the Data

Graphs of time series are presented throughout the text for a wide range of series while a
discussion regarding the usefulness of graphs as exploratory data analysis tools is given in Sec-
tions 5.3.3 and 22.3.2. Figures 1.1.1 and 19.1.1, for example, displays a plot of 72 average
monthly phosphorous data points (mg//) from January, 1972, until December, 1977, for meas-
urements taken downstream from the Guelph sewage treatment plant located on the Speed River
in Ontario, Canada. In the figure, it can be seen that conventional phosphorous treatment has
dramatically decreased the mean level of the series after the intervention date when the tertiary
treatment was implemented. The black dots indicate locations where data are missing and hence
had to be estimated. In Section 19.4.5, intervention analysis is used to model the effects of the
phosphorous treatment and estimate the missing observations.

A simple approach to display effectively the statistical characteristics of a data set using
ordinary output paper from a computer is to employ a jittered one dimensional plot. The data are
plotted horizontally between the smallest observation on the left and the largest value on the
right. The exact magnitudes of the smallest and largest values are given as part of the 5 number
summary shown in Table 23.5.3. In the plot, the letters a,b,c,..., denote 1,2,3,..., data
points, respectively.

Figure 23.5.3a displays the jittered plot for all of the chloride data at Station 501. When
the chloride data are plotted according to each month across all years as in Figure 23.5.3b, the
manner in which the data are distributed according to each season can be observed. Notice from
the jittered plot of chloride according to each year in Figure 23.5.3c, that the chloride level is
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Figure 23.5.3. Jittered one-dimensional plots of the chloride observations

(mg/l) at Station 501, Long Point Bay, Lake Erie.
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decreasing over the years. A jittered plot of depths at which the chloride observations are taken
is presented in Figure 23.5.4.

Tukey five-number summary of all the depths (m) used
1.00 1.00 1.50 11.00 13.00
Jittered one-dimensional data plot of depths

i e a d b
i e aa a a aa d b
i e a aa a a a abad b
i e a a aaaa a a a a abadac a
i e aa a a a aaad b
i e aa a a a d b
i d a d b
Note: a,b,c,... etc. denote 1,2,3,... data points respectively

Figure 23.5.4. Jittered one-dimensional plot of depths at which the chloride
observations at Station 501 in Long Point Bay, Lake Erie, are taken.

Box-and-Whisker Graphs

The box-and-whisker graph, which is based upon the 5-number summary (Tukey, 1977) is
described in Section 22.3.3 where illustrative plots are also given. When entertaining seasonal
data such as monthly or quarterly data, it is instructive to calculate a 5-number summary plus
outside and far-outside values for each season. For the given total phosphorous data (mg//) at
Station 501, Figure 23.5.5 depicts box-and-whisker graphs that are commonly referred to as box
plots. In this figure, the data have not been transformed using a Box-Cox transformation from
[3.4.30). The far-out values are indicated by a circle in Figure 23.5.5, where far-out values are
not marked if there are four or less data points for a given month. Below each month is a
number which gives the number of data points used to calculate the box-and-whisker graph for
that . When there are not many data points used to determine a box-and-whisker plot for a given
month, any peculiarities in the plot should be cautiously considered. The total number of obser-
vations across all the months is listed on the right below the x axis.

For a given month in a box-and-whisker diagram, symmetric data would cause the median
to lie in the middle of the box or rectangle and the lengths of the upper and lower whiskers
would be about the same. Notice in Figure 23.5.5, for the total phosphorous data at Station 501,
that the whiskers are almost entirely above the rectangles for almost all of the months and there
are 8 far-out values above the boxes. This lack of symmetry can at least be partially rectified by
transforming the given data using the Box-Cox transformation of A = 0 in [3.4.30). By compar-
ing Figure 23.5.5 to Figure 23.5.6, where natural logarithms are taken of the total phosphorous
data, the improvement in symmetry can be clearly seen. Furthermore, the Box-Cox transforma-
tion has reduced the number of far-out entries from 8 in Figure 23.5.5 to 5 in Figure 23.5.6.
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Figure 23.5.5. Box-and-whisker plots of the total phosphorous (mg/l) data at Station
501, Long Point Bay, Lake Erie, from April 22, 1969, to December 13, 1983.

As is also explained in Section 23.3.3, Box-and-whisker plots can be employed as an
important exploratory tool in intervention studies. If the date of the intervention is known, box-
and-whisker diagrams can be constructed for each season for the data before and after the time of
the intervention. These two graphs can be compared to ascertain for which seasons the interven-
tion has caused noticeable changes. When there are sufficient data, this type of information is
crucial for designing a proper intervention model to fit to the data at the confirmatory data
analysis stage (see Section 19.2.3).

For the Nanticoke data, there are two major interventions. First, Ontario Hydro built a
fossil-fuelled electrical generating plant which began operating in January, 1972, and came into
full operation by about January 1, 1976. Because not much data are available before 1972, Janu-
ary 1, 1976, is taken as the intervention data at which water quality measurements near the
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Figure 23.5.6. Box-and-whisker plots of the logarithmic total phosphorous (mg/!) data at
Station 501, Long Point Bay, Lake Erie, from April 22, 1969, to December 13, 1983.

