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CHAPTER 24
REGRESSION ANALYSIS
AND
TREND ASSESSMENT

24.1 INTRODUCTION

Suppose that one would like to analyze trends in water quality time series measured in
rivers. The underlying conceptual model used in trend analysis of a water quality variable ¥ can
be written as

YP=fX,)+S,+C, +¢ [24.1.1]

where Y, is the water quality observation at time ¢ that may be transformed using the Box-Cox
transformation in [3.4.30] to produce the transformed value given as Y,O‘), f(X,) is a function of a
covariate series X,, X, is a covariate series at time ¢ such as riverflow or temperature measured at
time ¢, S, is the seasonal component at time ¢, C, is the trend in Y}, and &, is the noise component
at time ¢. In trend analysis, one wishes to appropriately account for X;, S, and €, so that C; can

be easily detected and accurately quantified, even when the trend effects are small. Trends over
time can be increasing, decreasing or non-existent. Furthermore, trends over time can follow
linear or nonlinear geometrical patterns. For many water quality series measured in rivers, the
covariate series used is flow. However, in other situations, different covariate series can be used.
For example, temperature may be better to use as X; when the Y, series is dissolved oxygen or

total nitrates. Also, when water quality measurement sites are far removed from flow gauging
sites, covariates other than flow may have to be used for X,. Finally, the idea of decomposing a

series into its basic components as in [24.1.1] is a well established procedure and is, for example,
inherent in the basic designs of the intervention models in [19.5.8] and [22.4.5] as well as the
seasonal adjustment procedure of Section 22.2.

The objectives of this chapter are twofold. The first goal is to explain some ways in which
regression analysis can be used to model various components of the general model in [24.1.1].
The second objective is to develop a general trend analysis methodology based on [24.1.1] for
analyzing trends in water quality time series measured in rivers. As is explained in Section
24.3.2, regression analysis as well as nonparametric tests play a key role in this methodology.
To demonstrate the efficacy of the methodology, it is applied to representative water quality time
series measured in rivers in Southern Ontario, Canada.

As pointed out in the preface to Part X as well as Section 23.1, water quality and other
kinds of environmental data are often quite messy. The time series may, for example, be highly
skewed, have many missing observations, possess multiple censoring levels, and contain sea-
sonal trends. When examining environmental data for the presence of trends and other statistical
properties, a systems design approach to data analysis should be followed. More specifically,



940 Chapter 24

one may wish to adhere to the two data analysis stages consisting of exploratory data analysis
and confirmatory data analysis (Tukey, 1977). This comprehensive approach to data analysis is
described in Sections 1.2.4 and 22.1. Graphical procedures that can be used as exploratory data
analysis tools for visually discovering the main statistical properties of a data set are presented in
Section 22.3 as well as Section 24.2.2 in this chapter. Confirmatory data analysis techniques for
carrying out hypothesis testing and obtaining rigorous statistical statements about certain statisti-
cal properties such as trends are presented throughout the book. These confirmatory tools con-
sist of both parametric models and nonparametric tests. Parametric models, such as the interven-
tion models of Chapters 19 and Section 22.4, can be used with data that are not too messy. For
example, if there are a few missing observations in a series, the intervention model can be used
to estimate these missing values as well as estimate the magnitude of a trend. When the data are
very messy, one may have to use nonparametric methods. A variety of nonparametric tests for
trend detection are given in Section 23.3.

Regression analysis models have a very flexible design and can be used with data that are
not evenly spaced over time. In the next section, certain kinds of regression models are
described for use as exploratory and confirmatory data analysis tools. A particularly informative
regression analysis approach for employment as an exploratory tool for tracing trends is the
robust locally weighted regression analysis smooth of Cleveland (1979). This technique is
described in detail in Section 24.2.2, while applications of the method are given in that section as
well as in 24.3.2.

Table 1.6.4 outlines the three trend analysis methodologies presented in the book. Subse-
quent to carrying out exploratory data analysis studies and filling in missing observations using
the seasonal adjustment method of Section 22.2, intervention analysis is employed in Section
22.4 to describe the impacts of cutting down a forest upon the mean levels of riverflows and
water quality. In Section 23.5, water quality applications are used for explaining how explora-
tory and confirmatory data analysis tools can be employed for studying trends in water quality
variables measured in a lake. The purpose of Section 24.3 in this chapter is to present a general
trend analysis methodology for use with water quality time series measured in rivers. As
explained in that section and outlined in Table 24.3.1, the methodology consists of graphical
trend studies and trend tests. Different kinds of graphs for observing trends are presented in Sec-
tions 22.3 and 24.2.2, while nonparametric trend tests are given in Section 23.3. In Section 24.3,
procedures are also described for accounting for the effects of flow or another appropriate
covariate upon a given water quality series and eliminating any trend in the flow before its effect
upon the water quality series is removed. The Spearman partial rank correlation test of Section
23.3.6 provides a powerful test for trend detection in a water quality variable over time when the
effects of seasonality or some other factors are partialled out. Water quality data measured in
rivers are utilized for illustrating how the trend analysis methodology is applied in practice.

24.2 REGRESSION ANALYSIS

24.2.1 Introduction

Regression analysis constitutes a flexible and highly developed parametric modelling
approach which has been applied to virtually every field in which data are measured. A host of
books on regression analysis are available including valuable contributions by Mosteller and
Tukey (1977), Draper and Smith (1981), Atkinson (1985), and Chambers and Hastie (1992).
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Regression models can be designed for modelling many situations, including the type of model
in [24.1.1]. In addition to major developments in linear regression models, good progress has
been made in nonlinear regression (see, for example, Gallant (1987) and Bates and Watts
(1988)).

Consider the case of a linear regression model. When fitting a regression model to a data
set, it is recommended to follow the identification, estimation and diagnostic check stages of
model development, as is also done for all of the time series models presented in this book. A
wide variety of well developed procedures are available for constructing linear regression
analysis models. Usually, the noise term in a regression model is assumed to be normally
independently distributed (NID). If the residuals of a fitted model are not normal, one may be
able to rectify the situation by transforming the data using the Box-Cox transformation in
[3.4.30]. When the residuals are not independent and hence are correlated, one will have to
design a more complicated regression model to overcome this problem or, perhaps, use a com-
pletely different type of model such as some kind of stochastic model.

As is also the case for the transfer function noise (TFN) and intervention models of Parts
VII and VIII, respectively, a regression model can handle multiple input series. However, recall
that in TFN and intervention models, the noise term is correlated and modelled using an ARMA
model. In a regression model, the noise term is assumed to be white. Another advantage of a
TFN model over a regression model is that the transfer function in a TFN model has an operator
in both the numerator and denominator as in [17.2.1] and [17.5.3]. This allows one to handle a
wide range of ways in which an input series can effect the output or the response variable, as is
discussed at the end of Section 17.2.4 and in Section 19.2.2. Furthermore, this can be done using
very few model parameters. In fact, one can think of a TFN model as being a regression model
having an autocorrelated noise term rather than white noise. Nonetheless, an advantage of
regression analysis over TFN models is that it can be used with data that are not evenly spaced
and hence possess missing values.

What is meant by missing observations must be explained in more detail, especially for the
case of water quality time series (McLeod et al. (1991)). First, consider what missing means with
respect to parametric techniques. For many parametric methods, such as the wide variety of time
series models given in this book, it is usually assumed that observations are available at equally
spaced time intervals. For example, when fitting a periodic autoregressive model in [14.2.1] to
average monthly riverflow series, all of the monthly observations across the years must be avail-
able. If there is at least one missing observation, the data are no longer evenly spaced due to this
missing value. Before fitting the time series model, one must obtain estimates for the missing
value or values. Furthermore, for the case of riverflows usually each monthly observation is cal-
culated as a monthly average of average daily flows. Each daily average may be based upon a
continuous record taken for that day. Hence, the monthly flow data are often calculated from
continuous analogue records.

In contrast to riverflow records, water quality observations usually have quite different
meanings in sampling theory. More specifically, most water quality records could be classed as
irregular series of quasi-instantaneous measurements. This is because each water quality sample
takes about 10 to 15 seconds to collect. With such samples, the term missing data could refer to
~a number of situations including:
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1.  All the unsampled 10 to 15 second periods of the record. This total number is, of course,
very large and can be thought of as infinity for practical purposes.

2. Uncollected or lost samples with respect to a specific monitoring objective. For instance,
an objective may be to collect one sample per month and if at least one monthly observa-
tion is missing the data are irregularly spaced due to this missing value. Another objective
may be to have most of the water quality samples taken during times of high flows to pro-
duce flow biased data. If no samples are taken for at least one high flow event, then there
are missing data.

3. Data missing in the sense of some analytical framework. For example, suppose that the
framework chosen is the monthly level. If there is at least one observation per month, then
one can say that there are no missing values. However, at a daily level there may be many
missing observations.

