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CHAPTER 3
STATIONARY NONSEASONAL MODELS

3.1 INTRODUCTION

Certain types of environmental records are strictly nonseasonal while in cther situations it
may be required to consider a time series of average annual values even if seasonal data were
available. For example, tree ring indices and mud varve thicknesses are usually obtainable only
in the form of yearly records, whereas mean annual riverflow, temperature and precipitation data
can be calculated from average weekly records. Whatever the case, it is often necessary to deal
with nonseasonal natural time series.

The yearly data to be analyzed may be approximately stationary or perhaps may possess
statistical properties which change over time. As discussed in Section 2.4.2, it is often reason-
able to assume that hydrologic and geophysical data having a moderate time span (usually a few
hundred years but perhaps more than 1000 years for certain time series) are more or less station-
ary. On the other hand, an annual water demand series for a large city or the yearly economic
growth rate of an irrigated farming region, may constitute time series which are nonstationary
even over a very short time interval. The present chapter deals with the theory of stationary
linear nonseasonal models while Chapter 4 is concerned with nonstationary linear nonseasonal
models which can be used for modelling certain types of nonstationary time series.

Nonseasonal models can be fit to yearly records for use in various types of applications.
For instance, when studying changes in the climate over a specified time span, it may be advan-
tageous to analyze annual time series. Although average annual hydrological data are rarely
available for periods greater than two hundred years, longer time series, which reflect past
climatic conditions, can be obtained. Some time series records of tree ring indices for the
Bristlecone pine in California are longer than 5000 years in length and tree ring data sets for
Douglas fir, Ponderosa pine, Jeffrey pine and other types of evergreens are available for periods
of time which are often much longer than 500 years (Stokes et al., 1973).

Hurst (1951, 1956) studied the statistical properties of 690 annual time series when he was
examining the long-term storage requirements on the Nile River. This research created the need
for a stochastic model which could statistically account for what is called the Hurst phenomenon.
Although the research of Hurst and accompanying academic controversies are assessed in detail
in Chapter 10, it should be pointed out here that the linear stationary models of this chapter do in
fact statistically explain the Hurst phenomenon (McLeod and Hipel, 1978; Hipel and McLeod,
1978). Consequently, stationary linear nonseasonal models are of great importance in hydrology
and as emphasized in Chapter 10, should be employed in preference to fractional Gaussian noise
(FGN) and other related models. Moreover, within Section 3.6 it is clearly demonstrated that
there is sound physical justification for fitting the models of this chapter to yearly riverflow time
series.

The current chapter deals with the mathematical definitions and properties of various types
of stationary linear nonseasonal processes. The processes which are discussed are the AR
(autoregressive), MA (moving average) and ARMA (autoregressive-moving average) processes.
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For each of the foregoing processes, a simple process is first considered and this is followed by
an extension to the general case. Important mathematical properties of the various processes are
usually explained by examining a specific case. Furthermore, it is clearly pointed out where the
mathematical properties of the processes can be useful for designing a model to fit to a given
data set. The procedure of constructing a model by following the identification, estimation and
diagnostic check system of model development, is discussed in Chapters S to 7, respectively, of
Part III.

The importance of abiding by key modelling principles (see Sections 1.3 and 5.2.4 for gen-
eral discussions) is addressed at certain locations within this chapter. For example, in order to
make the model as simple or parsimonious as possible, some of the model parameters can be
constrained to zero (see Section 3.4.4). To satisfy certain underlying modelling assumptions
regarding the model residuals, a power transformation such as a Box-Cox transformation (Box
and Cox, 1964) can be incorporated into the model (see Section 3.4.5).

The mathematical foundations of linear nonseasonal models form the basic building blocks
for the more complex nonstationary, long memory, seasonal, transfer function-noise, interven-
tion and multivariate models which are dealt with in Chapters 4 and 11, and Parts VI to IX,
respectively, later in the book. Consequently, a sound understanding of the models presented in
this chapter is essential in order to be able to fully appreciate the flexibility and limitations of the
rich array of ARMA-based models which are available for use by engineers. In addition, the
basic notation which is developed for the nonseasonal models is simply extended for use with
the other classes of models described in the book.

3.2 AUTOREGRESSIVE PROCESSES

The AR model of this section describes how an observation directly depends upon one or
more previous measurements plus a white noise term. This form of a time series model is intui-
tively appealing and has been widely applied to data sets in many different fields. After describ-
ing the simplest form of the AR model, the general AR model is defined. Additionally, the
theoretical ACF (autocorrelation function) of an AR model is derived and the related Yule-
Walker equations are formulated. These equations can be used for obtaining the partial auto-
correlation function (PACF) and determining efficient moment estimates for the parameters of
an AR model.

3.2.1 Markov Process
When an observation, z,, measured at time t depends only upon the time series value at
time t-1 plus a random shock, a,, the process describing this relationship is called an AR process
of order 1 and is denoted as AR(1). The AR(1) process is commonly called a Markov process
and is written mathematically as
z = U =01(z W) +a (3.2.1]

where U is the mean level of the process, ¢, is the nonseasonal AR parameter, g, is the white

noise term at time t that is identically independently distributed (IID ) with a mean of 0 and vari-
ance of 62 [i.. IID (0,62)].
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The a, sequence is referred to as random shocks, disturbances, innovations or white noise

terms. After a model has been fit to a given time series and estimates have been obtained for the
innovations, the estimates are called estimated innovations or residuals.

The most important assumption for the random shocks is that they are independently distri-
buted. This infers that the g,’s are uncorrelated and must satisfy

o7, k=0
Elaa,_ )= [3.2.2]
0, k=0

The a,’s follow the same distribution and sometimes it is convenient to assume that the random
(]

shocks are normally distributed. This may be appropriate for estimation purposes, forecasting
and simulation. In addition, if normal random variables are uncorrelated then they are also
independent.

The difference equation in [3.2.1] can be written more economically by introducing the
backward shift operator B which is defined by

Bz, =2,

and
B"z, =z,

where k is a positive integer. By using the B operator, the Markov process in [3.2.1] is
Z—n=0,(Bz, - W) +gq

or
z—n- 0Bz -p) =g,

By treating B as an algebraic operator and factoring, the above equation becomes
(1-¢,B)z-W=q

where Bl = | since the mean level is a constant at all times. The previous equation can also be
given as

¢B)(z - =g [3.2.3]

where ¢(B) = 1 — ¢,B is the nonseasonal AR operator or polynomial of order one.

3.22 Autoregressive Process of Order p
The Markov process with the single AR parameter, ¢,, is a special case of an AR process of
order p [i.e. AR(p)] which is given as

Z=Rh=01G 1~ W+ 02— W+ - + 9,2, -1 +a [3.24]

where ¢, is the ith nonseasonal AR parameter. By introducing the B operator, [3.2.4] can
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equivalently be written as

(1-0,B B>~ -+ = 4,B)) - =4,
or

¢B)z - W) =4 [3.2.5]
where ¢(B)=1-¢,B - ¢282 - - ¢,,BP is the nonseasonal AR operator of order p.
Stationarity

The equation ¢(B) =0 is referred to as the characteristic equation for the process. It can be
shown (Box and Jenkins, 1976, Ch. 3; Pagano, 1973) that a necessary and sufficient condition
for the process to have stationarity is that the roots of the characteristic equation must fall out-
side the unit circle. The unit circle is a circle of unit radius centered on the origin of a complex
number graph where one axis is the real number component and the other axis forms the ima-
ginary part of the complex number.

Based upon the work of Schur (1917), Pagano (1973) presented an algorithm which can be
used to determine whether or not all the roots of a given operator lie outside the unit circle. Con-
sider the situation where it is necessary to ascertain if all the roots of the operator, ¢(B), for an
AR(p) process fall outside the unit circle. The first step is to form the Schur matrix A of dimen-
sion pxp which has (i,j)th element

min(i.j)
Eo @ick-19j-k-1 = Pp+1+k-iOp+14k—j)

where ¢_, =0 and ¢ = 1. The matrix A is actually the inverse of the covariance matrix of p suc-

cessive observations for an AR(p) process (Siddiqui, 1958). Schur (1917) demonstrated that a
necessary and sufficient condition for the roots of ¢$(B) =0 to lie outside the unit circle is for A
to be positive definite. Because A is positive definite whenever the covariance matrix is positive
definite (Pagano, 1973), to demonstrate that an AR(p) process is stationary it is only necessary to
show that A is positive definite. A convenient way to do this is to calculate the Cholesky decom-
position of A [see Wilkinson (1965) and Healy (1968)] given by

A=MM’

where M is a lower triangular matrix. If all the diagonal entries of M are positive, matrix A is
positive definite. When there are one or more zero entries on the diagonal of M and all other
entries are positive, A is positive semidefinite. If during the calculation of M a diagonal location
is encountered where a zero or positive entry cannot be calculated, the Cholesky decomposition
does not exist. However, when the Cholesky decomposition shows that A is positive definite,
then the roots of ¢(B) = 0 lie outside the unit circle. For the case of the ¢(B) operator, this pro-
perty means that the process is stationary.

From [3.2.3] the characteristic equation for the Markov process is
(1-¢,8)=0

By considering B as an algebraic variable, the root of the characteristic equation is B = ¢; L In
order for ¢; 1 to lie outside the unit circle to ensure stationarity, then |¢;1 < 1.
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The stationarity condition automatically ensures that a process can be written in terms of
the g,’s in what is called a pure MA process. For example, the AR(1) process in [3.2.3] can be

expressed as
z—p=(~1-¢;8)"a [3.2.6]
=(1+¢;B +0B%+ --)a,
Because 19,1 < 1 due to the stationarity condition, this infers that the infinite series (1 - q>1B)'l

will converge for IB| < 1. The beneficial consequences caused by the restriction upon ¢, can
also be explained by writing [3.2.6] as

Z—n=a,+4,a_, +0a,+bla_3+ -
If 19,1 < 1, the dependence of the deviation (z, — 1) upon the white noise terms decreases further

into the past. Alternatively, if 1¢,! 2 1, the dependence of (z, — i) upon the white noise would be

greater for disturbances which happened well before the more recent shocks. Of course, this
type of interpretation would not be meaningful for stationary processes and can be avoided if the
stationarity condition is satisfied.

Autocorrelation Function

In order to study the properties of the theoretical ACF for a stationary AR(p) process,
firstly multiply [3.2.4] by (z,_; — W) to obtain

@G —WE-W =0z -~ W@ - W) +a(z 4 W - + -
+ ¢p(zl-k - u)(zl—p - u) + (zl-k - u)ax [32.7]

By taking expected values of [3.2.7], the difference equation for the autocovariance function of
the AR(p) process is

Ye =01 Ye-1 +0Vi2 v +0pYipr k>0 [3.2.8]
The term E[(z,_; — M)a,] is zero for k > 0 because z,_ is only a function of the disturbances up
to time 7~k and g, is uncorrelated with these shocks. To determine an expression for the theoret-
ical ACF for the AR(p) process, divide [3.2.8] by ¥, to obtain

Pk =01P-1+02Pr2+ ~* +QpPip, k>0
This equation can be equivalently written as

(1-¢;B - 0,82~ -+ —4,B”)p;, =6(B)p; =0, k>0 [3.29]

where B operates on k instead of . The general solution of the difference equation in [3.2.9] is
(Box and Jenkins, 1976, p. 55)

Pr=A\Gf +A,G5 + -+ +A,G} [3.2.10]

where G| 1 Xeny ... ,Gp‘l, are distinct roots of the characteristic equation ¢(B) =0 and the A;’s
are constants. If a root G;! is real then IG;'1>1 due to the stationarity conditions. Hence,
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IG;1<1 and A;G¥ in [3.2.10] forms a damped exponential which geometrically decays to zero as

k increases. Complex roots contribute a damped sine wave to the theoretical ACF in [3.2.10].
Consequently, the theoretical ACF for a stationary AR process will consist of a combination of
damped exponential and sine waves.