Ontario Hydro plant may be affected. Of the 5 stations analyzed, only Station 810 is close to the
plant. For each of the water quality variables measured at Station 810, box-and-whisker plots
are made before and after the intervention date in order to qualitatively discover any possible sta-
tistical impacts of the intervention.

Second, the Steel Company of Canada (Stelco) plant came into operation about April 1,
1980. Because sites 501, 994, 1085, and 1086 are relatively close to the Stelco factory, box-
and-whisker graphs are made before and after the intervention for each water quality time series
at each station. Figures 23.5.7 and 23.5.8 display the box-and-whisker graphs for the natural
logarithms of the total phosphorous data at Station 501 before and after the Stelco intervention,
respectively. The dates in brackets in the titles for Figures 23.5.7 and 23.5.8 indicate the inter-
vals of time for which measurements were taken before and after the intervention, respectively.
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When these two graphs are compared, it appears that for most of the months there is a slight drop
in the median level after the intervention. Using an intervention model based upon a regression
analysis design (sec Chapter 24 and references therein), a confirmatory data analysis could be
executed to ascertain the magnitudes of the changes in the monthly means and if they are signifi-
cant. Furthermore, one should also take into account overall changes in Lake Erie by consider-
ing measurements at locations outside of the Nanticoke region.
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Figure 23.5.7. Box and whisker plots of the logarithmic total phosphorous data
(mg/l) at Station 501, Long Point Bay, Lake Erie, before April 1, 1980 (data
available from April 22, 1969, to November 19, 1979).
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Figure 23.5.8. Box and whisker plots of the logarithmic total phosphorous
(mg/!) data at Station 501, Long Point Bay, Lake Erie, after April 1, 1980
(data available from April 13, 1981 to December 13, 1983).

A third intervention in the Nanticoke region is due to the Texaco oil refinery which began
production in November, 1978. Because the discharge from this plant is relatively quite small,
the possible effects of the Texaco intervention are not considered in this study.

Seasonal Mann-Kendall Tests

For a given water quality variable at a specified station, the seasonal Mann-Kendall test can
be used to detect trends in each month of the year. A detailed description of this test is given in
Section 23.3.2. For the case of the chloride measurements taken at Station 501, Table 23.54
presents results of the seasonal Mann-Kendall and other related tests. Each entry in the table of
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Table 23.5.4. Trend analysis of monthly median values
using the seasonal Mann-Kendall test for the chloride series (mg//)
at Station 501, Long Point Bay, Lake Erie.

Monthly Median Values times 10
Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1970 270 260
1971 350 250 240 235 250 250
1972 250 250 240 240 245 240 230
1973 235 230 235 245 240 245
1974 230 238 200 211 25 205 210 220
1975 215 230 225 25 220 215 215
1976 205 205 207 210 210 210 210 215
1977 205 205 210 208 215 205 210
1978 197 200 200 200 205 202 210 205 210
1979 195 200 205 200 195 195 190
tau 098 096 062 -093 08 -0.82 -08 -088
SL(%) 039 017 461 003 022 033 187 098

Combination of Scores and their Variances
Sum Variance SL
1960 5.59000x10%  1.13324x107!6

Fisherian Combination of the Significance Levels
CHI-SQ DF SL
87.01 16 0.00000

years versus months is the median value for a given month and year. By utilizing [23.3.4] or
[23.3.9] for the data in a specific month across all of the years for which data are available,
Kendall’s tau can be determined. The observed value of S, for each month which is calculated

using [23.3.7] is not displayed in the table. Because the observed t value for each month is
negative, this indicates that there may be a decreasing trend in each month. Consider, for
instance, the month of April for which the calculated t value is -0.98. Since the SL (significance
level) for this month is 0.39%, this strongly suggests that the null hypothesis of having identi-
cally independently distributed data should be rejected in favour of accepting the alternative
hypothesis of there being a monotonic decreasing trend. Notice that for each month the SL is not
greater than 5% and usually less than 1%. Consequently, one would expect that across all of the
seasons, a combination test would confirm the presence of an overall decreasing trend. The sea-
sonal Mann-Kendall test statistic in [23.3.11] has a magnitude of -196.0 and a very small signifi-
cance level. In addition, Table 23.5.4 shows that the significance level of Fisher’s combination
test in [23.3.30] is also very small. Hence, both of the combination tests indicate that there is an
overall trend which is decreasing due to the negative sign of S, or T in each season and also § ‘in

[23.3.11] across all of the seasons. As noted earlier, this decreasing trend over the years is also
readily apparent in the jittered plot of chloride according to each year in Figure 23.5.3c.