Another stated characteristic of messy environmental data is that the observations may be
significantly affected by external interventions. These interventions may be man-induced or
natural. An example of a beneficial man-induced intervention is the introduction of tertiary
treatment at city sewage plants located in a river basin. This beneficial intervention should cause
a step decrease in the phosphorus levels in the river, as shown in Figures 1.1.1 as well as 19.1.1
and explained in Section 19.4.5. On the other hand, uncontrolled industrial development with
few environmental controls would cause detrimental impacts upon certain water quality vari-
ables in a river. One can cite many other examples of environmental policy and related land use
changes which can adversely or beneficially affect water quality. An illustration of a natural
intervention is the effect of a forest fire in a river basin upon water quality variables. For exam-
ple, the resulting lack of forest cover may cause more sediments to be carried and deposited by
rivers. However, as a new forest grows back over the years, the flows and water quality vari-
ables may slowly revert to their former states, which is the situation for the intervention analysis
application presented in Section 19.5.4. In trend analysis one wishes to detect and analyze trends
caused by man-made or natural interventions.

The intervention model of Part VIII and Section 22.4 constitutes a flexible type of model
that can be used to estimate trends. Regression models can also be designed for estimating the
magnitude of trends in a series. One approach is to model all of the components in [24.1.1]
employing a regression model. Alternatively, one could describe some of the components in
[24.1.1] using regression analysis and the remaining parts utilizing other statistical methods. For
instance, a nonparametric trend test (see Section 23.3) could be applied to the residuals of a
regression analysis to check for the presence of trends after the covariate and seasonality points
have been suitably accounted for using regression analysis (see Section 23.3.5). Brown et al.
(1975) employ cumulative sum statistics for tests of change in a regression model structure over
time. Within the water resources and environmental engineering literature applications of
regression analysis in trend assessment include contributions by Alley (1988), Cunningham and
Morton (1983), El-Shaarawi et al. (1983), Loftis et al. (1991), McLeod et al. (1991), Smith and
Rose (1991), Reinsel and Tiao (1987), Stoddard (1991), and Whitlatch and Martin (1988).

Esterby and El-Shaarawi (1981a,b) devise a procedure for estimating the point of change
and degree in polynomial regression, while El-Shaarawi and Esterby (1982) extend the approach
for use with a regression model having an autoregressive error process of order one. In environ-
mental engineering problems, the time at which an intervention takes place due to additional
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pollution loads and other reasons is often unknown. The approach of Esterby and El-Shaarawi
can estimate the time of the intervention (called the point of change) as well as the order of the
polynomial regression and associated model parameters both before and after the intervention.
Moreover, Esterby (1985) provides a flexible computer program which allows practitioners to
implement their versatile regression analysis technique. As an exploratory data analysis tool, the
method of Esterby and El-Shaarawi (1981a,b) and El-Shaarawi and Esterby (1982) is useful for
detecting the presence and start of the effects of an intervention. Because estimates of the model
parameters both before and after the start of the intervention are obtained, their technique can
also be considered as a confirmatory data analysis tool. Finally, El-Shaarawi and Delorme
(1982) present statistics for detecting a change in a sequence of ordered binomial random vari-
ables.

As pointed out earlier in Section 19.2.3, MacNeill (1985) also presents a flexible technique
for detecting and modelling the effects of unknown interventions. In particular, he develops a
procedure called adaptive forecasting and estimation using change-detection. To activate this
adaptive procedure, a successively updated change-detection statistic is proposed. The larger the
change in the parameters in a regression, exponential smoothing, ARMA or other type of model,
the larger is the expected value of the change-detection statistic. Additional research related to
MacNeill’s change-detection statistic is referred to in Section 19.2.3 under other trend detection
techniques. In addition to trend assessment, regression analysis has been extensively utilized for
addressing a wide variety of problems arising in water resources and environmental engineering.
For example, interesting applications of regression analysis to natural phenomena are provided
by Beauchamp et al. (1989), Cleaveland and Durick (1992), Cohn et al. (1992), Duffield et al.
(1992), Gunn (1991), Helsel and Hirsch (1992), Keppeler and Ziemer (1990), Kite and
Adamowski (1973), Lyman (1992), Millard et al. (1985), Porter and Ward (1991), Potter (1991),
See et al. (1992), Simpson et al. (1993), Tasker (1986), Wong (1963), and Wright et al. (1990).
Moreover, fuzzy regression analysis (Bardossy, 1990; Kacrzyk and Federizzi, 1992; Tanaka et
al., 1982), has been employed in environmental applications (Bardossy et al., 1990, 1992).

Regression models can be used as both exploratory and confirmatory data analysis tools.
Section 24.2.2 presents a flexible regression model for visualizing trends in a series at the
exploratory data analysis stage. In Section 24.2.3, an example of designing a regression model
as a confirmatory tool in an environmental study is presented. Finally, for discussions about the
potential pitfalls that one should be aware of when applying regression analysis as well as other
kinds of statistical techniques, the reader may wish to refer to the references cited in problem
24.4 at the end of the chapter.

24.2.2 Robust Locally Weighted Regression Smooth

Overview

Suppose that two variables that can be samples are denoted by X and Y. The measurements
for these variables are given by (x;,y;), i =1,2,...,n. In a scatterplot, the values for the X and Y
variables can be plotted as the abscissae and ordinates, respectively. To gain insight into the
relationship between X and Y, it is informative to plot some type of smoothed curve through the
scatterplot. In the final part of this section, it is explained how smoothed curves can be obtained
for a graph of a single time series and also a scatterplot of a time series where values at time t—k
are plotted against those at time ¢. However, for convenience and generality of presentation,
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developing a smoothed curve for (x;,y;) is now discussed.

A flexible type of smoothing procedure which works well in practice is the robust locally
weighted regression smooth (RLWRS) developed by Cleveland (1979). Cleveland (1979, 1985),
Chambers et al. (1983) and others refer to the general smoothing procedure as LOESS or
LOWESS for locally weighted least square regression (when this procedure is iterated robustness
is taken into account). Whatever the case, in this chapter the acronym RLWRS is employed.
The RLWRS is a member of a set of regression procedures that are commonly referred to as non-
parametric regression (Stone, 1977). In practice, the RLWRS has been applied to a rich range
of problems across many fields. For example, Bodo (1989) and McLeod et al. (1991) have util-
ized RLWRS for trend assessment of water quality time series, and the RLWRS is also applied
to water quality time series in Sections 24.2.2 and 24.3.2 in this chapter. Moreover, Cleveland et
al. (1990) have developed a seasonal-trend decomposition procedure based upon the RLWRS.

In essence, the RLWRS is a method for smoothing a scatterplot of (x;,y;),i =1,2,...,n,in
which the fitted value at x; is the value of a polynomial fitted to the data using weighted least
squares. The weight for (x;,y;) is large if x; is close to x; and is small if this is not the case. To
display graphically the RLWRS on the scatterplot of (x;,y;), one plots (x;,y;) on the same graph
as the scatterplot of (x;,y;), where (x;,y;) is called the smoothed point at x; and yj; is called the fit-
ted value at x;. To form the RLWRS, one simply joins successive smoothed points (x;,y;) by

straight lines. Because a robust fitting procedure is used to obtain the RLWRS, the smoothed
points are not distorted by extreme values or other kinds of deviant points.

General Procedure

As explained by Cleveland (1979), the general idea behind his smoothing procedure is as
follows. Let W be a weight function which has the following properties:

1. Wk)>0forlxl<1.

2. W(==x)=W(@).

3.  W(x) is a nonincreasing function for x 2 0.

4. W(x)=0 for IxI21.

If one lets 0 < f <1 and r be (f - n) rounded to the nearest integer, the outline of the procedure
is as given below. For each x;, weights, w, (x;), are defined for all x;, k = 1,2, .. ., n, by employ-
ing the weight function W. To accomplish this, center W at x; and scale W so that the point at
which W first becomes zero is the rth nearest neighbour of x;. To obtain the initial fitted value,
¥;, at each x; a dth degree polynomial is fitted to the data using weighted least squares with
weights w,(x;). This procedure is called locally weighted regression. Based upon the size of the
residual y; — ¥}, a different weight, §;, is defined for each (x;,y;). In general, large residuals cause

small weights while small residuals result in large weights. Because large residuals produce
small weights, the effects of extremes tend to be toned down or smoothed, thereby making the
procedure robust. After replacing w;(x;) by ;w,(x;), new fitted values are computed using
locally weighted regression. The determination of new weights and fitted values is repeated as
often as required. All of the foregoing steps taken together are referred to as robust locally
weighted regression.
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In the smoothing procedure, points in the neighbourhood of (x;,y;) are used to calculate y;.
Because the weights w;(x;) decrease as the distance of x; from x; increases, points whose abscis-
sae are closer to x;, have a larger effect upon the calculation of y; while further points play a
lesser role. By increasing f, the neighbourhood of points affecting y; becomes larger. There-
fore, larger values of f tend to cause smoother curves.

In the RLWRS procedure, local regression means that regression at a given point is carried
out for a subset of nearest neighbours such that the observations closer to the specified point are
given larger weights. By taking the size of the residuals into account for obtaining revised
weights, robustness is brought into the procedure. Finally, the robust locally weighted regres-
sion analysis is carried out for each observation.