St. Lawrence River Data: As mentioned in Section 2.5.4, when determining a model to fit to a
given data set, it is desirable to have the theoretical ACF of the process to resemble statistically
the sample ACF. Consider, for example, the average annual flows of the St. Lawrence River at
Ogdensburg, New York. These flows are available from 1860 to 1957 in a report by Yevjevich
(1963). The estimated ACF for these yearly flows is calculated using [2.5.9] and is shown in
Figure 3.2.1. The 95% confidence limits are determined utilizing [2.5.11] by assuming that the
sample ACF is not significantly different from zero after lag 0. As can be seen in Figure 3.2.1,
the estimated ACF has significant non-zero values at lower lags and tends to follow a damped
exponential curve. Because the theoretical ACF of an AR process behaves in this fashion, this
indicates that perhaps some type of model which contains an AR component should be fit to the
St. Lawrence flows.
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Figure 3.2.1. Sample ACF and 95% confidence limits for the average annual flows
of the St. Lawrence River at Ogdensburg, New York.

Yule-Walker Equations

By substituting k =1,2,...,p, into [3.2.9], parameters can be expressed in terms of the
theoretical ACF. The resulting set of linear equations are called the Yule-Walker equations [after
Yule (1927) and Walker (1931)] and are given by
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Pz &1, %P1 ... L %Ppa
P2= 011 + G2 + - +GPp2

[3.2.11]

Pp= ¢lpp-1 + ¢2Pp—2 + - 4+ q’p

By writing the Yule-Walker equations in matrix form, the relationship for the AR parameters is

¢=P;p, (3:2.12)
where
(61 ] p1 ] 1 p P2 ... Pp-t |
62 P2 PL 1 P11 - Pp2
q): , pp: R Pp =
[ 95 | [ Pp | | Pp-1 Pp2 Pp-3 " 1

To obtain Yule-Walker estimates for the AR parameters, simply replace the p,’s in [3.2.12] by
their estimates r,, k = 1,2, . . ., p, from [2.5.9]. The Yule-Walker estimates possess large sample
efficiency and hence have minimum possible variances.

By setting k =0 in [3.2.7] and taking expectations, the expression for the variance is
Yo=Y+ Tr+ =+ + 8,7, + 02 [3.2.13]

where E[z,a,] = 62 since z, is only correlated with g, due to the most recent shock a,. Upon
dividing [3.2.13] by Yo = 0',2, the variance of the process can be expressed as

o;

T 1-pi0—pata-  —Ppdp
Employing [3.2.13] and [2.5.8), the residual variance can be estimated using

2

o; [3.2.14]

a2 P A
Cg =Co— Z¢, ¢
i=]
In addition to the Yule-Walker estimator, other estimators are available for efficiently
estimating the parameters of an AR model. One approach is to employ the maximum likelihood

estimator presented in Section 6.2 and Appendix A6.1. A second procedure is to employ the
Burg (1975) algorithm which is described by Haykin (1990, pp. 187-192).

Markov Process: As shown earlier in this section, in order for an AR(1) process to be stationary
~1<¢,<1. By setting ¢, to ¢, equal to zero, equation [3.2.11] becomes
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P1=9;
P2=01p1 = ¢f
P3=01p2= 07
In general,
e = of. [3.2.15]

Because of the form of [3.2.15], the theoretical ACF attenuates exponentially to zero if ¢, is
positive but decays exponentially to zero and oscillates in sign when ¢, is negative. From Figure
3.2.2, it can be seen that when ¢, is assigned a positive value of 0.75, the theoretical ACF only
possesses positive values which decay exponentially to zero for increasing lag. However, when
¢; is given a negative value such as -0.75, the theoretical ACF oscillates in sign and decays

exponentially to zero as shown in Figure 3.2.3. The variance of an AR(1) process is obtained
from [3.2.14] and [3.2.15] as

2 2
O, O,
2 a a
oy = = [3.2.16]
fol-pity 1- o2

Partial Autocorrelation Function

Because the ACF of an AR process attenuates and does not truncate at a specified lag, it
would be advantageous to define a function which does cut off for an AR process. As explained
in Chapter 5, such a device would be useful to employ in conjunction with the sample ACF and
other tools for identifying the type of model to fit to a given data set.

Let ¢,; be the jth coefficient in a stationary AR process of order k so that ¢4 is the last
coefficient. The Yule-Walker equations in [3.2.12] can then be equivalently written as

(1 P Py P (6] [ps
Pr 1 pr o pra|| b2 P2

= (3.2.17]

[Pr-1 Pe2 Pi3 = 1 [ Ou| |Pr)

E

The coefficient ¢y, is a function of the lag k and is called the theoretical partial autocorrelation
function (PACF). Because of the definition of the theoretical PACEF, it must be equal to zero after
lag p for an AR(p) process. Furthermore, the possible values of ¢4 Tange from -1 to 1.

One method for estimating the PACF is to employ the Yule-Walker equations. By replac-
ing p; in [3.2.17] by its estimate 7, from [2.5.9], the estimates of Oue» k = 1,2,..., using Cramer’s
rule are
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Figure 3.2.2. Theoretical ACF for a Markov Process with ¢; = 0.75.
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Figure 3.2.3. Theoretical ACF for a Markov Process with ¢, = —0.75.
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etc. In order to make the estimation of the PACF computationally more economical, the recur-
sive formulae of Durbin (1960) may be employed. However, as noted by Pagano (1972) and
Box and Jenkins (1976), Durbin’s method is numerically unstable, especially when the process
approaches nonstationarity (i.c., the roots of characteristic equation are close to the unit circle).

An altemative procedure for estimating the PACF is to utilize the algorithm devised by
Pagano (1972). The Pagano algorithm is numerically quite stable because it is based upon the
Cholesky decomposition which is known to be stable (Wilkinson, 1965, pp. 231 and 244). The
steps required in the Pagano algorithm for calculating the PACF up to lag p are given in Appen-
dix A3.1. Because the algorithm is numerically stable and is also economical with respect to
computational requirements, it is amenable for programming on the computer.

When plotting 6,‘,‘ against lag k, approximate confidence limits must be given in order to

decipher values of the estimated PACF which are significantly different from zero. If the pro-
cess is AR(p), the sample PACF should not be significantly different from zero after lag p.
Based upon the hypothesis that the process is AR(p), the estimated values of the PACF at lags
greater than p are approximately normally independently distributed with a SE given by
(Quenouille, 1949; Barndorff-Nielsen and Schou, 1973)

SE[6y] = 7;7 [3.2.18]

where N is the length of the time series.

St. Lawrence River Data: The graph of the estimated PACF for the average annual flows of the
St. Lawrence River is shown in Figure 3.2.4. The 95% confidence limits are calculated by sub-
stituting N =97 into [3.2.18] and plotting 1.96 times the SE for 6“ above and below the hor-
izontal axis. It can be seen that there are rather large values for the estimated PACF at lags 1, 3
and 19. The unexpected big value at lag 19 could be due to chance alone or else the limited size
of the sample which was used to estimate the PACF at lag 19. Because the estimated PACF cuts
off after lag 3, this implies that an AR(3) process should perhaps be fitted to the data. In addi-
tion, because the sample PACF at lag 2 is not very large, perhaps the ¢, parameter should be
constrained to zero in the AR(3) model in order to reduce the number of model parameters. As
shown in Section 6.4.2, the estimated model for the St. Lawrence data is

(1-0.619B —0.177B3)(z, - 6818.63) = a, [3.2.19]

where 6818.63 is the maximum likelihood estimate for the mean.

By substituting the values of the AR parameters for the model from [3.2.19] into the Yule-
Walker equations in [3.2.11], the theoretical ACF can be determined. It can be seen from Figure
3.2.5 that the theoretical ACF for the St. Lawrence model in [3.2.19] is statistically similar to the
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Figure 3.2.4. Sample PACF and 95% confidence limits for the average annual flows
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Figure 3.2.5. Theoretical ACF for the AR(3) model without ¢, that is fitted to the
average annual flows of the St. Lawrence River at Ogdensburg, New York.
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Figure 3.2.6. Theoretical PACF for the AR(3) model without ¢, that is fitted to
the average annual flows of the St. Lawrence River at Ogdensburg, New York.

sample ACF given in Figure 3.2.1. This information indicates that an AR model is a reasonable
type of model to fit to the St. Lawrence River flows.

To further justify the use of the model in [3.2.19] for modelling the St. Lawrence River
flows, the theoretical PACF can be compared to the sample PACF in Figure 3.2.4. In order to
calculate the theoretical PACF, the values of theoretical ACF which were determined by substi-
tuting the estimates for the AR parameters in [3.2.19] into [3.2.11], are employed in [3.2.17].
The graph of the theoretical PACF for the St. Lawrence River flows is shown in Figure 3.2.6 and
it can be seen that this plot is similar to the sample PACF in Figure 3.2.4.

3.3 MOVING AVERAGE PROCESSES

The MA model describes how an observation depends upon the current white noise term as
well as one or more previous innovations. After examining the simplest type of MA model, the
general form of the MA model is defined and its important theoretical properties are derived.

3.3.1 First Order Moving Average Process
When a time series value, z,, is dependent only upon the white noise at time ¢-1 plus the
current shock, the relationship is written as

z-p=a,-6,a._ [3.3.1]

where 0, is the nonseasonal MA parameter. This process is termed a MA process of order one
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and is denoted as MA(1). By introducing the B operator, the MA(1) process can be equivalently
written as
z,-u=a,—0,Ba,
=(1-6,B)q
=0(B)a, [3.3.2]

where 8(B) = 1 - 0,B is the nonseasonal MA operator or polynomial of order one.