For each of the fourteen water quality variables at each of the five stations where there are
sufficient data, the seasonal Mann-Kendall test in [23.3.7] or [23.3.9] is applied. Consider Table
23.5.5 which summarizes the results for chloride. Notice that at Stations 501, 810 and 994, there
are obvious decreasing trends (indicated by the negative signs) for all the months for which data
are available at all three sites. Except for two cases where the significance level is a = 10%, all
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Table 23.5.5. Seasonal Mann-Kendall tests for trend in the
chloride series (mg//) for stations at Long Point Bay, Lake Erie.
MONTHS STATIONS
501 810 994 1085 1086

January
February
March
April -c - -b
May -C -C -d
June -b -a -a
July -d - -C
August -C - -C
September ¢ - -
October -b -c -C
November -C -d -d
December
Note:
1. a, b, c,ddenote significance levels of 10, 5, 1, 0.1 percent, respectively.
2.  #denotes result not significant at 10 percent.
3.  Otherwise, a blank indicates insufficient data.
4. A positive or negative value of tau is indicated by + or -.

of the significance levels are 5% or less. Consequently, these trends are significant. For a given
month and station, one should certainly reject the null hypothesis that the chloride data are
independently and identically distributed. Table 23.5.5 shows that sufficient data for executing a
seasonal Mann-Kendall test are not available for the months of January, February and March at
Stations 501, 810 and 994. Also, there are not enough observations for all of the months at Sta-
tions 1085 and 1086.

Another water quality variable for which there may be decreasing monthly trends is
specific conductance for Stations 501, 810 and 994. However, as is the case for chlorophyll a,
for most of the water quality variables across most of the months and stations, significant trends
are not detected by the seasonal Mann-Kendall test.

As explained earlier, along with the seasonal Mann-Kendall test, for a specified water qual-
ity variable and station one can combine the monthly results using the combined score method in
{23.3.11] and the Fisherian combination in [23.3.30]. Table 23.5.6 summarizes these two types
of combination results for the fourteen water quality variables across all of the stations. When
interpreting these results one should keep in mind the limitations of the combination approaches
described in Sections 23.3.2 to 23.3.4. Notice in Table 23.5.6 for the chloride variable that the
results are highly significant for Stations 501, 810 and 994 for both combination tests (all the
significance levels are d = 0.1%). Consequently, there are obvious trends in chloride across the
months at all three sites. Due to the negative signs in Table 23.5.5, the trends are decreasing.
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Table 23.5.6. Combined score tests from [23.3.11] and Fisher’s combination results
using [23.3.30] for the 14 water quality variables at Long Point Bay, Lake Erie.

STATIONS
501 810 994 1085 1086

turbidity (FTU) a# ## cb ## #.#
specific conductance (us/cm) dd dd dd ## #.#
lab pH #4 ## #% #d ##
chloride (mg/!) dd dd dd
ammonia - N (mg//) da ¢cb b# ## #.#
morganic -N (mg//) #4% #% ## #d
filtered total Kjeldahl N c# #c a# b# #a
Kjeldahl organic N (mg/) b# #a ## ## #a
chlorophyll a ## Db# a# a# #d
chlorophyll b c# da ## ## ##
phytoplankton density
filtered reactivce phosphate dd b# dc ## ##
total phosphorous (mg//) da ab dc ## ##
iron (mg/l) d,b #,a c,b #.# #.#

Note:

1. a,b,c,ddenote significance levels of 10, 5, 1, 0.1 percent, respectively.

2. #denotes result not significant at the 10 percent level.

3. Otherwise, a blank indicates insufficient data.

4. The combined Kendall test for trend in [23.3.11] is the first entry in each cell while the

second entry is the Fisherian combination calculated using [23.3.30].

Wilcoxon Signed Rank Tests

Detailed descriptions of the Wilcoxon signed rank test along with the related confidence
interval for the median are given in Appendix A23.2. The purpose of using these tests is to
ascertain whether or not paired measurements taken at the same time and alternate depths are
significantly different from one another.

Table 23.5.7 displays the statistical analyses of paired measurements for chloride at Station
501. At the top of the table, the availability of paired measurements by month and year is
shown. Tukey 5-number summaries for both the depths and measured values at the shallow
depths explain how both the depth and measured values are distributed. Likewise, for the deep
samples, Tukey 5-number summaries are given for the depths of the deep measurements and the
measurements themselves. Notice that the distributions of the measurements appear to be the
same at the shallow and deep depths according to the Tukey S-number summaries. When the
paired measurcments, denoted by X and Y for the shallow and deep depths, respectively, are sub-
tracted from one another, the Tukey S-number summary of X —Y shows that the subtracted
values are symmetrically distributed about zero. Hence, the depth of the measurement does not
appear to affect the distribution of chloride.
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Table 23.5.7. Analyses of paired measured chloride (mg//) values at the same
time and alternate depths at Station 501, Long Point Bay, Lake Erie.

Number of paired (shallow, deep) measurements available by month and year
69 70 71 72 73 74 75 16 71 18 79 8 81 8 8 TOTAL
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TOTAL 0 O0 0 o0 6 10 8 8 11

X: Shallow Samples
Depths(m)  Measured Values

Extreme: 1.00 194
Hinge: 1.00 20.5
Median: 1.00 21.0
Hinge: 1.00 220
Extreme: 1.50 25.0
Y: Deep Samples
Depths(m)  Measured Values
Extreme: 5.50 19.4
Hinge: 11.00 20.5
Median: 11.50 21.0
Hinge: 11.92 22.0
Extreme: 13.00 25.0

Five-number summary of paired X-Y: -1.0 0.0 0.0 0.0 1.0
Two-sided Wilcoxon signed rank test for paired measured values at the same time and at alternate depths:

Number of pairs is 18. Wilcoxon Statistic is 84.0. SL is 0.96526.
95% confidence interval for the median difference (X-Y) is (0.0000, 0.0000).