Specific Procedure
The procedure presented by Cleveland (1979) for determining the RLWRS is as follows:

1. First the weight function, W, must be specified. Let the distance from x; to the rth nearest
neighbour of x; be denoted by h; for each i. Hence, 4; is the rth smallest number among
Ix; —le,forj =1,2,...,n. Fork=12,...,n,let

wi(x;) = W((x, — x;)/h;) [24.2.1]
A possible form for tﬁe weight function, is the tricube given by
Wx)=(1-1x??® forlxl <1
=0 for IxI > 1 [24.2.2]

2. The second step describes how locally weighted regression is carried out. For each i, deter-
mine the estimates, ﬁj(x,-), Jj=0,1,...,d, of the parameters in a polynomial regression of
degree d of y, on x;. This is fitted using weighted least squares having weight w;(x;) for
(x¢,yx). Therefore, the ﬁj(x,-) are the values of B; which minimize

iwk(xi)(yk - Bo— B = BaxZ — -+ = BaxH? [24.2.3]
k=1

When using locally weighted regression of degree d, the smoothed point at x; is (x;,y;) for
which y; is the fitted value of the regression at x;. Hence,

d , n :
¥i = Bt = T rty [24.24]
j=0 k=1

where r;(x;) does not depend on y;, j=1,2,...,n. Cleveland (1979) uses the notation
ry(x;) to reinforce the fact that the r,(x;) are the coefficients for the y, coming from the
regression.

3. Let the bisquare weight function be given by
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Bx)=(Q1-x%? forlxl <1
=0, for Ix121 [24.2.5]

Let the residuals for the current fitted values be ¢; =y; — ;. The robustness weights are
defined by

O, =B(e;/6s) [24.2.6]

where s is the median of the le;I. As pointed out by Cleveland (1979), other types of
weight functions could be used in place of B(x).

4.  This step is used to calculate an iteration of robust locally weighted regression. For each i,
determine new y; by fitting a dth degree polynomial using weighted least squares having
the weight 8, w; (x;) at (x;,y;)-

5. Iteratively execute steps 3 and 4 for a total of ¢’ times. The final y; constitute the fitted
values for the robust locally weight regression and the (x;,;) i =1,2,...,n, form the
RLWRS.

Selecting Variables

In order to employ the above procedure, one must specify f, d, ¢’ and W. Cleveland (1979)
provides guidelines for doing this. First consider the variable f, where 0 < f < 1, which controls
the amount or level of smoothness. As noted earlier, an increase in f causes an increase in the
smoothness of the RLWRS. The objective is to select a value of f which is as large as possible
to minimize the variability in the smoothed points but without hiding the fundamental pattern or
relationship in the data. When it is not certain which value of f to select, setting f = 0.5 often
produces reasonable results. In practice, one can experiment with two or three values of f and
select the one which produces the most informative smooth. Bodo (1989) provides suggestions
for selecting f for monthly and lower frequency monitoring data.

Instead of qualitatively selecting one or more values of f, one can estimate f. Based upon
the research of Allen (1974), Cleveland (1979) suggests an approach for automatically determin-
ing f using a computerized algorithm. The approach begins with the locally weighted regression
in step 2. Leaving y; out of the calculation, for a specified value of f let y;(f) be the fitted value

of y;. A starting value of f for f is chosen by minimizing
n . )
20 =Y [24.2.7]
k=1

Next, using f = f,, the robustness weights in [24.2.6] in step 3 can be determined. Omitting y;
from the calculation and using the robustness weights, let y;(f) be the fitted value at x; for a
given value of f. The next value of f is determined by minimizing

2n25k(vk =) [24.2.8]
k=1

Using the latest estimated value of f, the last step can be repeated as many times as are necessary
in order to converge to a suitably accurate estimate for f. Depending upon the problem at hand,
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this procedure for estimating f may require substantial computational time.

The parameter d is the order of the polynomial that is locally fitted to each point. When
d =1, a linear polynomial is specified. This usually results in a good smoothed curve that does
not require high computational effort and, therefore, a linear polynomial is commonly used.

The parameter ¢’ stands for the number of iterations of the robust fitting procedure. Based
upon experimentation, Cleveland (1979) recommends using ¢"=2. However, the authors of this
book have found that ¢’ = 1 is sufficient for most applications.

In the description of the general procedure for RLWRS, four required characteristics of the
weight function, W(x), are given. It is also desirable that the weight function smoothly
decreases to zero as x goes from 0 to 1. The tricube function in [24.2.2] possesses all of the
above stipulated properties. Of course, other appropriate weight functions possessing the above
attributes could also be entertained.

Applications
The RLWRS can clearly depict meaningful relationships for the situations described below:

1.  Scatter Plot of X against Y - The measurements of variables X and Y are given by (x;.y;),

i=1,2,...,n. In a scatter plot, the values for the X and Y variables are plotted as the
abscissae and ordinates, respectively. A RLWRS through the scatter plot can visually
display the underlying relationship between X and Y.

2. Time Series Plot - In a graph of a time series, one plots the values of the time series x, at
each time ¢ against time £ =1,2,...,n. Consequently, the point (x;,y;) used in the pro-
cedure described above is simply replaced by (¢.x;).

3.  Scatter Plot of a Single Time Series - In a scatter plot of a variable X, one plots x,_, against
x, in order to see how observations separated by k time lags are related. In the procedure
for determining the RLWRS, simply substitute (x,,x,_;) for (x;,y;) in order to obtain the
smooth.

Applications are now given to illustrate how RLWRS’s can be useful in a time series plot
and a scatter plot. The data used in the graphs are water quality data from the Ontario Ministry
of the Environment for the Saugeen River at Burgoyne, Ontario, Canada.

As explained in Section 22.3.2, one of the simplest and most informative exploratory data
analysis tools is to plot the data against time. Characteristics of the data which are often easily
discovered from a perusal of a graph include the detection of extreme values, trends due to
known or unknown interventions, dependencies between observations, seasonality, need for a
data transformation, nonstationarity and long term cycles.

A time series plot is especially useful for visually detecting the presence or absence of a
trend. Figure 24.2.1, for example, shows a graph of logarithmic total nitrates for the Saugeen
River against time, where each observation is marked using a cross. The fact that A =0 is writ-
ten above the graph means that the natural logarithmic transformation from [3.4.30] is invoked.
The two horizontal lines plotted in the graph delineate the 95% confidence interval (CI) limits if
the series is assumed to be normally independently distributed (NID). The observations that lie
far outside the 95% CI in Figure 24.2.1 can be considered as outliers under the assumption that
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the data are NID.
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Figure 24.2.1. Graph of logarithmic total nitrates denoted by
NO, (mg/l) against time for the Saugeen River.

In Figure 24.2.1, there is one particularly large observation occurring in 1982. One may
wish to examine the records to see if this observation is correct. If the extreme observation were
erroneous, one could remove it from the record and thereby not use it in subsequent data
analysis. However, the techniques used in the general trend analysis procedure of Section 24.3
are robust or insensitive to outliers. Therefore, this extreme value, and others, are not eliminated
from the record.

The line indicating the upward trend through the data is the RLWRS for this time series
plot. This robust smooth is referred to in Figure 24.2.1 as RS80 because a value of f =0.8 is
employed when plotting the smooth. Hence, the number beside RS is the f value multiplied by
100.
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As shown by the dark mass of crosses in the earlier years, more observations were taken at
that time. The large gap between many observations, especially in the period from 1979 to 1981,
shows that there are time periods during which few measurements were taken and, therefore, the
sequence of observations are unequally spaced. The sinusoidal cycle, which is especially pro-
nounced during the first few years, means that the logarithmic total nitrate data are seasonal.

The results of the nonparametric Mann-Kendall trend test (see Section 23.3.2) written
below the graph in Figure 24.2.1 confirm that there is an upward trend. This is because the value
of the statistic tau calculated using [23.3.5] is positive and the significance level (SL) for this
monotonic trend test is close to zero. A small SL (for example, a value less than 0.05) means one
should reject the null hypothesis that there is no trend and accept the alternative hypothesis that
there is a trend. Alternatively, if the SL level is large and greater than say 0.05, one should
accept the null hypothesis that there is no trend. Because the Mann-Kendall test in [23.3.5] or
[23.3.1] is designed for employment with nonseasonal data, the result of the test is only a rough
indicator for confirming the presence of a monotonic trend in the time series in Figure 24.2.1.

Figure 24.2.2 shows a scatter plot of the logarithmic flows of the Saugeen River (the X
variable) against the logarithmic total nitrates (Y variable). The flows are only used for the same
times at which the total nitrate measurements are available. Notice that there appears to be a
nonlinear function relationship between the flows and the nitrates. To allow the RLWRS to fol-
low this relationship a graph using RS50 is employed. A visual examination of this RLWRS
shows that the extreme values do not adversely affect it. The Kendall rank correlation test given
at the bottom of Figure 24.2.2 is described in Appendix A23.1. Because tau is positive, there is
an upward trend in the scatter plot. The fact that the SL is very small means that the relationship
is significant.