3.3.2 Moving Average Process of Order ¢

The MA(1) process can be readily extended to the situation where there are ¢ MA parame-
ters. The MA process of order q is denoted by MA(q) and is written as

Z, - l.l- = a‘ - ela‘_l - 020,_,2 -t - eqa’_q [3.3.3]

where 6; is the jth nonseasonal MA parameter. By employing the B operator, the MA(q) pro-
cess can be more economically presented as

z,-p=a,-06Ba,-6,B%,~ - ~ 8,8%,
=(1-6,8-6,82- --- -8,B%q,
= 0(B)a, [3.34]
where 6(B)=1-6,B -0,8>— --- - 8,879, is the nonseasonal MA operator or polynomial of
orderq.
Stationarity

The time series composed of the g,’s is assumed to be stationary. Because z, in {3.3.4] is
formed by a finite linear combination of the a,’s, then z, must be stationary no matter what

values the MA parameters possess. However, it is advantageous to put certain restrictions upon
the range of values for the MA parameters. Consider, for example, the MA(1) process in [3.3.2].
By invoking the binomial theorem, this process can be equivalently written as an infinite AR
process given as

a,=(1-8,8)"(z -
=(1+6,B+02B2+0B>+ --- )z, - W) [3.3.5)
In order for the infinite series (1 — 6,8 )" to converge for IB| < 1, the parameter 0, must be res-

tricted to have an absolute value less than unity. Another way to interpret the restriction upon 6,
is to write [3.3.5] as

z-u=a,-0,(z_ - -0z, -W) -03E_3-p) - - [3.3.6]

If 18,1 > 1, it can be seen in [3.3.6] that the current deviation (z, — ) depends more on events
that happened further in the past because 0% increases as the lag k gets larger. When 18,1 =1,
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something that took place a long time ago has as much influence as a recent observation upon
the current measurement. In order to avoid these situations, it is necessary that 18,1 < 1. This is
equivalent to stipulating that the root B = 8; of the characteristic equation (1 — 8,8) =0 must
lie outside the unit circle. Consequently, the stationary MA(1) process can only be meaningfully
expressed as an infinite AR process if a restriction is placed upon the MA parameter. This res-
triction is referred to as the invertibility condition and is independent of the stationarity require-
ments of a process.

Invertibility
The characteristic equation for a MA(q) process is
6(8)=1-6,B-6,8>~ --- -9.BI=0 [3.3.7]

In order for a MA(Q) process to be invertible, the roots of the characteristic equation must lie
outside the unit circle.

An inherent advantage of the invertibility condition is that it does not cause a loss in gen-
erality of the MA process. As shown by Fuller (1976, pp. 64-66) and discussed by Anderson
(1971, p. 204), any finite MA process whose characteristic equation has some roots greater than
one and some less than one can be given a representation whose characteristic equation has all
roots greater than one in absolute value. Consequently, the invertibility condition does not limit
the ability to identify a suitable invertible model to fit to a given series. In addition, if the inver-
tibility condition is satisfied, a MA process can be expressed as a pure AR process. Finally,
when the residuals are being established for a model which is being fitted to a specified time
series, the calculation of the residuals will be ill-conditioned if the invertibility condition is not
met.

Autocorrelation Function
By using {2.5.3] and [3.3.3], the autocovariance function of a MA(q) process is
Y =E[(z =Wz — W]
=E[(a,-0610,1 =63, 5 - -6,8,_,)a_ 4 —0,8,_4_; ~ 020, ;_,
- =0, )] [3.3.8]
After multiplication and taking expected values, the autocovariance function is

(=6, +010,,1 +08,0+ -~ +6,,0)62 , k=12,...,q
Y = [3.3.9]
0 , k>q

where 6p=1 and 6_, =0 for k 2 1. When & is set equal to zero in [3.3.8], the variance is
YTo=(1+67+67+ --- +6))0? (3.3.10]

By dividing the autocovariance function by the variance, the theoretical ACF for a MA(q) pro-
cess is found to be



Stationary Nonseasonal Models 105

(
-Ok +919k+1+929,,+2+ tc +9q_*9q
{ 1+07+07+ - +62

P = [3.3.11]
10 , k>¢q

\

Partial Autocorrelation Function

It is shown in [3.3.5) that a MA(1) process can be equivalently written as an infinite AR
process. In general, any finite invertible MA process can be expressed as an infinite AR process.
Because the PACEF is theoretically defined to be zero after lag p for a finite AR(p) process, the
PACF must therefore attenuate at increasing lags for a MA process or equivalently an infinite
AR process.

Temperature Data: From [3.3.11], it can be seen that the theoretical ACF for a MA(q) process
is exactly zero after lag ¢. If the sample ACF is tabulated for a given time series using [2.5.9],
then the estimated ACF should not be significantly different from zero after lag ¢ if the underly-
ing process is MA(q). For instance, the sample ACF for the average annual temperature data
from the English Midlands is shown in Figures 2.5.1 and 2.5.2 in Section 2.5.4. Because the
estimated ACF is not significantly different from zero after lag 2, it is reasonable to fit a MA(2)
model to the data. Using the estimator described in Appendix A6.1, the estimated model for the
temperature data is found to be

2,-9.216 = (1 +0.111B +0.1978%)q, (3.3.12]

By substituting the estimates for the MA parameters from [3.3.12] into [3.3.11] (where p; =0

for k > 2), the theoretical ACF can be calculated for the MA(2) model. By comparing the
theoretical ACF in Figure 2.5.3 to the estimated ACF in Figure 2.5.1, it can be seen that the
theoretical ACF for the MA(2) model mimics the estimated ACF.

To calculate the sample PACF for the temperature data from the English Midlands, one
first must determine the sample ACF using [2.5.9]. Following this, Pagano’s (1972) algorithm,
outlined in Appendix A3.1, can be used to solve [3.2.17] in order to determine the sample PACF.
The sample PACF along with the 95% confidence limits for the English temperature data, are
displayed in Figure 3.3.1. The sample PACF truncates after lag 2 except for a rather large value
at lag 15 which is probably due to chance. However, the plot of the sample ACF in Figure 2.5.2
reveals that it also cuts off after lag 2. Hence, cither a MA(2) or an AR(2) model may ade-
quately model the temperature data. As is shown in Section 3.4.3 the two models are in fact
shown to be almost the same by expressing the AR(2) model as an infinite MA model in which
the coefficients after lag 2 are negligible.

After substituting the values of the theoretical ACF for the MA(2) model in [3.3.12] into
[3.2.17], one can employ Pagano’s (1972) algorithm outlined in Appendix A3.1 to determine the
theoretical PACF. It can be seen that the theoretical PACF in Figure 3.3.2 for the estimated
MA(2) model closely resembles the sample PACF of the temperature data in Figure 3.3.1.
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First Order Moving Average Process

The MA(1) process is given in [3.3.2]. This process is stationary for all values of 8, but for
invertibility 10,! < 1. When the invertibility condition is satisfied, the MA(1) process can be
equivalently written as an infinite AR process as is shown in [3.3.5].

By utilizing [3.3.10], the variance of the MA(1) process is

Yo=(1+6})c? (3.3.13]
From [3.3.11] the theoretical ACF is

(

-9,

| 1+6f

- [3.3.14]
0, k22

k=1

\

By substituting p; =-0,/(1 + 912) and p; =0, for k > 1, into [3.2.17], the PACF can be shown to
be

0w = —0{(1 —82)y(1 — 87+ (3.3.15]

Because 19,1 < 1 for an invertible MA(1) process, the theoretical PACF decreases in value for

increasing lag and follows a damped exponential curve. Because of the form of [3.3.15], it can
be seen that 1¢,, | < 10,1%. When 8, is positive, then from [3.3.14] p, is negative and the PACF

values in [3.3.15] are also negative. On the other hand, if 0, is negative, p, is positive and the
PACEF values alternate in sign.

3.4 AUTOREGRESSIVE-MOVING AVERAGE PROCESSES

As noted in Sections 1.3 and 5.2.4, a key modelling principle is to have as few parameters
as possible in the model. If, for example, the sample ACF for a given data set possesses a value
which is significantly different from zero only at lag one, then it may be appropriate to fit a
MA(1) model to the data. An AR model may require quite a few AR parameters in order to ade-
quately model the same time series. When the sample PACF for another data set cuts off at lag
2, then the most parsimonious model to fit the time series may be an AR(2) model. In situations
where both the sample ACF and PACF attenuate for a certain time series, it may be advanta-
geous to have a model which contains both AR and MA parameters. In this way, the fitted
model can be kept as simple as possible by keeping the number of model parameters to a
minimum.

3.4.1 First Order Autoregressive-First Order Moving Average Process

If a process consists of both AR and MA parameters, it is called an ARMA process. When
there is one AR and one MA parameter the ARMA process is denoted as ARMAC(1,1) and the
equation for this process is
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@G -W -1 -W=0a,-6a,, [3.4.1]
By utilizing the B operator, the ARMA(1,1) process can be equivalently written as

(1-¢,B)(z - W) =(1-6,B)a,
or

¢(B)(z, — 1) =6(B)a; [3.4.2]
where ¢(B) =1-¢;B and 6(B) =1 - 6,B are, respectively, the AR and MA operators of order

one.

3.42 General Autoregressive-Moving Average Process

In general, an ARMA process may consist of p AR parameters and ¢ MA parameters. Such
a process is denoted by ARMA(p,q) and is written as

@ =W =G =W =G~ - =4 — 1)
=a,~61a,1-6,a. 5— - 8,0, [3.4.3]

By implementing the B operator, [3.4.3] can be presented more conveniently as

(108 - 0,82~ -+ = §,B°)(z; ~ )= (1-8,B — 8,82~ --- -0 BY)q,
or

6(B)(z, — W) = 6(B)a, [3.4.4]
where ¢(B)=1-¢,B —¢,B%- - - ¢,87 is the AR operator of order p and
0(B)=1-6,B-0,8*- --- - 8,87 is the MA operator of order q.

As mentioned by Box and Jenkins (1976, p. 74), an ARMA(p,q) process may be interpreted
in two ways. It can be considered as a pth order AR process given by

¢B)z W) =¢ [3.4.5]
where ¢, follows the gth order MA process

e, =0(B)a, [3.4.6]
Alternatively, an ARMA(p,q) process can be thought of as a gth order MA process

(z, - 1) =6(B)b, [3.4.7]
where b, follows the pth order AR process

¢(B)b, = a, [3.4.8]

By substituting either e, from [3.4.6] into [3.4.5] or else b, from [3.4.8] into [3.4.7), it follows
that
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¢(B)(z, — W) = 6(B)a,

The ARMA(p,q) process contains both the pure AR and MA processes as subsets. Conse-
quently, an AR(p) process is equivalent to an ARMA(p,0) process while a MA(q) process is the
same as an ARMA(0,q) process. The ARMA(p,q) family of processes are also sometimes
referred to as stationary nonseasonal Box-Jenkins processes because of the comprehensive
presentation of these models in the book by Box and Jenkins (1976).

Stationarity and Invertibility

The conditions regarding stationarity and invertibility for AR and MA processes, also hold
for ARMA processes. In order for an ARMA(p,q) process to be stationary the roots of the
characteristic equation ¢(B) = 0 must fall outside the unit circle. Similarly, the roots of 8(8) =0
must fall outside the unit circle if the process is invertible and can be expressed as a pure AR
process.