The Wilcoxon signed rank test can be employed as a nonparametric test to check whether
or not measurements taken at two different depths at exactly the same time have the same
median. As noted in Appendix A23.2, the values in a pair are not used if they are equal. As can
be seen in Table 23.5.7, there are 18 pairs which do not have equal values. For these 18 pairs of
chloride measurements, the value of the Wilcoxon statistic in [A23.2.3] is 84 with a SL of 0.97.
Because of this very large SL, one can conclude that the medians or means of the paired chloride
measurements taken at alternate depths are not significantly different from one another. Because
zero is contained within the 95% confidence interval for X — Y, the fact that the medians are the
same is further substantiated. Since the Wilcoxon test is only used when the number of paired
samples having unequal measurements is greater than 7, results are not shown for some of the
water quality variables at different stations.
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Table 23.5.8. Summary of the Wilcoxon tests for the equality of medians of paired
X and Y, where X is the shallow sample value and Y is the deep sample value.

Stations
501 810 994 1085 1086
turbidity (FTU) < # d -a
specific conductance (Us/cm)  -d +# -a
lab pH +C +# +# +b
chloride (mg//) +# # +b
ammonia - N (mg/!) < +# -b +#
inorganic -N (mg//) d # -a +#
filtered total Kjeldahl N # +# -b -#
Kjeldahl organic N (mg//) +H -b -#
chlorophyll a -b d
chlorophyll b -a +#
phytoplankton density
filtered reactive phosphate -b +# +# -#
total phosphorous (mg//) # - - -#
iron (mg/l) d +# # -#
Note: '
1. a,b,c,d denote significance levels of 10, 5, 1, 0.1 percent, respectively.
2. #denotes result not significant at the 10 percent level.
3. Otherwise, a blank indicates insufficient data.
4.  +or- according as the median of X is > or < the median of Y.

Table 23.5.8 presents all of the results of the Wilcoxon tests for all of the variables and sta-
tions for which there are sufficient data. Notice that for Stations 501 and 994 the test results for
most of the water quality variables are significant. For example, for iron at Station 501 the sig-
nificance level is d = 0.1%. Hence, one should reject the null hypothesis that the means are the
same at the two depths. The negative sign indicates that the mean or median at the shallow
depth is less than the mean for samples taken at the deeper depths. At Stations 810 and 1086, the
means appear to be the same at the shallow and deep depths for most of the water quality vari-
ables.

Kruskal-Wallis Tests

The Kruskal-Wallis test outlined in Appendix A23.3 is a nonparametric test for checking
whether or not the means among replicated samples are significantly different from one another.
Although the results are not shown here, the one way analysis of variance constitutes a
parametric approach for performing the same test but under stricter assumptions.

In Table 23.5.9, the studies for the replicated samples for the total phosphorous data (mg/l)
at Station 501 are presented. At the top of the table, the number of replicated samples by month
and year are given. Below this, the Tukey S-number summary of all depths is displayed. For a
given replicated sample, the range is defined as the largest minus the smallest value. The Tukey
S-number summary for the ranges of all the replicated samples is also given in Table 23.5.9.
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Table 23.5.9. Analyses of replicated samples for total phosphorous
(mg/!) at Station 501, Long Point Bay, Lake Erie.

Number of replicated samples available by month and year
609 70 71 72 73 74 75 16 77 18 719 8 81 8 83

:
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TOTAL 0 0 0 0 o0 0 o0 o0 o0 o0 O

Tukey five number summary of all the depths(m) used

1.50 1.50 1.50 11.00 11.50
Tukey five number summary of the ranges of the replicates
0.000 0.002 0.003 0.007 0.110

Kruskal-Wallis Nonparametric Test
KW-Statistic SL
109.31 7.15x1077

Note that if all the entries in a given replicated sample were the same and this were true for all
the replicated samples, all of the entries in the Tukey 5-number summary would be zero.

The results for the Kruskal-Wallis test are given at the bottom of Table 23.5.9. Using
[A23.3.3], the test statistic is found to be 109.31 with a SL of 7.15x10”7. Because of the very
small SL, the statistic is significant and hence one could argue that the means for two or more
replicated samples are significantly different from one another.

The reader should keep in mind that the differences among the means for the replicated
samples could be due to causes such as seasonality, trend and depth. Seasonality may be the
main reason for the mean differences but more data would be required to test this hypothesis.
The fact that the samples are not independent may also influence the results.

The overall results for when the Kruskal-Wallis test is applied to all the time series having
sufficient data across all five sites, are shown in Table 23.5.10. From this table, it can be seen
that for iron the means among replicated samples are significantly different from one another for
iron across all stations for which there are enough data. However, these differences could be due
to causes such as seasonality trend or depth.
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Table 23.5.10. Kruskal-Wallis tests for comparing means among
replicated samples at Long Point Bay, Lake Erie.

Stations

501 810 994 1085 1086
turbidity (FTU) a # #
specific conductance (j1s/cm) # # d
lab pH # #
chloride (mg/I)
ammonia - N (mg//) # a # #
inorganic -N (mg//) # #
filtered total Kjeldahl N c # a #
Kjeldahl organic N (mg/l) # a # b
chlorophyll a #
chlorophyll b #
phytoplankton density # # #
filtered reactive phosphate # #
total phosphorous (mg//) d d d c
iron (mg/l) d d d d

Note:

1. a, b, c, d denote significance levels of 10, 5, 1, 0.1 percent, respectively.
2.  #denotes result not significant at the 10 percent level.