24.2.3 Building Regression Models

Overview

Regression analysis constitutes a very general approach to formally modelling statistical
data. In fact, regression analysis models can be written in a wide variety of ways and can handle
many different situations. When fitting regression models to data sets, one should follow the
identification, estimation and diagnostic check stages of model construction, as is done
throughout this book for time series models. To illustrate how regression analysis is applied in
practice, a case study involving water quality time series is presented.

Lake Erie Water Quality Study

In a particular data analysis study, one should design a specific type of regression model for
addressing relevant statistical problems with the data being analyzed. As a brief example of how
this is done, consider the statistical data analysis study of water quality time series measured at
Long Point Bay in Lake Erie, Ontario, Canada, which is presented in Section 23.5. As summar-
ized in Table 23.5.1, a wide variety of graphical, parametric and nonparametric techniques are
utilized for addressing challenging statistical problems. The last item in Table 23.5.1 mentions
that regression analysis is employed in the investigation.
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Figure 24.2.2. Scatter plot of logarithmic nitrates against logarithmic flows
for the Saugeen River.

Regression Model Design: For the Lake Erie project, a flexible regression model is designed for
accomplishing tasks which include determining the best data transformation, ascertaining the
components required in a regression model, and estimating both the average monthly and annual
values for the series. One can then check for long term trends by examining a smoothed plot of
the estimated average annual values.

The most general form of the regression model used in the project is written as
YR =p 4+ o+ + Bl — ) + e [24.2.9]

where i =1,2,...,n, denotes the year; j =1,2,...,s, denotes the season when there are s sea-
sons per year (for the monthly Nanticoke data s is usually 9 rather than 12 because often data are
not available for the months of January, February and March ); k =1,2, .. ., n;;, denotes the data

point in the ith year and jth season for which there is a total of n;; data points; y,-j(,’c‘) is the kth data

point for a given water quality variable in year i and month j where the A indicates a Box-Cox
transformation (Box and Cox, 1964) which is defined below; p is the constant term; L, is the

parameter for the annual effect in the ith year; a; is the parameter for the seasonal effect in the
Jth season; 7;; is the interaction term; x;; is the kth water depth value for the ith year and jth
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season; X is the mean depth across all of the years and seasons; P is the depth parameter; and e;;

is the error for the kth data point in the ith year and jth season and is normally independently
distributed with mean zero and variance 6%. In order for the model to be identifiable, p, =0,

a;=0,v,=0,i=12,...,n,and ¥,; =0, j=1,2,...,s. Also, if n;; =0 then y; =0. In addi-

s n

tion, v;=0 if Y n;=1 or ¥ m;=1. 1If, for example, n;21 for all i,j then there are
j=1 i=1

1+(n-1)+(s—1)+(n—1)(s — 1)=ns parameters in the model if one ignores the depth

parameter, the transformation parameter A, and the variance of the error.

Box-Cox Transformation: As is also explained in Section 3.4.5, in order to cause the data to be
approximately normally distributed and homoscedastic (i.c., have constant variance), the data
can be transformed using a Box-Cox transformation (Box and Cox, 1964) which is defined as

Mo+ -1 ax0

A)
i = In(yze+e) A=0 [24.2.10]

where c is a constant which is usually assigned a magnitude which is just large enough to make
all entries in the time series positive. Along with maximum likelihood estimates (MLE’s) and
standard errors (SE’s) for the other model parameters in [24.2.9], one can obtain the MLE of A
and its SE for a given data set. Because it is known that MLE’s are asymptotically normally dis-
tributed, one can obtain the 95% confidence limits for the MLE of a model parameter such as A.

Automatic Selection Criteria: A wide variety of statistical procedures are available for select-
ing the best regression model and making sure that certain modelling assumptions regarding the
residuals are satisfied. For example, to choose the most appropriate regression model, one can
employ automatic selection criteria such as the AIC and BIC defined in [6.3.1] and [6.3.5],
respectively.

R? Coefficient: A common criterion for assessing the adequacy of fit of a regression model is
the square of the multiple correlation coefficient, denoted by R?. This statistic reflects the pro-
portion of the total variability which is explained by the fitted regression equation. R? has a
range between 0 and 1 and the higher the value of R?, the better is the statistical fit. Conse-
quently, when comparing competing regression models, the one with the highest R? value is
selected.

Whiteness Tests: To test the adequacy of a fitted model, one can check if one or more assump-
tions underlying the model residuals are satisfied. In particular, one may wish to ascertain if the
residuals are random or uncorrelated. The generalized Durbin-Watson test statistic (Wallis,
1972) provides a test of the null hypothesis that there is no autocorrelation in the residuals of a
regression model against the alternative hypothesis that there is significant autocorrelation.
More specifically, the test statistic is defined as

U Jrag
= Y € -é,)1%¢ [24.2.11]
1=k+1 t=1

where ¢, is the residual estimated at time ¢, n is the length of the residual series, and £ is a suit-

ably selected positive integer. Based upon the work of Shively et al. (1990) as well as Ansley et
al. (1992), Kohn et al. (1993) develop an algorithm for computing the p-value of the test statistic
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in [24.2.11]. Because of this, one can now conveniently execute an hypothesis test for whiteness
using the generalized Durbin Watson test statistic. Additionally, the residual autocorrelation
function (RACF) defined at lag k as

@)=Y 6636 [24.2.12]
t=k+1 1=1

is related to the test statistic in [24.2.11] by the relationship
dy
ry(€)=1- > [24.2.13]

Kohn et al. (1993) fumish a technique for calculating the p-value for the test statistic in [24.2.13]
that allows this statistic to also be used as a whiteness test. With nonseasonal data, for example,
one may wish to ascertain if r; is significantly different from zero. For a seasonal time series,
one may also want to examine r(¢€) for the case where k is the number of seasons per year or
some integer multiple of the seasonal length.

The runs test constitutes another procedure for testing whether or not the residuals are
white. The runs test is a simple but often effective test of the null hypothesis that a time series is
random. Let M denote the median of a time series z,,25, . . ., z,. If one replaces each z, by a +
or — according as z;, <M of z; > M respectively, then a run is a string of consecutive + or —. The
total number of runs, say R, yields a test statistic for randomness. The exact expected number of
runs is given by

2n,n,
ER)=1+——, [24.2.14a]
ny+n,
where n; is the total number of + and ny=n —n; . If there is persistence in the series, the
observed number of runs, R, will tend to be less than the expected. On the other hand, for alter-
nating behaviour the number of runs will exceed E(R). The exact variance of R is given by

2nyny2nyn, —
var(R) = ”‘"22( mmp—n) [24.2.14b]
n“(n-1)

Provided that n, and n, are both greater than 20, the normal approximation can be used to com-

pute the significance level (Swed and Eisenhart, 1943). A two-sided test is used. The Runs Test
could be computed about a value other than M but it would have less power. When either
ny <20 or n, <20 exact formulae given by Swed and Eisenhart (1943) for the probability func-

tion of R are used to compute the exact significance level of a two-sided test.

For the case of the regression model in {24.2.9], one would like to ascertain if the residuals,
é;jx» are random. Consequently, in the above test, the z, series is replaced by the € series. The
runs test makes no distributional assumption other than independence. When the residuals of a
regression model are not random, this would indicate that the fitted model in inadequate.

Analysis of Variance for the Regression: In order to test the statistical significance of the
regression model, an ANOVA (analysis of variance) for regression can be executed. For the
model in [24.2.9], the null hypothesis is that all parameters (i.e., the y;’s, aj’s, y,-j’s, and ) are

zero except for the mean which would be given by p when the other parameters are zero. The
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alternative hypothesis is that at least one of the parameters, other than the mean, is nonzero.

To calculate the test statistic, various kinds of sums of squares (SS) must be determined.
The total SS is

SSiota = XYk [24.2.15]

where the ¥, refers to summing over all i, j and k. Of course, if the model is fitted to data
transformed by a Box-Cox transformation, the SS in [24.2.15] and elsewhere are calculated for
the transformed data. The total corrected SS is given by

SSictal corected = X0k = 7 [24.2.16]

where y is the overall mean of the y;;. To calculate the SS of the residuals or the errors, one
uses

88res = X Wit =~ Vi) [24.2.17]
where yj; is the predicted value of y;; using the fitted regression model in [24.2.9]. The follow-
ing identity can be used to ascertain the SS for the mean.

ssmean = sslotal - SStolal corrected [24-2-18]

Finally, the SS for the regression is given by the identity
Ssreg = SStotal - SSmean - SSres [24.2.19]

To determine the mean square (MS) for a given SS, one divides the SS by the degrees of
freedom (DF). The number of degrees of freedom for the regression, denoted by DF,,,, is the

total number of y;, o;, ¥;; and B parameters in [24.2.9] which are not restricted to be zero. If, for
instance, n;; 2 1 for all i and j, there are

1+(n-D+6-D+(n-Ds-D+1=ns+1

degrees of freedom which are due to the mean, ;’s, &;’s, 7»,-]-’5, and P parameters, respectively.