Autocorrelation Function

The theoretical ACF for an ARMA(p,q) process is derived in a fashion which is similar to
that used for an AR process in Section 3.2.2. Multiply both sides of [3.4.3] by (z,_, — W) and

take expectations to obtain
Ye = 011~ OMe2— " —PpNep
=Y:ak) = 01Yzak = 1) = 02Y,0(k =2) = - -~ = equa(k -9 [3.4.9]

where Y, =E[(z,_; ~H1)(z, —n)] is the theoretical autocovariance function and
Yo (k) = E[(z,; — Wa,] is the cross covariance function between z,_, and g,. Since z,_; is depen-
dent only upon the shocks which have occurred up to time ¢k, it follows that

Yua®)=0 , k>0
Yuk)#0 , k<0 [3.4.10]

Because of the v,,(k) terms in [3.4.9), it is necessary to derive other relationships before it is
possible to solve for the autocovariances. This can be effected by multiplying [3.4.3] by a,_,

and taking expectations to get
Yoa (k) = O1Yoa(—k + 1) = 03Ypa <k +2) = < == = @pYyu(=k +p)
=~ [8,]6? [3.4.11]
where

6 Lk=12,....q9
01=1-1 , k=0
0 , otherwise

and E[a,_,a,] is defined in [3.2.2].
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Equations [3.4.9] and [3.4.11] can be employed to solve for the theoretical autocovariance
function for an ARMA(p,q) process. For k > q, [3.4.9] reduces to

Y= 91Ye-1 = 02We2— " = PpYip =0
or

¢B)Y, =0 (3.4.12)

If k > r =max(p,q), [3.4.12] may be used to calculate the 7y, directly from the previous values.
For k=0,1,2,...,r, use [3.4.11] to solve for the cross covariances, 7,,(k), and then substitute
the v,,(k) into [3.4.9]. By employing the algorithm of McLeod (1975) outlined in Appendix
A3.2, the resulting equations can be solved to determine the theoretical autocovariance function

for any ARMA(p,q) process where the values of the parameters are known. The theoretical ACF
can then be determined by simply dividing by the variance.

By dividing [3.4.12] by 7, the difference equation for the theoretical ACF for an
ARMA(p.q) process is

(1-¢,B-¢;B*— -+ —,B7)p, =0B)p, =0 , k>q [3.4.13]

Except for the fact that [3.4.13] is only valid beyond lag ¢, the equation is identical to [3.2.9]
which is the theoretical ACF for an AR(p) process. Hence, the attenuating behaviour of the ACF
beyond lag g for an ARMA(p,q) process is due to the AR component in the model and the start-
ing values for the difference equation. If ¢ —p <0 the entire theoretical ACF, p ;, for
J=0,1,2,..., will be composed of a mixture of damped exponential and/or damped sine waves
which possess characteristics controlled by ¢(B) and the starting values. When ¢ —p 20 the
q —p + 1 initial values pg,p;,p,, . . . ,Pg—p Will not follow this pattern. Furthermore, because of
the structure of [3.4.9], the autocorrelations py,p;, . . . , g, are a function of both the MA and AR

parameters.

Partial Autocorrelation Function

As a result of the MA operator, the ARMA(p,q) process in [3.4.4] can be written as an
infinite AR process given by

a,=0(B)'6(B)(z, - W) [3.4.14]

where 0(B)™! is an infinite series in B. Since the definition of the PACF is based upon an AR
process, the theoretical PACEF is infinite in extent and attenuates with increasing lag. At higher
lags, the behaviour of the PACF depends upon the MA parameters and is dominated by a mix-
ture of damped exponentials and/or damped sine waves.

Douglas Fir Tree Ring Data: Because both the ACF and PACF die off for an ARMA(p,q) pro-
cess, it is sometimes difficult to determine which type of ARMA model to fit to a given data set.
Often, it is necessary to study two or three tentative ARMA models. For instance, consider the
time series of 700 tree ring indices for Douglas fir at the Navajo National Monument in Arizona.
This data is available from 1263 to 1962 and is listed in a report by Stokes et al. (1973). The
plots of the sample ACF and PACF are displayed in Figures 3.4.1 and 3.4.2, respectively, along
with the 95% confidence limits. Because both plots seem to attenuate, it may be appropriate to
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fit some type of ARMA(p,q) model to the data. The large values of both the ACF and PACF at
lag one indicate that perhaps an ARMA(1,1) model may adequately model the data, although
other ARMA models should perhaps also be examined. Using the estimator described in Appen-
dix A6.1, the estimated ARMA(1,1) model is

(1-0.682B)(z, - 99.400) = (1 - 0.424B)a, | [3.4.15)

This calibrated model satisfies the diagnostic checks described in Chapter 7.

By using the parameter values for the tree ring model given in [3.4.15] as input to equa-
tions [3.4.9] and [3.4.11], the theoretical ACF can be calculated. The theoretical ACF for the
tree ring model shown in Figure 3.4.3 is statistically similar to the sample ACF in Figure 3.4.1.
To calculate the theoretical PACF using Pagano’s algorithm in Appendix A3.1, the values of the
theoretical ACF are substituted for the pi’s in [3.2.17]. The theoretical PACF in Figure 3.4.4 has

the same form as the sample PACF in Figure 3.4.2. Because the fitted ARMA model appears to
statistically preserve both the historical ACF and PACF, this fact enhances the desirability of
ARMA models for use in the natural sciences. Additionally, Section 3.6 explains why ARMA
models are suitably designed for capturing the physical chracteristics of annual streamflows.
ARMAC(1,1) Process

The ARMAC(1,1) process is given in [3.4.2]. As is the case for the AR(1) process (see Sec-
tion 3.2.2), in order for the ARMA(1,1) process to be stationary, 1¢;] < 1. Similarly, because the

MA(1) process is invertible if 10,| < 1 (see Section 3.3.2), the ARMAC(1,1) process is invertible
when the same conditions are placed upon 6.

To derive the autocovariance function for an ARMA(1,1) model, first use [3.4.9] to obtain
To= 0171 + 62 = 0,7,,(-1)
N=9%-8,07
Ye =011, k22
Next, after setting k = 1, employ [3.4.11] to get
Tua(=1) = (&1 - 0))07

where v,,(0) = c,,z in both [3.4.9] and [3.4.11]. Upon substituting v,,(~1) into the previous equa-
tion for Y, the autocovariances for an ARMA(1,1) process are found to be

_1+6i-208, ,

Yo 1-97 a
Y= (1- 4’191)@;1 -9) 52
1-¢i
Y =0Y-1 , k22 [3.4.16]

By dividing by 7, the theoretical ACF of an ARMA(1,1) process is
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Figure 3.4.1. Sample ACF and 95% confidence limits for the Douglas Fir tree ring

series at Navajo National Monument in Arizona.

—_

1.00| 4

0.75]

o
(%3
(=]

o©
N
Ll

| I | N 1
LA

al.1a
v

| LML B S L S A A SN
]

11

SAMPLE PACF
(=}

N o
[ (%)

©
n
)

0.75

B P [ ! |

10 20 30 40
LAC

!
50

Figure 3.4.2. Sample PACF and 95% confidence limits for the Douglas Fir tree ring

series at Navajo National Monument in Arizona.



Stationary Nonseasonal Models 113

1.00] +

0.75]

o
wn
S

e
N
tny

||Illl|1..

o

THEORETICAL ACF
o
1

Pror e l I l | ‘
10 20 30 40 50
LAC

Figure 3.4.3. Theoretical ACF for the ARMA(1,1) model fitted to the Douglas Fir
tree ring series at Navajo National Monument in Arizona.
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o = (1-¢,8,)¢,-6))
L 1+02-2¢,0,

Pe=01Ps1 » k22 [3.4.17)

From [3.4.17], it can be seen that p, is a function of both the MA and AR parameters. The ACF
at lag 2 depends only upon ¢; and also the starting value p,;. Furthermore, the theoretical ACF
decays exponentially from the starting value p;. This exponential decay is even when ¢; is posi-
tive and is oscillatory whenever ¢, is negative. In addition, the sign of (¢, — 6,) dictates the sign
of p; and also from which side of zero the exponential decay commences.

By substituting the theoretical ACF in [3.4.17] into the Yule-Walker equations which are

given in [3.2.17], the theoretical PACF can be determined for the ARMA(1,1) process. At lag 1,
911 =P, while for lags greater than one the PACF of an ARMA(1,1) process behaves like the

PACEF of a MA(1) process (see Section 3.3.2) and hence follows the form of a damped exponen-
tial. When 0, is positive, the PACF consists of an evenly damped exponential which decays

from p,, where the sign of p, is determined by the sign of (¢, — 6,). If 9, is negative, the PACF
is dominated by an oscillating exponential which attenuates from ¢;; = p;, where the sign of p,
is determined by (¢, - 9,).

3.4.3 Three Formulations of the Autoregressive-Moving Average Process

An ARMA(p,q) process can be expressed in three explicit forms. One formulation is to use
the difference equation given in [3.4.4]. A second method is to express the process as a pure MA
process. This is also referred to as the random shock form of the process. Finally, the third
option is to formulate the process as a pure AR process which is also called the inverted form of
the process.

Random Shock Form

Because ¢(B) and 6(B) can be treated as algebraic operators, the ARMA(p,q) process can
be written in random shock form as

@ - 1) =0(8)"6(B)q,
=4 +V1a + VGt
=a,+Vy,Ba, + \ysza, + -
=(1+y,B +y,B%+..)a,
=y(B)a, [3.4.18]

where y(B)=1+yB + \y282 + - - -, is the random shock or infinite MA operator and v, is the

ith parameter, coefficient or weight of y(B). It is often convenient to express an ARMA process
in the form given in [3.4.18] for both theoretical and application purposes. For instance, the ¥
weights are required in Section 8.2.3 to calculate the variance of the forecasts. As explained in
Section 9.3, one way to simulate data is to first express an ARMA model in random shock form
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and then use this format of the model for simulation purposes. By writing each member of a set
of ARMA models in random shock form, the models can be conveniently compared by looking
at the magnitude and sign of the y parameters. Furthermore, nonstationary processes (see
Chapter 4) and scasonal processes (see Part V) can also be written in the general random shock
form of the process.

As is noted in Section 3.2.2, if an AR(p) process is stationary the roots of ¢(B) = 0 must li
outside the unit circle and this insures that the process can also be written as an infinite MA pro-
cess which will converge for I1B1 < 1. Consequently, a necessary condition for siationarity for an
ARMA(p,q) process, is that the weights V1.V2...., in W(B) = $(B)"10(B), form a convergent
series for IB1 <1 [see Box and Jenkins (1976, Appendix A3.1, pp- 80-82) for a mathematical
proof]. The stationarity requirement is proven by examining the theoretical autocovariance
which is given by

%=OLT VW , k=012,. [3.4.19]
j=0
By substituting k = 0 into [3.4.19], the variance is found to be
Yo=07=02Y v} [3.4.20]
j=0

In order to have a finite variance and hence stationarity, the y weights must decrease in a manner
which allows the right side of [3.4.20] to converge.