3. Otherwise, a blank indicates insufficient data.

23.6 CONCLUSIONS

Environmental data, such as water quality time series, are often very messy. For example,
water quality time series may possess problems which include having missing observations, fol-
lowing nonnormal distributions, possessing outliers, and being short in length. Because non-
parametric tests usually have less restrictive assumptions than their parametric counterparts, non-
parametric tests are often ideally suited for detecting characteristics such as trends in environ-
mental data (Helsel, 1987). Furthermore, because of the increasing importance of environmental
impact assessment studies in modem day society, the import of both nonparametric and
parametric tests will continue to expand.

Following a general discussion of statistical testing in Section 23.2, in Section 23.3 a
number of useful nonparametric tests are described for detecting trends in data sets. In particu-
lar, the seasonal Mann-Kendall test and the correlated seasonal Mann-Kendall test of Section
23.3.2 constitute important intrablock methods for discovering trends in time series for which
there may be missing observations. However, the aligned rank technique discussed in the latter
part of Section 23.3.2 must be used with an evenly spaced time series.

When dealing with seasonal data measured at one or more sites, the procedures described in
Section 23.3.3 can be used for grouping data together when checking for the presence of trends.
For instance, if it is suspected that there is an increasing trend during the summer seasons and a
decreasing trend at other times of the year, the data can be subdivided into the summer and non-
summer groups. A good way to combine tests of hypotheses across seasons or groups of seasons



Nonparametric Tests 923

is to employ Fisher’s method given in [23.3.30] in Section 23.3.4. Besides grouping the data,
sometimes it is worthwhile to first filter the given time series in order to account for the effect of
water quantity upon water quality. One particular approach for filtering or preprocessing data
before they are subjected to statistical testing is bricfly outlined in Section 23.3.5 while another
procedure is presented in Section 24.3.2. Moreover, the Spearman partial rank correlation test of
Section 23.3.6 provides a more flexible approach for filtering out undesirable effects when
checking for trends over time in a series.

The only nonparametric test that is used to model a step trend due to a known intervention
is described in Section 23.3.7. For a given physical variable, this test can be used to confirm the
presence of a step trend across seasons at one or more measuring locations. However, it cannot
be used to test for the presence of a trend which does not take place as a step change in the mean
level after the date of occurrence of a known intervention. Recall from Section 22.4 and Chapter
19 that intervention analysis can be used to model a wide spectrum of trend shapes caused by
one or more interventions and also accurately estimate the magnitudes of the trends.

The ACF at lag one is a parametric test which can be used for detecting trends in a data set.
On the other hand, Kendall’s tau in [23.3.5] or, equivalently, the Mann-Kendall statistic in
[23.3.1] or [23.3.7], constitute statistics that can be used in the nonparametric Mann-Kendall test
for trend detection. The simulation experiments executed in Section 23.4 demonstrate that the
ACF at lag one is more powerful than Kendall’s tau for discovering purely stochastic trends
while Kendall’s tau is more powerful for uncovering purely deterministic trends.

Often water quality and other types of time series are multiple censored. In order to be able
to apply nonparametric tests to multiple censored data, one can employ procedures described in
Section 23.3.8.

To clearly demonstrate the cfficacy of employing nonparametric and also parametric
methods in a complex environmental impact assessment study, the effects of industrial develop-
ment upon water quality in Long Point Bay in Lake Erie, are systematically examined in Section
23.5. The specific statistical methods used in the application for exploratory and confirmatory
data analyses are listed in Table 23.5.1. Within Section 23.5.2, the method of application and
representative results are given for each of the techniques marked by a cross in Table 23.5.1. Of
particular importance is the seasonal Mann-Kendall test that is used to check for the presence of
trends in a range of water quality variables at different sites (see Tables 23.5.4 to 23.5.6). Other
nonparametric tests utilized in the study include the Wilcoxon signed rank and Kruskal-Wallis
tests described in Appendices A23.2 and A23.3, respectively. When deciding upon which tests
to employ in a given study, it is informative to refer to tables that characterize statistical methods
according to various criteria. Table 23.1.1 summarizes the purpose of all of the nonparametric
tests described in Chapter 23.

Beyond applications given in Sections 23.5.2 and 24.3, as well as references already cited
in this chapter, there is, of course, other published literature dealing with nonparametric model-
ling in water resources and environmental engineering. For example, Fox et al. (1990), Potter
(1991), and El-Shaarawi and Niculescu (1993) apply nonparametric trend tests to water quantity
problems, El-Shaarawi et al. (1983, 1985), Smith et al. (1987), Alexander and Smith (1988),
Karlsson et al. (1988), Loftis and Taylor (1989), Lettenmaier et al. (1991), Sanden et al. (1991),
Walker (1991), Zettergvist (1991), and Tsirkunov et al. (1992), employ nonparametric tests for
detecting trends in water quality time series, and Harned and Davenport (1990), Wiseman et al.
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(1990), Jordan et al. (1991), and Stanley (1993) apply nonparametric trend tests to estuarine data.
In fact, assessment of water quality is of national concern to many countries throughout the
world, including the United States of America (see, for instance, Cohen et al., 1988). Conse-
quently, the need for further developing flexible nonparametric trend tests, as well as many other
kinds of statistical procedures, will continue to expand.