The number of degrees of freedom for the mean correction is simply one while the DF for the
SS,.s iS

DF, 1. [24.2.20]

res

=n-D

reg —

The MS’s for the regression and residuals are given by

5S,eg
MS,., = B—F:: [24.2.21]
and
SS
MS,,, = DFA , [24.2.22]
res

respectively.
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The test statistic is given by

g [24.2.23]

which follows a F distribution with DF,,, and DF,,; degrees of freedom. After calculating the

test statistic, one can easily determine the SL in order to ascertain whether or not the null
hypothesis should be rejected. For this test, it is assumed that the residuals are normally
independently distributed with a mean of zero and a constant variance.

Comparing Other Alternative Models: The ANOVA for the regression compares the simplest
possible regression model, for which there is only a mean level, to the full model (FM). In gen-
eral, one may wish to know whether or not a reduced version of the FM, denoted by RM for
reduced model, can describe a data set statistically as well as the more complex FM which con-
tains all of the parameters of the simpler RM. The null hypothesis is that the parameters in the
FM which are not contained in the RM are all zero. The alternative hypothesis is that at least
one of these parameters is nonzero. If, for example, the null hypothesis were accepted based
upon the SL of the test statistic, the RM would adequately model the data and the FM would not
be required.

Let yj; and y*;; be the values predicted in the regression equations for the FM and RM
models, respectively. The SS of the residuals or errors for the FM and RM are given by
58,es(FM) = T 0 = V) [24.2.24]
and

58,65 (RM) = Ty — y*5)% [24.2.25]

respectively. The test statistic is then written as

£ = 155es(RM) = S5, FM)VIDF 5 RM) ~ DF (FM)] 024226]
SS,..(FM)/DF, ., (FM)

where DF, . (FM) and DF,,,(RM) are the numbers of degrees of freedom for the FM and RM,

respectively, which are calculated using [24.2.20]. The test statistic in [24.2.26] follows an F
distribution with [DF,,(RM)-DF,,(FM)] and DF,,,(FM) degrees of freedom. To determine

whether or not the null hypothesis should be accepted, the SL for the test statistic can be calcu-
lated.

Test for Depth Effect: One may wish to test the hypothesis that an estimated parameter in a fit-
ted regression model is equal to a given constant. If the estimated parameter is [3,-, one may wish

to test the null hypothesis
Hy: B; =B}

where B,-o is a constant selected by the investigator. The alternative hypothesis is
Hy: ;2B

The test statistic is
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B.-p’
SE

where ¢ follows a student’s ¢ distribution on DF,, degrees of freedom calculated using
[24.2.19], and SE is the standard error of estimation for B,-. After calculating the SL for the
statistic in [24.2.26], one can decide whether or not to accept the null hypothesis.

Estimating Monthly Means: After fitting the regression model in [24.2.9] to a given data set,
one can obtain estimates for the average monthly values for those months for which at least
some measurements were taken. When the data are transformed using the Box-Cox transforma-
tion in [24.2.10], the average monthly values are first calculated for the transformed domain.
Letting \;,-j stand for the estimate of the average monthly value in year i and month j, then

t= [24.2.27]

va. = ﬁ + ﬁ‘. + (ij +9; [24.2.28]
where the definitions for the estimated parameters on the right hand side are given in [24.2.9].

The 95% confidence interval for \Al,-j is \3,-]- 1+ 1.96SE. To determine the minimum mean square

error (MMSE) estimates of the average monthly means in the untransformed domain, one can
use the formulae given by Granger and Newbold (1976) which are discussed in Section 8.2.7.
For instance, when A =0 in [24.2.9], the MMSE estimate is

\;,-,- = exp[Gij + %var(@,-j)] . [24.2.29]

To calculate the 95% confidence limits of \;,-j, one can replace \7,-j by \7,)« + 1.96SE and
V;j — 1.96SE in order to determine the upper and lower limits, respectively, for the transformed
domain.

Estimating Annual Means: By letting G,- represent the estimate of the average annual value for

year i in the transformed domain, the annual mean for year i can be calculated using

A s A
V= l)_“.v,-,- [24.2.30]
sz
Jj=1
where s is the number of seasons for which the v;; are estimated. The variance of \3,- is deter-
mined as
var(v;) = izzzcov(v,.jv,.,,) [24.2.31]
" joa
The 95% confidence limits for v; are v; + 1.96SE where SE is the square root of the variance in
[24.2.28]. To determine the MMSE estimate, \7;, of the average annual value for year i in the

untransformed domain one can employ the formulae of Granger and Newbold (1976). The 95%
confidence limits for v; are found by taking the inverse Box-Cox transformation of the 95% con-

fidence limits in the transformed domain. To determine visually if there is a long term trend,
one can plot a RLWRS or other kind of smoothed curve through the estimated annual time
series. One could also produce a separate graph of the Tukey smooth for the annual values
described in Section 22.3.5.
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24.3 TREND ANALYSIS METHODOLOGY FOR WATER QUALITY TIME SERIES
MEASURED IN RIVERS

24.3.1 Introduction

The collection and analysis of water quality time series are of great import in many regions
throughout the world, especially in highly populated and industrialized areas. For example, the
Ministry of the Environment within the Canadian province of Ontario operates a spatially and
temporally extensive sampling network called the Provincial Water Quality Monitoring Network
or simply PWQMN. Approximately one sample per month is collected at over 700 sites, which
may be analyzed for up to 60 water quality indicator parameters. In fact, the PWQMN is one of
the world’s largest water quality sampling networks falling under the umbrella of a single politi-
cal jurisdiction. Large sums of money are being spent on collecting substantial data through the
PWQMN. To make this data meaningful and useful, they must be properly summarized and
analyzed. The Ministry of the Environment, as well as many other organizations, are especially
interested in detecting and modelling historical trends in PWQMN data. Trend analyses are
required for alerting authorities about water quality degradation so that appropriate corrective
action can be taken and for evaluating the performance of pollution abatement schemes.

The purpose of this section is to present a general methodology for analyzing trends in
water quality time series measured in rivers. When checking for the presence of a trend in a
water quality time series, the methodology properly takes into account the effects of riverflows
and seasonality upon the water quality observations. Furthermore, the methodology can be used
with messy water quality data (see Section 23.1) which may possess undesirable characteristics
such as having outliers, non-normality and missing values.

To design the steps presented in the methodology, the authors examined a wide variety of
PWQMN water quality time series measured in the Saugeen and Grand Rivers in Southern
Ontario, Canada. Based upon the many types of trend analysis problems that arose when analyz-
ing the data, a systematic procedure for studying the time series was developed. Because unfore-
seen problems were discovered as different kinds of water quality data were analyzed, the trend
analysis algorithm was built and improved in an iterative fashion. The final product is a
comprehensive and flexible trend analysis methodology for carrying out systematic trend studies
of water quality time series.

Within the steps in the methodology, specific graphical, parametric and nonparametric
techniques described in Part X of this book are utilized. Although the authors found these tech-
niques to be sufficient for handling all the trend analysis problems they encountered, practition-
ers and researchers may wish to employ additional specific methods at certain steps in the algo-
rithm. For instance, when looking for basic characteristics of the data by examining graphs of
the data, some people may wish to use graphical methods beyond those presented in Section
22.3. Whatever the case, the main steps in the algorithm will remain the same.

In the next section, the steps in the trend analysis methodology are presented and practical
applications are employed to demonstrate how the methodology can easily be applied in practice.
Although the authors actually applied their methodology to eight PWQMN water quality series
plus one waterflow sequence measured at two locations in Southern Ontario, only some
representative results are given to explain how the methodology works. Finally, an earlier ver-
sion of research appearing in this section is provided by McLeod et al. (1991).
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24.3.2 Methodology Description

Overview

The methodology given below is valid for use with messy water quality series measured in
rivers. In the description, it is assumed that one is ultimately wishing to detect trends at the
monthly level. Nonetheless, the methodology can be easily converted for use with other sea-
sonal levels such as quarter-yearly or weekly. To explain the procedure, the NO, and riverflow

data for the Saugeen River at Burgoyne, Ontario, Canada, are employed.

The overall trend analysis study is divided into the two main categories of Graphical Stu-
dies and Trend Tests. These two groupings reflect the idea of exploratory and confirmatory data
analyses referred to in Sections 1.2.4, 22.1, 23.1 and 24.1. Within the category of Graphical Stu-
dies, the following three versions of the water quality series are examined first for trends:

1. Raw or unadjusted water quality time series: The given series may be transformed by the
Box-Cox transformation in [3.4.30] or [24.2.10] in an attempt to make a non-normal time
series become approximately normally distributed (see discussion in Section 3.4.5 and
24.2.3).