To develop a relationship for determining the Y parameters or weights, first multiply
[3.4.18] by ¢(B) to obtain

¢(B)(z, — 1) = $(B)y(B)a,
From [3.4.4], 6(B)a, can be substituted for ¢(B)(z, — p) in the previous equation to get

(B)y(B) =6(B)
The y weights can be conveniently determined by expressing the above equation as
BV, =6, (3.4.21]

where B operates on k, yWo=1, y, =0 for k <0, and 6,=0if k >q. Whenk >q then 8, =0
and y; in [3.4.21] satisfics the same difference equation as the theoretical ACF of an AR process
and also an ARMA process in [3.2.9] and [3.4.13], respectively. Consequently, when , is plot-

ted against lag & it will follow the same type of pattems as the theoretical ACF of the process.
For increasing lags, the graph may follow a smooth exponential decay, an exponential decline
that alternates in sign, or a damped sinusoidal decay.

Given the AR and MA parameters, one can employ [3.4.21] to calculate the random shock
parameters. To decide upon how many y coefficients to estimate, one can calculate enough y
coefficients to keep the relative error in the variance of the random shock process less than a
specified error level. When 03 is assumed to be one and the y’s are only considered up to lag

q’, from [3.4.20] the variance of the random shock process is approximately given by
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fw}
j=0

When it is assumed that 0'3 = 1, one can calculate the variance, Yo, of the given ARMA(p,q) pro-

cess by solving [3.4.9] and [3.4.11]. Consequently, the relative absolute error due to the random
shock approximation is

q 2
Y= XV
j=0
Yo

One can choose ¢’ to be just large enough to cause the above expression to have a value less than
the specified error level. To demonstrate how the y coefficients are calculated using [3.4.21],
two examples are now given.

Example Using the Temperature Model: In Section 3.3.2 it is noted that it may be appropriate
to fit either a MA(2) or an AR(2) model to the annual temperature data from the English Mid-
lands. Because the sample ACF in Figure 2.5.1 seems to truncate after lag 2, a MA(2) model
may be needed. However, since the sample PACF in Figure 3.3.1 cuts off after lag 2, an AR(2)
model may be suitable for modelling the series. In reality, either of these models may be
employed, since they are quite similar. This can be demonstrated by expanding the AR(2) model
as an infinite MA model and then comparing the results to the MA(2) model in [3.3.12].

The estimated AR(2) model for the temperature data is
(1-0.119B - 0.20082)(2, -9.216) =aq, [3.4.22]

where 9.216 is the MLE of the mean level. For the model in the above equation, [3.4.21]
becomes

(1-0.1198 - 0.200B%)y, =0
Whenk =1

(1-0.119B - 0.200B%)y, =0 or y; —0.119y, - 0.200y_; =0
Since yo =1 and y_; =0 the expression reduces to

v; =0.119
Fork=2

(1-0.119B - 0.200B%)y, =0 or y, - 0.119y, - 0.200y, =0
Therefore, ¥, = 0.119(0.119) + 0.200 = 0.214.
Whenk =3

(1-0.1198 - 0.200B%)y; =0 or y; -0.119y, - 0.200y, =0
Therefore, y; = 0.119(0.214) + 0.200(0.119) = 0.049.
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In general, the expression for y; is
Y = 0.119\{’*_1 + 0.200\”_2, k>0

Because of the form of this equation, y, decays towards zero rather quickly for increasing lag
after lag 2.

Using the results for the y coefficients, the random shock form of the AR(2) model in
[3.4.22] is

2,-9216=(1+y,;B +y;B2+y3B3+ - )g
=(1+0.119B +0.214B% +0.0498° + - - )q, [3.4.23]

The SE of estimation for both MA parameters in [3.3.12] is 0.062 and it can be seen that each
MA parameter in [3.4.23] is within one SE of the corresponding MA parameter in [3.3.12]). Con-
sequently, for practical purposes the AR(2) model in [3.4.22] is actually the same as the MA(2)
model in [3.3.12].

Example Using the Tree Ring Model: The sample ACF and PACF are shown in Figures 3.4.1
and 3.4.2, respectively, for the Douglas Fir tree ring series at Navajo National Monument in
Arizona. Because both of these plots attenuate, it may be appropriate to fit an ARMA(1,1)
model to this series. The fitted model for this data is given in [3.4.15].

For the ARMA(1,1) model, [3.4.21] becomes
(1-0.682B)y, =6,
where 6, =0fork > 1. Whenk =1
(1 -0.682B)y, =-0.424 or y, —0.682y,=-0.424
Therefore, y; = 0.682 —0.424 = 0.258.

Fork=2
(1-0.682B)y, =0 or y,-0.682y, =0

Hence, v, = 0.682y, =0.682(0.258) = 0.176.
Whenk =3

(1-0.682B)y3 =0 or y3—0.682y,=0
Therefore, y3 = 0.682y, = 0.682(0.176) = 0.120.
The general expression for y; is

v, =0.682y,_; = (0.682) 1y, , k>0

Due to the form of this equation, y, will decrease in absolute value for increasing lag. When the
ARMA(1,1) model is expressed using the  coefficients, the random shock form of the models is
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2, —99.400 = (1 + 0.258B +0.176B8% + 0.120B3 + ...)a, [3.4.24]

Inverted Form
To express the ARMA(p,q) process in inverted form as a pure AR process, [3.4.4] can be
written as
a, = 6(B)" 9(B)(z - W)
=g~ W) - Ty — W)~ Rp(gg =) = -
=(z - W) -®B( - 1) - %,BX g —p) - -
=(1-mB -mB% - .)(z - W)
=rB)(z, ~ 1) [3.4.25]

where n(B)=1-n,B —nsz— -+, is the inverted or infinite AR operator and =; is the ith
parameter, coefficient or weight of t(B). Besides ARMA models, it is often convenient to write

nonstationary processes and also various types of seasonal processes in the above format. Furth-
ermore, by comparing [3.4.18] and [3.4.25] it is evident that

vB) 1 =n(B) [3.4.26]

In Section 3.3.2, it is pointed out that in order for a MA(Q) process to be expressed as a
meaningful infinite AR process the roots of 68(B) = 0 must lie outside the unit circle. Invertibil-
ity is also achieved for an ARMA(p,q) process when the roots of 8(B) = 0 lie outside the unit cir-
cle. This is because the weights x;,%,,..., in the inverted operator n(B) = 9(B)"¢(B) constitute a

convergent series for IB| < 1. The invertibility condition is independent of the stationarity con-
dition and can also be used with nonstationary processes.

To determine a relationship for computing the & parameters, multiply [3.4.25] by 6(B) to
get
8(B)a, = 6(B)n(B)(z, - W)
Using [3.4.4], (B )(z, — W) can be substituted for 8(B )g, in the above equation to obtain

¢(B) =6(B)n(B)
The = weights can be readily ascertained by expressing the above equation as
G(B)uk = ¢k [3.4.27]

where B operates on k, %5 =~—1 when using [3.4.27] to calculate x; for k >0, t;, =0 for k < 0,
and ¢, =0 if k > p. When k > p, &, satisfies the same difference equation as the inverse auto-
correlation function (IACF) that is discussed in Section 5.3.6. Consequently, when &, is plotted

against lag k it will possess the same behaviour as the IACF. For increasing lags, the graph may
consist of a smooth exponential decay, an exponential decline where the values alternate in sign
or a damped sinusoidal decay. Some examples are now presented to demonstrate how to employ
[3.4.27] for calculating the x parameters by hand.
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Example Using the Temperature Model: The MA(2) model in [3.3.12] for the average
annual temperature data from the English Midlands can be equivalently expressed as an infinite
AR model. To determine the xt weights for the MA(2) model, [3.4.27] becomes

(1+0.111B +0.197B%x, =0

Whenk =1
(1+0.111B +0.197B%)r; =0 or =, +0.111%5+0.197x_; =0

Since xy = -1 and n_; = 0, the expression reduces to x; =0.111.
Fork=2
(1+0.111B +0.197B%)m, =0 or n,+0.111x, +0.19715=0

Therefore, T, = -0.111(0.111) + 0.197 = 0.185.
Whenk =3
(1+0.111B +0.197B%)r3 =0 or w3 +0.111m, +0.197%; =0

Hence, &3 =-0.111(0.185) - 0.197(0.111) = —0.042.

In general, the expression for 7, is
" = -0.11 17‘/:—1 - 0.1977tk_2, k>0

Because of the structure of the above equation, 7, attenuates quickly in absolute value after lag
2.

By employing the results for the ® weights, the inverted form of the MA(2) model in
[3.3.12} is

(1-0.111B - 0.185B2 +0.042B3 + ..)(z, - 9.216) =g, [3.4.28)

It can be seen that inverted form of the MA(2) model in [3.4.28] is almost the same as the AR(2)
model in [3.4.22] for the temperature data. The SE of estimation for both AR parameters in
[3.4.22] is 0.062 and each AR parameter in [3.4.28] is within one SE of the corresponding AR
parameter in [3.4.22]. This confirms that the MA(2) model in [3.3.12] is statistically the same as
the AR(2) model in [3.4.22].

Example Using the Tree Ring Model: The ARMA(1,1) model which is fitted to the
Douglas Fir tree ring series at Navajo National Monument in Arizona is given in [3.4.15]. This
model can be equivalently expressed as an inverted model by using [3.4.27] to obtain the &
weights. For the case of the ARMA(1,1) model, [3.4.27] becomes

a- 0.424B )Nk =¢;
where ¢, =0fork > 1 and mp=-1.
Whenk =1
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(1-0.4248)%; =0.682 or m; —0.424n,=0.682
Therefore, x; =-0.424 + 0.682 = 0.258.
Fork=2

(1-0.424B)x, =0 or x, —0.424%, =0
Hence, ; = 0.424x, = 0.424(0.258) = 0.109.
Whenk =3

(1-0.424B)r; =0 or n; —0.424x, =0
Therefore, ;3 = 0.424x, = 0.424(0.109) = 0.046.

The general expression for &, is
m, =0.424m,_, = (0.424) ', k>0

It can be seen from this equation that &, will decrease in absolute value for increasing lag. When
the ARMA(1,1) model is written using the &t parameters, the inverted form of the model is

(1-0.258B - 0.109B% - 0.046B> - - - - )(z, - 99.40) = q, [3.4.29]

Linear Filter Interpretation

The random shock form of the process in [3.4.18] can be considered in terms of a linear
filter. As shown in Figure 3.4.5, the white noise input passes through the linear filter y(B)
which transforms the white noise into the output (z, — ). Because of this, the random shock
operation y(B) is referred to as the transfer function or the filter. When the sequence formed by
the y weights is either finite or infinite and convergent, the filter is stable because the process z;
is stationary. For stationary processes y is the mean level about which the process varies. How-

ever, when the filter is unstable and the process is not stationary, by definition the process does
not fluctuate about any mean level and |t can be considered as a reference point.

White
Noise )
Input Ll.lleil’ Output
R Filter sy
a t v(B) z t~ A

Figure 3.4.5. Linear filter interpretation of the random shock model.
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Linear Difference Equations

Equation [3.4.4] for an ARMA(p,q) process constitutes what is called a linear difference
equation because the process is linear with respect to the AR and MA parameters. Similarly, the
random shock and inverted forms of the ARMA model in [3.4.18] and [3.4.25], respectively, are
also linear difference equations. Another example of a linear difference equation is [3.2.9] for
the theoretical ACF of an AR(p) process. Difference equations arise in time series modelling
because it is necessary to model time series which have values at discrete and evenly spaced time
intervals. On the other hand, differential equations are employed for modelling systems which
evolve over continuous time.