In the last row of Table 23.5.1, it is noted that regression analysis is used to model some
problems related to the water quality study on Lake Erie reported in Section 23.5. Regression
analysis is, in fact, a very flexible and general tool that has wide applicability in water resources
and environmental engineering. Consequently, in the next chapter various types of regression
models are put forward for use as exploratory and confirmatory data analysis tools. Addition-
ally, an overall methodology is presented for systematically carrying out a trend assessment
study with messy water quality data measured in a river. When dealing with water quality data
from a river, the flow levels must be accounted for and regression analysis provides a superb
means for doing this. As is shown in Chapter 24, regression analysis techniques, along with
some nonparametric trend tests as well as other statistical methods, play a key role in this metho-
dology.

APPENDIX A23.1
KENDALL RANK CORRELATION TEST

The Kendall rank correlation test (Kendall, 1975) is a nonparametric test for checking if
two series are independent of one another. The null hypothesis, Hy, is that the two series are

independent of each other while the alternative hypothesis, H), is they are not independent.

Suppose that the data consist of a bivariate random sample if size n, (x;y,), for

i=1,2,...,n. Two observations are concordant if both members of one bivariate observation
are larger than their respective members of the other observation. For example, the two bivariate

n
observations (3.2,9.6) and (4.7,11.2) are concordant. Out of the 2 total possible pairs, let N,

denote the number of concordant pairs of observations. A pair of bivariate observations, such as
(5.2,8.6) and (4.3,12.4), is discordant if it is not concordant. Let N; be the total number of

discordant pairs. Under Hy, the test statistic for the Kendall rank correlation test is
N.-N
1= —l—i—L [A23.1.1]
En(n -1

If all pairs are concordant, the two series are perfectly correlated and T = 1. For the case of total
discordance, T=~-1. Consequently, T varies between -1 and +1. Because T is asymptotically
normally distributed and its distribution can be tabulated exactly for small n, one can determine
the SL for a computed value of T. If the calculated T is greater than or less than 0.05, one can
accept or reject, respectively, the null hypothesis. Theoretical results regarding this test are
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provided by Valz et al. (1994).

Notice that the symbol for tau used in [A23.1.1] is identical to that used in [23.3.5] in Sec-
tion 23.3.2 for the Mann-Kendall trend test. This is because the test statistic given in [23.3.5] is
a special case of the test statistic for the Kendall rank correlation test in [A23.1.1]. To obtain
[23.3.5] from [A23.1.1], simply replace (x;,y;) by (¢t,x,) for which time ¢t=12,...,n, and x,

consists of X1,X, . . ., X,.

APPENDIX A23.2
WILCOXON SIGNED RANK TEST

Wilcoxon Test: In water quality modelling, one may wish to know whether or not measure-
ments taken at two different depths at exactly the same time possess the same median. Moreover,
as explained and demonstrated in Sections 8.3 and 15.3, the Wilcoxon signed rank test can be
employed for checking whether one time serics models forecasts significantly better than
another. A test proposed by Wilcoxon (1945) and described in detail by Conover (1980, pp.
280-288) can be used with paired data. Let the data consist of n’ pairs of observations
Y1) (X222, - - - » (K ypr)  generated by their respective Dbivariate random variables

X,Y1).(X2. Y, ..., (X, Y,). For each of the n’ pairs, (X;,Y;), the absolute differences can be
computed using

D =1Y,-X;l i=12,...,n’ [A23.2.1]

In the test, pairs for which X; = ¥; and hence D; =0 are omitted. Let n < n’ denote the number

of remaining pairs. The n pairs can then be ranked from 1 to n where rank 1 is given to the pair
with the smallest ID;| and rank n is assigned to the pair with the largest |D;I. When there are

ties among the absolute differences for a set of paired values, each of the pairs in the set is
assigned the average of the ranks that otherwise would have been assigned. As pointed out by
Conover (1971, p. 281), the assumptions underlying the Wilcoxon test are each D; is a continu-

ous random variable, the distribution of each D; is symmetric, the D;’s are mutually indepen-
dent, all of the D;’s possess the same median, and the measurement scale of the D;’s is at least
interval.
Let d 5o be the median of the D;’s. For a two-tailed Wilcoxon test, the null hypothesis is
Hoid_so =0
This implies that the medians of the X;’s and Y;’s are the same. The alternative hypothesis is
that the medians of the X;’s and Y;’s are different. This can be written as
H lid s0* 0

Because the distribution of each D, is assumed to be symmetric, the median is identical to the
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mean and one is also testing whether or not the means of the X;’s and Y;’s are the same.

The test statistic, T, used to decide if H should be accepted or rejected is defined to be the
sum of the ranks assigned to those pairs (X;,Y;) where ¥; exceeds X;. Therefore, for each pair
&;.Y;)

0 le, > Y,'
R; = [A23.2.2]
rank assigned to (Xi’Yi) ifX, < Y"

and the test statistic is written as

T=YR, [A23.2.3]

i=1

Because the exact distribution of T is known, one can easily calculate the SL for T (Conover,
1971, pp. 211-215, p. 383). If, for example, the value of T is either sufficiently large or small
enough to cause the significance level to be less than say 5%, one can reject Hy and thereby

assume that the medians of the X;’s and Y;’s are different.