2.  Flow-adjusted water quality time series: This is the time series for which effects of flow
upon water quality are removed, as explained in detail below. As mentioned in Section
24.1 just after [24.1.1], in certain situations one may wish to use a covariate series other
than flow to adjust the water quality series. If this is the case, replace the word flow by the
name of the covariate in the general methodology described in this section.

3.  Detrended-flow-adjusted water quality time series: After removing trends from the water
quantity time series, the influences of flow upon the water quality time series are elim-
inated in order to produce the detrended-flow-adjusted water data.

Following this, the three average monthly versions of the above three kinds of data are studied
using graphical procedures. As noted at the start of this section, one can easily use a seasonal
time scale other than monthly. If this is required, replace the word monthly by the designated
seasonal category in the description of the methodology.

4.  Mean monthly unadjusted water quality time series.
5. Mean monthly flow-adjusted water quality time series.
6.  Mean monthly detrended-flow-adjusted water quality time series.

The manner in which these series are calculated is explained below. The main graphical pro-
cedure used to examine the six types of water quality data are a trace or time series plot (Section
22.3.2) along with a smoothed curve (called RLWRS in Section 24.2.2) through the plotted data.
Finally, under the category of trend tests, the above three types of monthly water quality data are
analyzed using trend tests from Chapter 23. Of particular importance is the Spearman partial
rank correlation test described in Section 23.3.6 which works extremely well with seasonal data.

The overall trend analysis methodology is summarized in Table 24.3.1. Specific details are
presented in Table 24.3.2 for carrying out the Spearman partial rank correlation mentioned oppo-
site d in Table 24.3.1. The steps in the methodology are now explained in detail using the total
nitrate (i.e. NO,) data measured in the Saugeen River at Burgoyne.
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Table 24.3.1. Trend analysis methodology for use with water
quality time series measured in rivers.

TREND ANALYSIS METHODOLOGY
GRAPHICAL TREND STUDIES

Examine traces along with smoothed curves (i.e. RLWRS’s) for the fol-
lowing data sets:

Given Data:

1. Unadjusted water quality time series.

2. Flow-adjusted water quality time series.

3. Detrended-flow-adjusted water quality time series.

Mean Monthly Data:

4. Mean monthly unadjusted water quality time series.

5. Mean monthly flow-adjusted water quality time series.

6. Mean monthly detrended-flow-adjusted water quality time series.

TREND TESTS

For the three mean monthly data sets (i.e. 4, 5 and 6), the following trend
tests are carried out:

a. Mann-Kendall (Section 23.3.2).

b. Spearman’s rho (Section 23.3.6).

c. Seasonal Mann-Kendall (Section 23.3.2).
d

Spearman partial rank correlation when partialling out seasonality
(Section 23.3.6).
To test for seasonality, the Kruskal-Wallis test (Appendix A23.3) and
box and whisker graphs (Section 22.3.3) can be used. The tests under ¢
and d are designed for use with seasonal data.
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Table 24.3.2. Algorithm for the Spearman partial rank
correlation trend test when partialling out seasonality.

ALGORITHM

1) X, is one of the three monthly series given under 4, 5 and 6 in Table 24.3.1.
2) Test for the presence of seasonality in X, using

a. Box and whisker graphs (Section 22.3.3).
b. Kruskall-Wallis test (Appendix A23.3).
3) If seasonality is not found, use the ordinary Mann-Kendall trend test (Section 23.3.2).

4) When seasonality is present, carry out the Spearman partial rank correlation test of
Section 23.3.6 where:

a. X, is the series from 1).
b. Y, =t where is the time of the observation.

c. Z, is obtained from the ranking of the seasonal effects in the Kruskall-Wallis test
(Appendix A23.3).

Graphical Trend Studies

Given Data:

1. Unadjusted water quality time series: As indicated in Table 24.3.1, the first step is to exam-
ine a trace along with a RLWRS of the given unadjusted data or the data transformed by a Box-
Cox transformation in [3.4.30] or [24.2.10]. A common transformation is to take natural loga-
rithms of the data (i.e. A =0 in [3.4.30]). A graph of the logarithmic total nitrates (NO,) for the
Saugeen River is displayed in Figure 24.2.1. One can easily see the increasing trend over time
traced by the RLWRS. Additionally, the results of the Mann-Kendall test at the bottom of the
graph also confirm the presence of a trend. However, the SL may not be meaningful because of
the high degree of correlation in the data caused by frequent sampling at particular time periods,
especially from 1976 to 1978. Moreover, there is also strong seasonality in this data which the
Mann-Kendall test cannot properly take into account.

2. Flow-adjusted water quality time series: The question arises as to whether or not a given
water quality variable is dependent upon flow. Figure 24.2.2 displays a scatter plot of the loga-
rithmic NO,, series against logarithmic flows. Each flow value is plotted for exactly the same

time at which the corresponding NO, observation is made. As shown by the RLWRS, there is
an obvious dependency between NO, and flow. The value of the Kendall rank correlation test
statistic (Appendix A23.1) listed at the bottom of Figure 24.2.2 for the data plotted in this figure,
is also significantly large and, therefore, confirms this finding.

Each sample flow value in Figure 24.2.2 is the average daily value for the day on which the
corresponding NO, value was collected. For relatively large rivers such as the Saugeen and
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Grand, the discrepancy between instantaneous flow for the exact point in time at which the water
quality sample is collected and the mean daily flow, is generally negligible.

Because the water quality values and flows are dependent, one would like to see if a trend
is present in the logarithmic water quality time series after the flow effects are removed. To
accomplish this, one can examine the residuals of the RLWRS in Figure 24.2.2 . To calculate
the residual for each plotted point in Figure 24.2.2, one subtracts the value of the RLWRS at that
point. For convenience, a RLWRS using RS50 is used when calculating the residuals. This
series is called the flow-adjusted water quality time series. Other approaches for obtaining
flow-adjusted water quality time series are discussed in Section 23.3.5.
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Figure 24.3.1. Graph of the flow-adjusted NO,
series against time for the Saugeen River.
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Figure 24.3.1 presents a trace of the flow-adjusted NO, data for the Saugeen River. Notice

that even after flow effects are removed, the RLWRS still shows an obvious upward trend over
time.

3. Detrended-flow-adjusted water quality time series: If a trend were present in the flow or
covariate series, one would want to remove this trend and then subsequently adjust the water
quality time series for detrended flow. In this step, a flexible procedure for obtaining a
detrended-flow-adjusted water quality series is described.

Suppose, for now, that the NO, series really does not have a trend. Flows may cause a
trend to appear in the series due to one or both of the following two reasons. First, there may be
a real trend in the flows which also causes a trend in the NO, series. Second, the sampling bias
of the flows may cause a trend. Recall that in Figure 24.2.2, each flow is plotted for exactly the
same time as the corresponding NO, observation so that many of the flow observations are not
used when producing the flow-adjusted NO, series. When the complete series of logarithmic
Saugeen flows are plotted against time, no trend is present. However, when the logarithmic
flows are plotted against time for exactly the same times at which the NO,, values are measured,
Figure 24.3.2 shows that the sampling bias has created an obvious trend. To remove the trend

from the logarithmic flow series in Figure 24.3.2, one can subtract the RLWRS value from the
logarithmic flow series at each time point for which an NO, observation is available. This resi-

dual series is determined for a RLWRS using RS50 to obtain the detrended logarithmic flow
series.

Figure 24.3.3 displays a scatter plot of the logarithmic NO, series against the detrended
logarithmic flows. Notice that there is still a dependence between the two series even after the

trend due to sampling bias is removed from the logarithmic flows. To obtain the detrended-
flow-adjusted NO, series, one uses the residuals of the RLWRS for the case when RS50 is used

to determine the smooth.

For the Saugeen River data, the complete flow record possesses no trend. Because of this,
one can state that the trend in the partial flow record plotted in Figure 24.3.2 is due to sampling
bias. If the complete record of flows contained a trend, then a trend in the partial flow record
(i.e. those flows occurring on the same days at which the water quality samples were collected)
would be due to an actual trend in the flows and perhaps also sampling bias.

Figure 24.3.4 shows a graph of the detrended-flow-adjusted data against time. Both the
RLWRS and the Mann-Kendall trend test result in this figure show that there is a trend.

Mean Monthly Data

4. Mean monthly unadjusted water quality series: To ascertain the behaviour of the NO,

series at the monthly level, one can examine graphs of the average monthly series. One should
keep in mind that the term "average" refers to calculating a mean which may be determined from
only a few observations in a given month, each of which is collected in a 10 to 15 second time
interval (see discussion on missing values in Section 24.2.1). Figure 24.3.5 shows a graph of the
logarithms of the mean monthly NO, series for the Saugeen River. The RLWRS shows that

there is an increasing trend over time. Additionally, there are some months for which no obser-
vations are available.
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Figure 24.3.2. Logarithmic Saugeen flows against time plotted at exactly the same
times at which NO, observations are available.