The solution of a linear difference equation is analogous to that for a linear differential
equation. The final solution for a linear differential equation consists of an equation which does
not possess any differentials. Similarly, the solution to a linear difference equation is an equa-
tion which does not contain entries which can be written in terms of the B operator. As is the
case for a linear differential equation, the general solution for a linear difference equation con-
sists of the summation of a complementary function plus a particular integral. For a brief
description of how to solve linear difference equations, the reader may wish to refer to Box and
Jenkins (1976, Appendix A4.1, pp. 114-119). Pandit and Wu (1983) make extensive comparis-
ons between linear stochastic differential and difference equations. In fact, these authors explain
how to obtain both difference and differential equations from a time series to represent the
underlying dynamic system and how to employ these equations for prediction, control and other
applications.

3.4.4 Constrained Models

As mentioned earlier, a primary objective in stochastic modelling is to adequately modet
the data using a model which possesses as few parameters as possible. The principle of model
parsimony can be achieved in practice by using a discrimination procedure such as the Akaike
information criterion (Akaike, 1974) (see Sections 1.3.3 and 6.3) in conjunction with diagnostic
checks (see Chapter 7). This can result in selecting an ARMA(p,q) model where some of the AR
and MA parameters which are less than order p and q respectively, are omitted from the model.
For instance, as shown in Section 3.2.2, the most appropriate model to fit to the average annual
flows of the St. Lawrence River at Ogdensburg, New York is an AR(3) model without the ¢

parameter. The difference equation for this model is given in [3.2.19]. Models which have some
of the parameters constrained to zero are referred to as constrained models. The option for omit-
ting model parameters can be done with both nonseasonal and seasonal models.

An interesting constrained model is the one which is fitted to the yearly Wolfer sunspot
number series in Section 6.4.3. This sunspot series is available from 1700 to 1960 in the work of
Waldmeier (1961). If it is deemed appropriate to fit an ARMA model to the sunspot series, it
turns out that the best ARMA model is an AR(9) model with ¢5 to ¢ left out of the model. In

addition, as is shown in Section 6.4.3, it is first necessary to take a square root transformation of
the data before fitting the constrained AR(9) model.

A constrained AR model is also referred to as a subset AR model. Research on this topic is
provided by authors such as Haggan and Oyetunji (1984) as well as Yu and Lin (1991). More-
over, subset autoregression is also discussed in Section 6.3.6.
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3.4.5 Box-Cox Transformation

As noted in Section 3.2.1, the g, series is always assumed to be independently distributed

and possess a constant variance about a zero mean level. In addition, it is often appropriate to
invoke the normality assumption for the residuals in order to obtain MLE’s for the model param-
eters (Chapter 6) and subsequently to carry out diagnostic checks (Chapter 7). When fitting
ARMA models to a given data set, the model residuals can be estimated along with the model
parameters at the estimation stage and model adequacy can be ascertained by checking that the
residual assumptions are satisfied. The independence assumption is the most important of all
and its violation can cause drastic consequences (Box and Tiao, 1973, p. 522). In fact, when the
independence assumption is violated it is necessary to design another model to fit to the data (see
Chapter 7). However, if the constant variance and/or normality assumptions are not true, they
are often reasonably well fulfilled when the observations are transformed by a Box-Cox transfor-
mation (Hipel et al., 1977; McLeod et al., 1977).

A Box-Cox transformation (Box and Cox, 1964) is defined by

AN+ =11 | a0
M= [3.4.30)
In(z, +c) , A=0

where ¢ is a constant. The power transformation in [3.4.30] is valid for z, + ¢ > 0. Conse-

quently, if all of the values in the time series are greater than zero usually the constant is set
equal to zero. When negative and/or zero values of z, are present it is usually most convenient to

select the constant to be slightly larger than the absolute value of the largest non-positive entry in
the time series.

Because the parameter values of an ARMA model fitted to a given time series are
unchanged by a linear transformation, the transformation in [3.4.30] is equivalent to

zt)' , A#0
M= [3.431]
Inz, , A=0

where the entries of the z, series are all greater than zero. The form of the Box-Cox transforma-

tion in [3.4.30] is preferable theoretically to that in [3.4.31] because the transformation in
[3.4.30] is continuous at A =0. By invoking L’Hopital’s rule, it can be shown that the transfor-
mation for A # 0 in [3.4.30] reduces to In(z, + ¢) in the limit as A approaches zero. When A =1,

this means that there is no power transformation.

After the entries in a time series have been changed by a transformation such as that given
in [3.4.30), or others discussed by Jain and Singh (1986), an appropriatt ARMA model can be
fitted to the transformed data. The equation for an ARMA(p,q) model for the z,o') series is

0(B)z™ - p) = 6(B)a, [3.4.32]

where | is the mean level of the z,(") sequence. Box-Cox transformations are useful when deal-
ing with both nonseasonal and seasonal time series. For notational convenience in later chapters
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often z® is simply written as z, where it is assumed that the series to which the model is fitted is

transformed using [3.4.30] whenever necessary. Finally, data transformations that can be con-
sidered when dealing with extreme values are referred to in Section 5.3.3.

3.5 THEORETICAL SPECTRUM

As noted in Section 2.6, most of the time series modelling and analysis methods presented
in this book are defined and used within the time domain. For example, the theoretical ACF and
PACEF for an ARMA model constitute time domain properties which are needed for model iden-
tification in Chapter 5. Based upon a knowledge of the general properties of the theoretical ACF
and PACEF, one can examine the characteristics of the sample ACF and PACEF for deciding upon
which parameters to include in an ARMA model to fit to a given data set.

The objective of this section is to define the theoretical spectrum for ARMA models and
present some graphs of the spectrum for specific kinds of ARMA models. As explained below,
the spectral density is simply the Fourier transform of the theoretical autocovariance function.
Consequently, the spectral density is simply the representation of the autocovariance function
within the frequency domain.

3.5.1 Definitions
Any stationary time series, z,, can be viewed as being composed of a limiting sum of
sinusoids of the form

A"COS(Zﬂf"t + a,-)

where f; is the frequency, A; is the amplitude and «; is the phase. The frequency varies from
-1/2 to 172 in cycles per unit time. The amplitude and phase components at frequency f; are

uncorrelated random variables with a mean of zero in each different realization of the time
series. The variance of the amplitude is determined by the spectrum which is defined in the next
paragraph. Those frequencies for which the spectrum, S(f), is large will contribute sinusoids
with greater amplitudes and thus represent more important sources of variation in the time series.

The Cramer spectral representation expresses the aforesaid facts in a more precise fashion.
Every covariance stationary time series with a mean of zero has the Cramer spectral representa-
tion [see for example, Kleiner et al. (1979, p. 319)]

172
z2,= | &2 dz(f) [3.5.1]
-1/2

where Z(f) for If1 <1/2 is a continuous stochastic process with orthogonal increments (so that
Z(fy) - Z(f) and Z(f,) — Z(f;) are uncorrelated whenever f; < f, < f3 < fy). The process Z(f)
defines the cumulative spectral density function F(f), by

F(f)=E [IZ(f)I2]
dF(f)=E [IdZ(f)12]



124 Chapter 3

F(-1/2)=0

F(/2)=var(z) =Y [3.5.2]
For most types of time series, the derivative of F(f) exists and the spectrum may be defined as

S(f)=2F'(f), 0sf<12 [3.5.3]

The factor of 2 on the right hand side of [3.5.3] allows for the fact that the spectrum is symmetric
about zero and hence only the spectrum in the range 0 < f < 1/2 needs to be considered. In addi-
tion to spectrum, other commonly used names for S(f) are spectral density, power spectral den-
sity, spectral density function, power spectral density function and power spectrum.

It follows from [3.5.1] and the orthogonal increment property of A(f) that

172

=12 [ ¥ 5(f) df
-12
172

=172 | (cos 2nfk +1i sin 2xfk) S(f) df

-12

12
= [ cos 2nfk S(f) df (3.5.4]
0
Fork =0,
172
Yo= { S(F) df (3.5.5]

Because of [3.5.5], the spectrum gives the distribution of the variance of the process over fre-
quency and the area under the spectral curve is the variance.

By taking the inverse transformation of [3.5.4], it follows that the spectral density function
is given by

S(f)=2 ¥ 7, cos 2nfk [3.5.6]
k=—co

The above equation shows that the spectrum is simply the Fourier transform of the autocovari-
ance function.

The spectrum can conveniently be written in terms of the autocovariance generating func-
tion. When an ARMA process is expressed as the random shock form of the process in [3.4.18],
the autocovariance generating function is given as (Box and Jenkins, 1976, p. 81)

¥(B) = c2y(B)yB™) [3.5.7]
where B~ is the forward shift operator defined by
Bz =z, and Bz =z,

Because the spectrum is the Fourier transform of the autocovariance function, it can be written in
terms of the autocovariance generating function in [3.5.4] as
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S(f) = 21" = 26 2y(e" yy(e )

=202 Iy(e~ )12 [3.5.8]
When utilizing the AR and MA operators, [3.5.8] for an ARMA process is given as
=202 |8
S(fy=20; ¢(e"2"f) [3.5.9]

To calculate the theoretical spectrum for an ARMA process, the sum of angles method (Robin-
son, 1967, p. 64; Otnes and Enochson, 1972, p. 139) can be used to recursively calculate the
sine and cosine terms (see [2.6.3] and [2.6.4]).

The normalized spectral density function is given by

s¢=39 [3.5.10]
Yo

Because s(f) is not a function of 03, it is often used instead of S(f). For the applications in this
section, the normalized spectral density is employed.

Examples: Consider obtaining the autocovariance function and the normalized spectrum for a
MA(1) process by employing [3.5.7] and [3.5.10], respectively. When using the autocovariance
generating function to ascertain 7, the coefficient of either B* or B* are examined in [3.5.7].

For a MA(1) process, y(B) = 1 — 6,B and the autocovariance generating function is
Y(B) =0;(1-8,B)(1-6,87")
=02(-0,B7 +(1+6}) - 0,B)
From the coefficients of the backward shift operator, the autocovariances are found to be
Yo=(1+6{)07
T1=-6,0;
Y%=0 k22
By utilizing [3.5.9], the spectrum for a MA(1) process is
S(f) =26211 - 8,(e72)12
=262[(1 - 8,cos2nf)? + (8;sin2xf)?]
=202(1 - 26,cos2nf +07)

From [3.3.10], the variance of a MA(1) process is (1 + 912)0'3 and, consequently, the normalized
spectrum is calculated using [3.5.10] as
2(1 - 28,cos2xf +67)

3.5.11
(1+63 [ ]

s(H)
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3.52 Plots of the Log Normalized Spectrum
For a white noise process, the normalized spectrum in [3.5.10] reduces to
S(H=2 [3.5.12)

Consequently, all frequencies are equally important for explaining the process and a graph of
S(f) against frequency would simply be a straight line.