Confidence Interval for the Median: The Wilcoxon signed rank test is employed to check
whether or not the median of the X;’s and Y;’s are significantly different from one another. In
the test, one actually checks whether or not the median of D; is significantly different from zero.
To obtain an estimate of the magnitude of the unknown median of the D;’s, one can calculate a

confidence interval for this median using the method given by Tukey (1949) and also described
by Walker and Lev (1953, p. 445) and Conover (1980, pp. 288-290). Moreover, the confidence
interval for the median is also a confidence interval for the mean difference

ED)=E(¥)-EX)
if X;,Y))orD;,i=1.2,...,n,isarandom sample and if the mean difference exists.

To calculate a confidence limit for D; first one must select a significance level o which
means the confidence interval is 1 —a. From the tables for the exact distribution of D; (Con-
over, 1980, p. 460-461) one can obtain the a/2 quantile denoted by wgy,. Next, determine the
n(n + 1)/2 possible averages (D; + D ;)2 for all i and j, including i =j. The upper and lower
bounds for the 1 - a confidence interval are given by the wg,th largest of the averages and the
wooth smallest of the averages, respectively. Because of this, one only has to compute the aver-
ages near the largest and smallest D;’s and not the entire n(n + 1)/2 averages.
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APPENDIX A23.3
KRUSKAL-WALLIS TEST

The Kruskal-Wallis test constitutes a nonparametric approach for checking whether or not
the distributions or means across k samples are the same (Kruskal and Wallis, 1952). In contrast
to the normality assumption for the one way analysis of variance (ANOVA), the k population
distributions are only assumed to be identical for the Kruskal-Wallis test. However, as is the
case for the one way ANOVA, the observations are assumed to be independent of another.

Suppose that there are k samples of sizes n;,i =12, ...,k having a combined sample size
n defined by
k
Yn=n [A23.3.1]
rt

Let x;; stand for the jth value in the ith sample so thati = 1,2, ... ,k,and j=1.2,...,n;. Denote
the ith random sample of size n; by X;;.X;2, . . ., X;. Rank the n observations from 1 to n where

ranks 1 and n are assigned to the smallest and largest observations, respectively. For tied obser-
vations, assign each observation the average of the ranks that would be assigned to the observa-
tions. Let R(x;) represent the rank assigned to x;;. For the ith sample, the sum of the ranks is

given by
n;
Ri=YR(xy) i=12,....k [A23.3.2]
j=1

The null hypothesis is that all of the k population distribution functions are identical. This
implies that the k means are the same. The alternative hypothesis is that at least one of the popu-
lations yields larger observations than at least one of the other populations. Therefore, the k
populations do not all have identical means.

The test statistic for the Kruskal-Wallis test is
12 & R-2)n@+ 1P
T+ 5 n;

[A23.3.3]

where n and R; are defined in [A23.2.1] and [A23.2.2], respectively. The exact distribution of T
is known (Kruskal and Wallis, 1952) and for small samples (say k =3 and n; < S,i=1,2,3) one
can obtain the SL for the observed T from tables. For larger samples, T is approximately xz dis-
tributed on k — 1 degrees of freedom.

Compared to the usual parametric F test used in the one way ANOVA, the Kruskal-Wallis
test is very efficient. For example, when the assumptions of the F test are satisfied, the asymp-
totic relative efficiency of the Kruskal-Wallis test compared to the F test is 0.955. A detailed
description of the Kruskal-Wallis test is presented by Conover (1980, pp. 229-237).

The Kruskal-Wallis test can be employed for testing whether or not a time series is sca-
sonal. To apply the test, the data contained within a given season is considered as one separate
sample. For example, when dealing with monthly observations, each of the twelve samples
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would consist of the monthly data from that month across all of the years. A significantly large
value of the Kruskal-Wallis statistic would mean that the means and perhaps other distributional
parameters vary across the seasons. On the other hand, if the Kruskal-Wallis statistic were not
significant, this would mean that the data are not seasonal.
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23.3
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23.6

23.7

238

239

PROBLEMS

In Section 23.3.2, the correlated seasonal Mann-Kendall statistic is presented as a
nonparametric approach for use in trend detection. Describe some research projects
that you think would improve this nonparametric test from both theoretical and
practical viewpoints when it is used to discover trends in seasonal water quality
data.

Compare the relative advantages and disadvantages of using parametric and non-
parametric tests in trend detection and modelling. If you address points that are
raised in Chapter 23, give more depth to your explanations than those presented in
this chapter. Also, explain some new points of comparison which are not addressed
in Chapter 23. Properly reference the sources of your information.

In Section 23.3.3, procedures are given for grouping seasons for use in trend detec-
tion. Compare the relative advantages and disadvantages of the different
approaches. Outline a method of grouping which is not given in Section 23.3.3.

Without referring to the published literature, prove that the Mann-Kendall test statis-
tic § in [23.3.1] is asymptotically normally distributed with the mean and variance
given in [23.3.2]. Why is it necessary to know the distribution of S?