5. Mean monthly flow-adjusted water quality time series: Except for the fact that monthly
values are used, the logarithmic mean monthly flow-adjusted NO, series is calculated in exactly

the same way as the logarithmic flow-adjusted water quality time series for the given data under
item 2. Hence, one determines the residuals of the RLWRS using RS50 fitted to a scatter plot of
logarithmic mean monthly NO, series against the logarithmic mean monthly flows. Figure
24.3.6 displays the graph of the logarithmic mean monthly flow-adjusted water quality series
against time, for which there is a striking linear upward trend.

6. Mean monthly detrended-flow-adjusted water quality time series: To eliminate the
effects of trends and/or sampling bias in the monthly flows upon the average monthly NO,
series, one can calculate the average monthly detrended-flow-adjusted data. The same procedure
followed for determining the flows under item 3 for the given data is also employed here. First,
one fits a RLWRS using RS50 to a graph of the logarithmic mean monthly flows against time
where the flow observations are only used for months for which NO, values are available. The
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Figure 24.3.3. Scatter plot of the logarithmic NO, data against detrended
logarithmic flows for the Saugeen River.

residuals of the smooth form the logarithmic mean monthly detrended flow series. Second, a
RLWRS smooth using RS50 is fitted to a scatter plot of the logarithmic mean monthly NO,

series against the logarithmic mean monthly detrended flow series. The residuals of this smooth
constitute the logarithmic average monthly detrended-flow-adjusted NO, series.

Figure 24.3.7 displays a plot of the logarithmic average monthly detrended-flow-adjusted
time series against time. The RLWRS clearly reveals the increasing trend present in this data.

Trend Tests

The four trend tests listed in the bottom half of Table 24.3.1 are applied separately to each
of the three types of mean monthly series. For all three series, the four trend tests give exactly
the same results. Because of this, representative findings are presented for only one of the three
monthly series for explanation purposes in this section.
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Figure 24.3.4. Graph of detrended-flow-adjusted logarithmic
NO, observations against time for the Saugeen River.

Consider the fifth series which is the logarithmic mean monthly flow-adjusted NO, series

for the Saugeen River. Table 24.3.3 presents the results for the four trend tests for this series
while Table 24.3.4 gives the average rank value and rank found for each of the twelve seasons
used in the Kruskal-Wallis seasonality test. Finally, Figure 24.3.8 displays the box and whisker
graph for each of the 12 months for the series being considered. The reader can refer to Section
23.3 for descriptions of the statistical trend tests listed in Table 24.3.3, Appendix A23.3 for a
presentation of the Kruskal-Wallis test used in Table 24.3.4, and to Section 22.3.3 for an expla-
nation of box and whisker graphs.

Each of the four trend tests findings in Table 24.3.3 demonstrate that there is a significant
trend. In particular, notice that the significance levels are very close to zero for the Mann-
Kendall (Section 23.3.2), Spearman’s rho (Section 23.3.6), seasonal Mann-Kendall (Section
23.3.2) and the Spearman partial rank correlation (Section 23.3.6) trend tests.



Regression Analysis 965

300 1 1 1 1 1 ] TN 1 1 1 L1 !

6;1.75- -
=z
+
+ 4 +
>= 'S
7] + + 4 ¢+
I 0.50—* -+ + # * +*" ++ *** 'g" - i‘t‘ y_
'__ 4+ 4+ + ‘# ' ¥ 3 ¥
p + + re + 4, + .
O + .s- ++ hd + ++ t # +
-0754 % .+ + + ¥ + B
NIRRT +
Y |
T 1 ! L | LI | LI 1

76 78 8 8 84 8 8 90
YEAR

Figure 24.3.5. Graph of the logarithmic average monthly series
against time for the Saugeen River.

The test statistic in Table 24.3.4 for the Kruskall-Wallis test has a value of 47.519 and a
significance level close to zero. Hence, there is seasonality present in the series. One can also
see the cyclic pattern caused by seasonality in the box and whisker graphs for this NO, series in

Figure 24.3.8. Notice, in particular how the median levels change from month to month.

Figure 24.3.8 is an example of what is called a notched box-and-whisker graph in Section
22.3.3. The notches on both sides of a box can be used to ascertain if the median in one month is
significantly different from another. In particular, when comparing two months, if the median
bar in one month overlaps with the notch in the other, and vice versa, then one can argue that the
medians for these two months are not significantly different from one another at the 5% signifi-
cance level. When there are not many data points used to determine a box and whisker plot for a
given season, any peculiarities in the plot should be cautiously considered. In Figure 24.3.8, the
varying median levels across the months show that the data are seasonal. Notice also for some
months that a notch for the mean may extend above an upper hinge or below a lower hinge.
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Figure 24.3.6. Graph of the logarithmic mean monthly flow-adjusted
NO, series against time for the Saugeen River.

Because of the importance of the Spearman partial rank correlation test for detecting
trends in seasonal data, consider the results of this test in more detail. The algorithm for this test
is given in Table 24.3.2. In this case, the X, is the fifth series which is the logarithmic mean
monthly flow-adjusted NO, series for the Saugeen River. Under Step 2 of the algorithm in
Table 24.3.2, the Kruskall-Wallis test result in Table 24.3.4 as well as the box and whisker
graphs of Figure 24.3.8 demonstrate that the data are seasonal. In Table 24.3.4, the seasons are
ranked from smallest to largest according to the average rank values for the months. The
monthly medians in Figure 24.3.8 can also be compared to obtain the same rankings. Following
Step 4 of the algorithm in Table 24.3.2, one lets the Y, series in the Spearman test be time ¢ while
Z, consists of the seasonal ranks where each month across the years is always given the same
rank. By substituting into [23.3.35], one can obtain the Spearman test statistic which has a value
of 0.572. Because the SL is almost zero, there is a significant trend over time in the data when

the effects of seasonality are partialled out. Since the test statistic is positive, the trend is
increasing over time.
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Table 24.3.3. Trend test results for the logarithmic mean monthly flow-adjusted
NO, series for the Saugeen River at Burgoyne.

Trend Tests Test Statistics || Significance Levels
Mann-Kendall 0.368 0.000
Spearman’s Rho 0.542 0.000
Seasonal Mann-Kendall 314 0.000
Spearman Partial 0.572 0.000

Rank Correlation

967
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Table 24.3.4. Average ranks and ranks from the Kruskal-Wallis analyses for the
12 months of the logarithmic mean monthly flow-adjusted NO,

series for the Saugeen River at Burgoyne.

Months  Sample Sizes  Average Rank Values  Ranks

1 10 89.50 6
2 10 107.70 7
3 - 11 107.40 7
4 11 92.27 6
5 12 42.00 2
6 12 37.17 1
7 11 46.18 2
8 11 60.82 4
9 12 68.33 5
10 11 54.36 3
11 13 57.92 3
12 11 64.91 4

Test statistic = 47.519 Significance level = 0.000

24.3.3 Summary

A flexible and comprehensive trend analysis methodology is now available for carrying out
a systematic study for detecting and modelling trends in water quality series measured in rivers.
As summarized in Table 24.3.1, the two main components to the methodology are the Graphical
Trend Studies and the Trend Tests. Of particular import and usefulness for analyzing trends in
seasonal water quality data is the Spearman partial rank correlation test of Section 23.3.6. When
using this test for detecting a trend in a seasonal series for which seasonality is partialled out, the
Spearman algorithm of Table 24.3.2 can be utilized. Finally, the overall methodology contains
procedures for accounting for the effects of flow upon a given water quality variable.

At various locations in Section 24.3.2, it is noted that one could, if required, use additional
graphs and trend tests within the overall trend analysis methodology of Table 24.3.1. For
instance, one may wish to employ the adjusted variable Kendall trend test proposed by Alley
(1988). However, the authors found that the specific exploratory and confirmatory techniques
presented in Part X, readily handled all the situations that arose when examining the water qual-
ity series from the Saugeen and Grand Rivers in Southern Ontario.

Another approach to the trend analysis would be to add a deseasonalization step either
before or after Step 2 in Table 24.3.1. However, this procedure is not followed here for a
number of reasons. First, adjusting the water quality series for flow or some other covariate
series may also remove some seasonality. Secondly, an efficient procedure for removing
seasonality from a wide variety of messy water quality time series may be very difficult to
design. Finally, when seasonality is present in the data sets numbered 4 to 6, a seasonal trend
test can be used for checking for the presence of trends in seasonal data (trend tests under ¢ and d
in Table 24.3.1).
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As demonstrated by the application to the total nitrates data for the Saugeen River, the
methodology of Section 24.3.2 works well in practice. In Table 24.3.5, a summary of the find-
ings for the NO, data is presented. For both the graphical trend studies and the trend tests,

trends are always detected in the versions of the NO, series that are examined.

Table 24.3.5. Summary of the trend analysis results for the total nitrates data
measured in the Saugeen River at Burgoyne.

Data Transformation: Logarithmic
Seasonality: Very strong

Flow-Concentration Relationship: Positive relationship at low flow with relatively con-
stant relationship at higher flow.

Outliers: A few (see Figure 24.2.1). Keep in mind that all techniques used in Table 24.3.1
are robust to outliers.