When considering an AR(1) process the variance of the process is given in [3.2.16] as
62/(1 - ¢2). The normalized spectrum is calculated from [3.5.10] as

__a- h)
11 - ¢, 2|2
) 2(1-¢d
(1 - ¢,cos2nf 2 + (¢,sin2xf )2
2(1- 6D

[3.5.13]

T 1- 2¢,cos2xnf + o2

For ¢; > 0, the normalized spectrum in [3.5.13] is easily seen to be a steadily decreasing func-
tion for increasing frequency. This means that most of the variance of the time series can be
represented as low frequency sinusoids. When the natural logarithms of the normalized spec-
trum are plotted against frequency, this may improve the ability to distinguish important features
of the graph. The log normalized spectrums for AR(1) processes with ¢; =0.3 and ¢, =0.8 are
displayed in Figures 3.5.1 and 3.5.2, respectively. The spectrums are calculated at enough points
to cause the curves to appear to be smooth. As can be seen, low frequencies are dominant in
both of these figures and consequently the spectrums are said to be ‘‘red’’ (this is because red is
on the low frequency end of visible light in the electromagnetic spectrum). Furthermore,
because the process with ¢; = 0.3 is closer to white noise than the process with ¢; = 0.8, the log

normalized spectrum in Figure 3.5.1 is “‘flatter’’ than the plot in Figure 3.5.2.
When ¢, for an AR(1) process is negative, the spectrum is dominated by high frequencies.
Figures 3.5.3 and 3.5.4 are plots of the log normalized spectrum for ¢; =—0.3 and ¢; =—0.8,

respectively. As shown in these graphs, most of the variance is explained by high frequencies
terms in the “‘blue’’ end of the frequency scale. In addition, the upswing in the log normalized
spectrum in the high frequencies is more pronounced for the process with ¢; =-0.80 as com-

pared to the case when ¢, =—0.30.

Other theoretical spectrums can be readily examined by employing [3.5.10]. Of particular
interest are the spectrums of the models that have been fitted to various geophysical time series.
This is because a plot of the spectral density of a fitted ARMA model can be useful in obtaining
insight into important properties of the original time series.

Figure 3.5.5 shows a plot of the log normalized spectrum for the constrained AR(3) model
without ¢, that is fitted to the average annual flows of the St. Lawrence River at Ogdensburg,
New York. The difference equation for this model is given in [3.2.19]. As can be observed in
Figure 3.5.5, the low frequencies are most important for explaining the variance. From a
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LOG NORMALIZED SPECTRUM

Figure 3.5.1. Log normalized spectrum for an AR(1) process with ¢; =0.3.
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Figure 3.5.2. Log normalized spectrum for an AR(1) process with ¢; =0.8.
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Figure 3.5.3. Log normalized spectrum for an AR(1) process with ¢, =-0.3.
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Figure 3.5.4. Log normalized spectrum for an AR(1) process with ¢, =—0.8.
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physical point of view, this makes sense because the Great Lakes, that are located upstream from
Ogdensburg, have a dampening effect upon extreme weather conditions that may occur in a
given year. The enormous storage capacity of the Great Lakes produces a long term influence
upon the flows of the St. Lawrence River and, hence, low frequency terms are dominant in the
spectrum.

The MA(2) model that is fitted to the average annual temperature data in the English Mid-
lands is given in [3.3.12]. The plot of the log normalized spectrum for this model is presented in
Figure 3.5.6. The low frequency end of the spectrum is most important but the high frequency
terms also assist in explaining the variability in the series. Since the fitted model is in fact close
to white noise, the high points in the log normalized spectrum are spread over a wide range of
frequencies.

Figure 3.5.7 is a graph of the log normalized spectrum for the ARMA(1,1) model fitted to
the annual tree ring indices for Douglas Fir at the Navajo National Monument in Arizona. The
difference equation for the fitted model is given in [3.4.15]). As shown in Figure 3.5.7 the spec-
trum is red. This could be due to the fact that the growth of a tree for a given year may be highly
dependent upon the weather conditions over a long time span. For example, if the climate is
favourable for healthy growth over a rather long period of time, the tree may be hardy enough to
withstand severe weather patterns when they do arise without having its growth seriously
retarded.

A series of 5405 tree ring widths for Bristlecone Pine at Campito Mountain in Eastern Cali-
fornia from 3435 B.C. to 1969 A.D., is listed in units of 0.01 mm. The most appropriate ARMA
model to fit to the first 500 years of this series is an ARMA(4,3) model. As can be seen for the
log normalized spectrum for this model in Figure 3.5.8, there is a strong low frequency com-
ponent. The peak at 0.275 cycles/year corresponds to a period of 1/0.275 = 3.6 years. When a
plot of the first 500 years of the series is examined, it appears that a weak periodic component
may be present in the data.

After transforming the data using a square root transformation, the most appropriate model
to fit to the annual sunspot numbers is a constrained AR(9) model with ¢; to ¢g left out of the
model. This model is given in [6.4.3). The log normalized spectrum in Figure 3.5.9 for the sun-
spot model shows that the low frequencies are the most crucial for explaining the variance in the
series. As noted by Granger (1957), the periodicity of the sunspot data follows a uniform distri-
bution with a mean of about 11 years. This is confirmed by the peak in Figure 3.5.9 at a fre-
quency of slightly less than 0.1. The cumulative periodogram for the sunspot data in Figure
2.6.3 also possesses a dramatic jump at a frequency of about 1/11.
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Figure 3.5.5. Log normalized spectrum for the constrained AR(3) model without ¢,
that is fitted to the average annual flows of the St. Lawrence River at Ogdensburg, New York.
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Figure 3.5.6. Log normalized spectrum for the MA(2) model fitted to the average
yearly temperature data in the English Midlands.
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Figure 3.5.7. Log normalized spectrum for the ARMA(1,1) model fitted to the annual
tree ring indices for Douglas Fir at Navajo National Monument in Arizona.
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Figure 3.5.8. Log normalized spectrum for the ARMA(4,3) model fitted to the first
500 years of the Bristlecone Pine tree ring series at Campito Mountain, California.
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Figure 3.5.9. Log normalized spectrum for the constrained AR(9) model without ¢; to ¢g
that is fitted to the sunspot numbers series transformed using square roots.

3.6 PHYSICAL JUSTIFICATION OF ARMA MODELS

3.6.1 Environmental Systems Model of a Watershed

The main physical components of the hydrological cycle are shown in Figure 1.4.1. As
explained in Section 1.4.2, the hydrological cycle is the environmental system describing the dis-
tribution and circulation of water in all its forms on the surface of the land, underground and in
the atmosphere. When modelling any part of the hydrological cycle, one would like to employ
models that encapsulate the key physical characteristics of the subsystem being modelled. In
other words, one would desire to use models that are physically founded and thereby properly
describe the essential elements of the physical system.

For a substantial period of time, hydrologists as well as other environmental scientists have
been concerned with developing a physical basis for stochastic modelling. In 1963, for example,
Yevjevich examined the physical justification for using the AR(1) model in [3.2.3]. Moss and
Bryson (1974) looked at the physical basis of seasonal stochastic models, which are described in
Part VI of this book. Klemes (1978) as well as Salas and Smith (1981) provided a review of
research on the physical foundations of stochastic models used in hydrology. Moreover, Par-
lange et al. (1992) explained how an AR(1) model can be formulated on the basis of the hydrolo-
gic budget and soil water transport equation, and demonstrate that the model predictions com-
pare well with experimental results.
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Fiering (1967) entertained a watershed in which the annual precipitation is decomposed
into evaporation, infiltration and surface runoff. By employing the mass balance equation for
the groundwater storage, he found the correlation structure of annual streamflow as a function of
the correlation structure of precipitation which was assumed to be independent or else AR(1).
Salas and Smith (1981) demonstrated that the conceptual watershed model of Thomas and Fier-
ing leads to ARMA streamflows and ARMA groundwater storage. The objective of this section
is to point out some of the main findings of Salas and Smith (1981) so that the reader can fully
appreciate the physical justification for employing ARMA models in hydrology.

Figure 3.6.1 displays the environmental systems model for a watershed that Salas and
Smith (1981) utilize in their research. This systems model is, of course, a component of the
overall hydrological cycle depicted in Figure 1.4.1. In essence, the physical systems model in
Figure 3.6.1 shows how precipitation is transformed into runoff or annual riverflow.

Following the notation provided by Salas and Smith (1981) for the environmental model of
the watershed shown in Figure 3.6.1, let x, represent the precipitation in year . Assume that an
amount bx, of the precipitation evaporates and an amount ax, infiltrates through the soil into
groundwater storage. Therefore, (1 —a — b)x, = dx, represents the surface runoff that flows into
the rivers and streams. Moreover, let S,_; be the groundwater storage at the start of year ¢ and
assume that cS,_; is the groundwater contribution to runoff. In the above algebraic description of
the watershed model, it is necessary that0 < ab,c,d<land0<a+b < 1.

x = Precipitation

NN
SERE

bx, = Evaporation

(1=0-b)x,
= dxt

= Surface
Surface of Lond Runoff

axy = Infiltration \
Zt =
1 ‘ l Runoff

€S-4
Si{-1 = Groundwater Storage gy

Figure 3.6.1. Environmental systems model of a watershed.
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As shown in Figure 3.6.1, the total runoff or riverflow z, is composed of the direct surface
runoff dx, plus the groundwater contribution ¢S,_;. Accordingly,

2, =cS;_ +dx, [3.6.1]
Furthermore, the mass balance equation for the groundwater storage is

S, =(1-c)S;; +ax, [3.6.2]
The above two equations can be combined to obtain (Salas and Smith, 1981)

2, =(1=¢)z,y +dx; - [d(1 =) -aclx,,; [3.6.3]

When writing down the difference equations for the AR, MA, and ARMA models in Sec-
tions 3.2 to 3.4, respectively, the mean level W is subtracted from the variable z, being modelled.

Because of this, the theoretical mean of the g, innovations in these models is zero. In order to

compare the results of this section to the ARMA models, it is convenient to write equations
[3.6.1] to [3.6.3] in a similar fashion. More specifically, let p, 4, and p; be the theoretical

means for the variables z,, x, and S,, respectively. By replacing z,, x, and S, by (z, — ), (x, = i,)
and (S, — W), respectively, equations [3.6.1] to [3.6.3] can be equivalently rewritten as

z, —p=c(S,_y - W) +d(x, - 1) [3.6.4]
Si—Us=(1=c)S-) —Hy) +alx, — K,) [3.6.5]
Z—p=(1-c)z - W) +dx, - p,) — [d(1-c) - acl(x,—; — Hy) [3.6.6]

Based upon three different models for the precipitation, Salas and Smith (1981) derive the
models for the corresponding groundwater storage and riverflows. Below, the results of their
research are summarized for the three cases of independent, AR(1) and ARMAC(1,1) precipita-
tion.

3.6.2 Independent Precipitation
If the precipitation is independent, it can be written as
x —H)=a [3.6.7]

where ., is the mean of the total amount of precipitation x, falling in year ¢ and g, is IID(0,0})
as in [3.2.2). Substituting (x, — #,) from [3.6.7] into [3.6.5] produces

S, =i, =1 = ¢)(S,_y — Hs) +a(a) [3.6.8]

In terms of the groundwater storage variable S, the above relationship is simply an AR(1)
model. When the AR(1) model in [3.6.8] is compared to the one in [3.2.1] notice that S, replaces
2,, (1 = ¢) = ¢, and a constant a instead of unity is in front of the innovation term.