How can one calculate the exact distribution of the Mann-Kendall test statistic, S, in
small samples?

Select a nonseasonal time series which you suspect may contain a trend. Using the
Mann-Kendall test, carry out a formal hypothesis test to ascertain if your suspicions
are correct. Comment upon your results.

Outline how the covariance eigenvalue method of Lettenmaier (1988) works for
handling correlation among seasons when employing the correlated seasonal Mann-
Kendall test. Describe the advantages and drawbacks of this technique when com-
pared to its competitors.

Choose a seasonal environmental time series that is of interest to you. Employ the
seasonal Mann-Kendall test to check for the presence of trends. Be sure to deter-
mine how a trend behaves separately within each season and only group seasons
together in a meaningful way when carrying out the trend test across seasons. Be
certain to emphasize the most interesting results when explaining your findings.

Using equations, outline the four methods of combining independent tests of
hypothesis which are compared by Littell and Folks (1971). Summarize the advan-
tages and drawbacks of each of the four approaches.
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23.10

23.11

23.12

23.13

23.14

23.15

23.16

23.17

23.18

23.19

23.20

23.21

23.22

By referring to the research of Hirsch et al. (1982) and Smith et al. (1982), use equa-
tions to outline the procedure for determining the flow adjusted concentration (FAC)
for a water quality variable. Appraise their approach for calculating the FAC’s.

By employing a seasonal environmental time series, demonstrate how the Spearman
partial rank correlation test is used for trend detection when the effects of seasonal-
ity are partialled out. Clearly, explain how your calculations are carried out when
applying this test and comment upon any interesting results.

Explain how the Spearman partial rank correlation test can take into account the
effects of correlation when checking for the presence of a trend in a time series.

Design comprehensive simulation experiments to compare the powers of the sea-
sonal Mann-Kendall and Spearman partial rank correlation tests for trend detection.

Carry out a sensible portion of the simulation experiments designed in the previous
problem.

Define the Kendall partial rank correlation statistic for three variables labelled as X,
Y and Z. Explain how this statistic could be utilized in trend tests. Discuss the
advantages and disadvantages of using the Kendall partial rank correlation coeffi-
cient for discovering trends.

Define the Pearson partial rank correlation coefficient for three variables denoted as
X, Y and Z. Explain various ways in which this statistic could be used for trend
tests. Comment upon the advantages and drawbacks of employing the Pearson par-
tial rank correlation coefficient for trend detection.

In Section 23.3.7 it is noted that Hirsch and Gilroy (1985) employ a filter for deter-
mining a filtered sulphate loading series which can then be tested for the presence of
a step trend which started at a known intervention date. Using equations, outline
how this filter works and explain its advantages and limitations.

Using equations, explain how the nonseasonal Mann-Kendall test is applied to a
multiple censured data set by employing the expected rank vector approach of
Hughes and Millard (1988). Using either an actual or hypothetical time series hav-
ing at best three levels of censoring on the left, demonstrate how the trend test is
carried out.

Execute the instructions of the previous problem for the case of a seasonal time
series.

Define one more deterministic trend model and one more stochastic trend model
which could have been used in the simulation studies for trend detection in Section
23.4. Explain the reasons for your choice of models.

Define a mixed deterministic-stochastic trend model which could be employed in
the simulation studies for trend detection presented in Section 23.4. Justify the rea-
sons for your choice of a mixed model and explain why the authors did not use a
mixed model in their simulation experiments.

In Section 23.4, simulation experiments are used to ascertain the ability of the ACF
at lag one, ry, in [23.4.1], and Kendall’s tau in [23.3.5] to detect deterministic and

stochastic trends. Define one other parametric statistic and another nonparametric
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23.24

23.25

23.26

23.27

23.28

23.29

23.30

Chapter 23

statistic which could have been used in the simulation studies. Explain why you
selected these statistics and compare them to those used in Section 23.4.

Prove that the ACF at lag one, ry, in [23.4.1] is asymptotically NID(O,%) where n is

the sample size.

A threshold autoregressive model is defined in [23.4.15). Explain how this model is
fitted to a given time series by following the three stages of model construction.

As noted in Section 23.5.2, both the Kruskal-Wallis test and one way analysis of
variance can be used for checking whether or not the means among replicated sam-
ples are significantly different from one another. After briefly outlining how each
test is designed, compare the merits and drawbacks of the two methods.

Outline the approach of Montgomery and Reckhow (1984) for carrying out a trend
assessment study. Compare their procedure to methodology employed in Section
23.5.

Summarize the procedure of Hirsch et al. (1991) for selecting methods to employ for
detecting and estimating trends in water quality time series.

Suppose that a government agency gives you a set of environmental time series to
examine for the presence of trends. Briefly describe how you would decide upon
what to do.

Obtain some environmental time series which are suspected of possessing trends.
List the exploratory and confirmatory data analysis tools which you plan to use and
then execute a comprehensive data analysis study.

Conover and Iman (1981) describe a valuable procedure for linking parametric and
nonparametric statistics. Outline how this connection is carried out and summarize
the advantages of the approach. Be sure to explain how their procedure can enhance
regression analysis, which is the topic of the next chapter.
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