Trend: All tests indicate a significant trend. Examination of the trace plots suggest that it
is largely due to a difference in levels in the data from 1975-1978 and 1982-1989.

Other: Very little data over the period 1979-1981.

As reported elsewhere by McLeod et al. (1991), the authors have used the general trend
analysis methodology of Section 24.3.2 with many other water quality time series. In particular,
they applied the methodology to the eight PWQMN water quality series (mg/l) listed in Table
24.3.6, as well as riverflow series (m’/s), for the Saugeen River at Burgoyne and also the Grand
River at Dunnville, Ontario. The data at these two sites were selected for study because flow
biased monitoring was used. This means that more samples were collected at high flows for the
purpose of mass-discharge estimation. Hence, the data collected at these high frequency moni-
toring sites should contain greater relevant information and their analyses should provide insight
into how to analyze both highly monitored and less frequently monitored sites. Representative
trend analysis results for the NO, series for the Saugeen River are employed in Section 24.3.2

for explaining how to apply the methodology.

24.4 CONCLUSIONS

Regression analysis provides a set of flexible statistical tools which can be useful in
environmental impact assessment studies as exploratory and confirmatory data analysis methods.
A particularly flexible smoothing technique which can be employed as an exploratory data
analysis method, for tracing trends in a time series, is the RLWRS of Section 24.2.2. Lewis and
Stevens (1991) provide another informative regression approach for drawing a trend curve
through a time series. As explained in Section 24.3.2, the RLWRS can also be utilized for
removing trends from a series as well as dependent relationships between two series. In Section
24.2.3, a specific case study is used for explaining how a regression analysis model can be
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Table 24.3.6. Water quality variables measured in the Saugeen River at
Burgoyne and the Grand River at Dunnville, Ontario, Canada.

Water Quality Variables
Ammonia Nitrogen
Total Kjeldahl Nitrogen
Total Nitrates (NO,)
Filtered Reactive Phosphorus
Total Phosphorus
Suspended Solids
Alkalinity
Conductivity

designed as a confirmatory data analysis technique.

A flexible and comprehensive trend analysis methodology is now available for detecting
trends in water quality data measured in rivers. As described in Section 24.3.2, the trend
analysis procedure consists of the two main stages of graphical trend studies and trend tests.
Specific graphical techniques and statistical trend tests that can be employed in the two main
stages are described in detail in Sections 22.3 and Chapter 23, respectively. A particularly
powerful trend test for use with seasonal water quality data is the Spearman partial rank correla-
tion test given in Section 23.3.6. Table 24.3.2 presents an algorithm for applying the Spearman
partial rank correlation trend test when partialling out seasonality. Application of the trend
analysis methodology to water quality series measured in the Saugeen and Grand Rivers demon-
strates that the procedure works well in practice.

The overall trend analysis methodology outlined in Table 24.3.1 contains many original
developments in environmental impact assessment. Firstly, the RLWRS of Section 24.2.2 is
used for calculating flow-adjusted and detrended-flow-adjusted water quality series. Secondly,
by employing the detrended-flow-adjusted water quality procedure one can eliminate sampling
bias when the entire riverflow series does not possess a trend. As a third contribution, the
methodology suggests testing for the presence of seasonality before applying a seasonal trend
test such as the seasonal Mann-Kendall test of Section 23.3.2. Simulation studies show that
when the data are not seasonal, the seasonal Mann-Kendall test is not as powerful as the Mann-
Kendall trend test. Fourthly, the Spearman partial rank correlation test (Section 23.3.6) when
partialling out seasonality provides a powerful test for use with seasonal water quality time
series. As noted in Section 23.3.6, the Kendall partial rank correlation test cannot be used for
this purpose since the distribution of the test statistic is unknown and probably analytically
intractable.
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Chapter 24

PROBLEMS

Beyond the literature cited in this chapter, locate three other references in which
regression analysis is applied to water resources or environmental engineering prob-
lems. Briefly explain the purpose of and approach for using regression analysis in
each of the papers. Moreover, outline the benefits and drawbacks of employing
regression analysis for each of the case studies and suggest how improvements
could be made.

A general approach for trend analysis is given in [24.1.1]. Find a paper in the
environmental engineering literature not cited in Chapter 24 in which regression
analysis is employed for describing the situation in [24.1.1]. Summarize how the
regression analysis is used and explain the advantages and disadvantages of employ-
ing the regression procedure as given by the authors of the paper.

Alley (1988) and also Smith and Rose (1991) describe two basic ways in which
regression analysis can be employed in trend assessment. Explain how each of these
procedures is carried out and compare their relative strengths and weaknesses.

Many authors, including Pearson (1897), Huff (1954), Good (1959, 1978), Benson
(1965), Wong (1979), Kenny (1982), Wong and DeCoursey (1986), Kite (1989), and
Kronmal (1993), discuss statistical fallacies including those arising from the use and
abuse of regression analysis. By referring to appropriate literature, clearly explain
how spurious correlations and other problems can take place when regression
analysis is improperly utilized and how these problems can be overcome.

Beauchamp et al. (1989) compare regression and time series methods for synthesiz-
ing missing streamflow records. After summarizing how they carry out their study,
comment upon their findings.

Outline how the approach of Esterby and El-Shaarawi (1981a,b) and El-Shaarawi
and Esterby (1982) works for detecting a point of change in a regression model and
estimating the magnitude of the change.

Concepts from fuzzy set theory have now been incorporated into regression
analysis. By referring to the appropriate literature, outline the theory and practice of
fuzzy regression analysis and discuss the dividends that can be gained by employing
this approach. Describe a hydrological application of fuzzy regression analysis,
including a discussion of the insights that are found about the problem being stu-
died.

As pointed out in Section 24.2.2, Cleveland et al. (1990) have developed a
seasonal-trend decomposition procedure based upon the RLWRS (Cleveland, 1979).
Outline the main steps in this technique and discuss its advantages and drawbacks.
Apply the procedure to a seasonal time series which is of interest to you and be sure
to mention any insights which you gain.

Select two nonseasonal time series between which you feel a meaningful relation-

ship may exist. Plot the RLWRS of Section 24.2.2 on a scatter plot of these two

series. Experiment with various values of the smoothing variable, f, where
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24.10
24.11

24.12
24.13

24.14

24.15

24.16

24.17

24.18

24.19

0 < f £ 1. Discuss the insights that are provided by the graph.
Carry out the instructions of Problem 24.9 for two seasonal time series.

Choose a nonseasonal time series that you think may contain a trend. On a time
series plot of the series against time, draw the RLWRS. Comment upon the
behaviour of any trend that you find in your data set.

Execute the instructions of Problem 24.11 for the case of a seasonal time series.

The sample autocorrelation function (ACF), ri, in [2.5.9] provides a means for

quantifying the linear dependence between values in a time series separated by &
time lags. To visualize dependence within a single time series, z,, one can draw a

scatter plot of z, against z,_, along with a RLWRS. Select a nonseasonal time series
which is of interest to you and produce a scatter plot and RLWRS of z, versus z,_;

for k=1,2,...,7. Comment upon the type of dependence that you can visually
detect in each of the scatter plots. Also, calculate r; in [2.59] for k=1,2,...,7,

and compare these results to the visual findings.

In Section 24.2.3, a specific regression model is designed for modelling water qual-
ity time series measured in a lake. Locate a paper in the environmental engineering
literature in which the authors employ regression analysis. By using equations when
necessary, clearly explain how the authors design, calibrate and check the residual
assumptions of their regression model. Describe how the regression analysis
assisted the authors in reaching a better understanding about their problem and how
their study could be improved.

For a set of time series that is of direct interest to you and for which it would be
appropriate to apply regression analysis, explain how you would design a regression
model for studying meaningful relationships among the series. Apply the most
appropriate regression model to the data set and check that the residual assumptions
are satisfied. Explain the advantages and drawbacks of your approach as well as any
surprising results that you uncovered.

In Section 24.3.2, the Spearman partial rank correlation test defined in Section
23.3.6 is employed for checking for trends after removing seasonality. Using an
outline similar to the one given in Table 24.3.2, explain how this test can be utilized
for taking into account correlation when testing for the presence of a trend in a time
series.

Table 24.3.1 outlines the trend analysis methodology for use with water quality time
series measured in rivers. Beyond the techniques referred to in Section 24.3.2, men-
tion other methods that could be employed with this methodology.

Select a seasonal water quality time series as well as an accompanying riverflow
series that are of interest to you. Carry out the methodology of Section 24.2.2 as
well as Section 24.3.2 to check for the presence of trends. Clearly explain all of
your steps and comment upon your findings.

In the trend assessment methodology of Section 24.3.2, it is assumed that monthly
data is employed in steps 4 to 6 in Table 24.3.1. Carry out the instructions of Prob-
lem 24.18 for the case of quarter-yearly data.
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24.20 In Steps 4 to 6 in the trend assessment methodology summarized in Table 24.3.1, it
is assumed that monthly data are calculated. Execute the instructions of Problem
24.18 for the situation where weekly data are used in these steps.
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