To find the relationship for riverflow, replace (x, — l,) by g, in [3.6.6] to obtain
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2z, -pu=(1-c)z-y— W +da, - [d(1 -c)-acla,_, [3.6.9]

The above expression for total yearly flow z; is simply an ARMA(1,1) model defined in [3.4.1].
One can employ [3.4.17] to write the theoretical ACF for the ARMAC(1,1) model as

P = (- c)pk—l fork >1 {3.6.10]
where p; is the theoretical ACF at lag k.
In summary, independent precipitation produces AR(1) storage as shown in [3.6.8]. Addi-
tionally, this kind of precipitation causes the ARMA(1,1) flow given in [3.6.9].

3.6.3 AR(1) Precipitation

As is demonstrated below for the watershed model in Figure 3.6.1, AR(1) precipitation
causes AR(2) groundwater storage and ARMA(2,1) runoff. From [3.2.1], an AR(1) model for
the precipitation x, is written as

O —H) =01 — 1) + g [3.6.11]

To determine the type of groundwater storage that this precipitation creates, substitute [3.6.11]
into [3.6.5] to get

S, =ty = (1= ¢ + 0,1 — 1) = (1 = (S — By) + (@)a, [3.6.12]

In terms of storage, [3.6.12] is an ARMA(1,1) model.
By combining [3.6.11] and [3.6.6], the riverflow generated by AR(1) precipitation is

Z-p=0-c+0)z - W -1 -0)1(z2—- 1)
+(d)a, - [d(1 - ¢) - acla,_, [3.6.13]

Hence, AR(1) precipitation causes ARMA(2,1) riverflows. From [3.4.13], the theoretical ACF
for this ARMA(2,1) model is

Pr = (1 -c+ ¢l)pk-l - (1 - c)¢lpk—2 fork > 1 [3.6.14]

3.6.4 ARMAC(1,1) Precipitation
The ARMAC(1,1) model for the precipitation x, in Figure 3.6.1 is written as
(= e) = 0100y — s) + 0 = B0, [3.6.15]
By substituting [3.6.15] into [3.6.5], the resulting groundwater storage is found to be
S;=pg =1 =c+ad)S_; — 1)+ (1-c)ad (5,2 - Ky) + (@)a, —abya,; [3.6.16]

which is an ARMA(2,1) model. When [3.6.15] is combined with [3.6.6], the model for riverflow
is
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Z=p=(1=-c+0)C- - -1 -0)1(z2- W
+ da, -[dl-c+ 01) -acla,_y - Ol[ac -d(1- C)]a,_z [3.6.17]

which corresponds to an ARMA(2,2) model. The theoretical ACF for the model in [3.6.17] is
obtained from [3.4.13] as

pe == +0)ppg — (1 = C),Psa fork >2 [3.6.18]

Table 3.6.1 summarizes the kinds of groundwater storage and streamflow models that are
created by the three different types of precipitation investigated in Sections 3.6.2 to 3.6.4. As
noted earlier, these results were originally derived by Salas and Smith (1981) for the environ-
mental systems model of the watershed displayed in Figure 3.6.1. The findings clearly demon-
strate that ARMA models possess a valid physical basis for modelling this kind of hydrologic
system. Consequently, in Parts III, IV and V of the book, ARMA models are fitted directly to
annual riverflow and other types of yearly environmental time series.

Table 3.6.1. Physical basis of ARMA models in hydrology.

Types of Resulting Models
Models for
Precipitation | Groundwater Storage | Streamflow Runoff
Independent AR(1) ARMA(1,1)
AR(1) AR(2) ARMA(2,1)
ARMA(1,1) ARMA(2,1) ARMA(2,2)
3.7 CONCLUSIONS

The AR and MA classes of models of Sections 3.2 and 3.3, respectively, are members of
the general family of ARMA models defined in Section 3.4. These models possess sound
theoretical designs and their important theoretical properties are known. For example, the
theoretical ACF’s for AR, MA, and ARMA models are derived in this chapter and a simple algo-
rithm for calculating the theoretical ACF of any ARMA model is given in Appendix A3.2.
Knowledge of the theoretical ACF structure of ARMA models is required for identifying the
most appropriate type of ARMA model to fit to a given data set. As explained in Part III, well
developed model construction tools are available for fitting ARMA models to stationary nonsea-
sonal time series by following the identification, estimation and diagnostic check stages of
model building. Practical applications in Part III clearly demonstrate that ARMA models are
ideally suited for describing stationary annual riverflow series as well as other kinds of environ-
mental data sets.

In addition to having a rigorous theoretical design and possessing comprehensive model
building tools, ARMA models possess other inherent assets for ensuring their successful applica-
tion in the environmental sciences. Firstly, the results of Section 3.6 confirm that there is valid
physical justification for employing ARMA models for fitting to yearly hydrologic time series.
For example, from Table 3.6.1 one can see that if the annual precipitation is ARMA(1,1), then
the groundwater storage must be ARMA(2,1) and the yearly streamflow runoff is ARMA(2,2).
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Secondly, in Chapter 10 it is clearly demonstrated using annual hydrologic data and simulation
experiments that ARMA models provide a logical explanation for the famous Hurst
phenomenon. More specifically, ARMA models are shown to preserve statistically what are
called the Hurst statistics, which are statistics that reflect the long term storage capacity of reser-
voirs. Thirdly, forecasting experiments using yearly hydrologic and other kinds of time series in
Chapter 8, show that ARMA models forecast at least as well and usually better than their com-
petitors. Finally, the basic ARMA model of Chapter 3 provides the solid foundations for
developing the long memory, seasonal, transfer function-noise, intervention and multivariate
models of Chapter 10, and Parts VI to IX, respectively. In fact, by introducing what is called the
differencing operator to remove nonstationarity, the ARMA model is extended in Chapter 4 so
that it can handle nonstationary annual time series.

APPENDIX A3.1
ALGORITHM FOR ESTIMATING
THE PARTIAL AUTOCORRELATION FUNCTION

The Pagano algorithm (1972) uses the following steps to estimate the PACF up to lag p for
a specified time series.
1. Determine the modified Cholesky decomposition (Wilkinson, 1965, p. 229) of the
estimated autocorrelation matrix R, given by

r

S U W
r 1 n c rp_2
rp rp 1 "t Tpo3
R,=|. . . . [A3.1.1]
hrp_l rp_2 rp_3 SR |

where r; is estimated using [2.5.9] and the theoretical ACF is defined in [2.5.4). The modi-
fied Cholesky decomposition of R, is

R,=L,D,L] [A3.1.2]

where L, is a unit lower triangular matrix defined by
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(1 0 0 - 0
ly10 -0
131 1321 tec 0
L= ,
.lpl lp2 lp3 cte l

D, is a diagonal matrix where dj, is the kth typical diagonal entry which is obtained from

i
d""lk" =r,‘_,- - ZkaI.U =bki ’ i= 1,2, cee ,k‘l
j=1

k-1
il

and

dp=1
where the sequence by; is defined by the algorithm.
Solve the triangular system of equations given by

La,=r, [A3.1.3]
where the unknown vector is

T

o, = (0,00, ..., Q)
and

rpT= (rpra, .- 01p)
Calculate the estimates ¢, of the PACF using

A ak
bp=——, k=12,....p [A3.14]
dkk

If the q‘;,g(i =1,2,...,k) are required for some k <p, they can be determined by solving
the triangular system of equations

\ ¢ \

‘Ekl 4311
Ox2 622
Lr=| =" [A3.1.5]
oue | |0
\ Y, \ J

From [3.2.13], the estimate for the variance of the white noise sequence for an AR model of
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order k is given by
G2(k) = co = Qy1¢1 = uaca— - = bt [A3.1.6]

Alternatively, the white noise variance for an AR(k) model may be estimated recursively
by employing

03(k) = o3k = 1)(1 - 63) [A3.1.7]
where

62(0)=co

which is the sample variance calculated using [2.5.2] for the given series.

APPENDIX A3.2
THEORETICAL ACF FOR AN ARMA PROCESS

When the parameters of either a nonseasonal or seasonal ARMA process are known, the
following algorithm of McLeod (1975) can be employed to determine the theoretical autocovari-
ance, v, and also the theoretical ACF, p,. For the case of a nonseasonal ARMA(p,q) model, the

algorithm is as follows:
1.  Setr=max(p,q) and g =6p=-1,co=1.

2. Then calculate

min(p k)
G=-0+ Y ¢ fork=12,... ,q.

i=1
q
3 Setby=-Y0,c;, fork=0,1,...,q,and seth, =0ifk >q.
i=k
4. Ifp=0thensety, =b,62fork=0,1,...,q; otherwise

(o] ()

7! b
“|=-A"] - | a2

u7’1 kb’A

where A is the (r + 1) by (r + 1) matrix with (i,j) entry:
¢,~_j,j=l,i=1,2,....r+l
A= |0+ 0jo i =23, r4li=12, ..., rH]
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¢k,k=0,l, veesP
O = 0, otherwise

For k > r = max(p,q) calculate v, recursively from

Te = 0 Yi-1 + 0Ve2+ - TNy
Divide v; by Yo to obtain p; fork =1,2,....

PROBLEMS

Two stochastic processes, z;, and z,,, have theoretical autocovariance functions at lag k of
Y1« and Yy, respectively, where v, =0 for k > 2 and ¥y, =0 for k > 3. Derive the theoreti-
cal autocorrelation function (ACF) for the process z3, = z;, + bz, in terms of the theoretical
autocovariance functions for z;, and z;, where b is a constant. Assume that z,, and z,, are
independent of one another.

Using equations, clearly explain how Cholesky decomposition works.

For an AR(2) process given by
(1-1.1B +0.24B%z, = q,

a) calculate p,

b) using p, as starting values for the difference equation in [3.2.9], determine p,,
k=23,...,12,

c) plot the ACF for this model and comment about its behaviour.

A constrained AR(3) model without the second AR parameter, ¢,, is written as

(1-0:8 -8z - W =4,
From basic principles, derive the Yule-Walker equations for this specific AR model.

Compare the advantages and disadvantages of using the following three methods for
estimating the PACF. Briefly explain how each method works.

a) Cramer’s rule,
b) Durbin’s method [see Box and Jenkins (1976) and also Durbin (1960)],
¢) Pagano’s (1972) technique.

Using equations, explain how the Burg algorithm works for estimating the parameters of an
AR(p) model. As an example, show how the Burg algorithm is employed for estimating
the parameters of an AR(2) model.
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3.7 From first principles, derive the theoretical ACF for a MA(2) process. Using the Yule-
Walker equations, determine the theoretical PACF for this process.

3.8 For the ARMA(1,1) process in [3.4.2], derive the two main equations that are required to
solve for ;, the theoretical autocovariance function of this process. Use these equations to

solve fory, k£ =0,1,2,... .
3.9 An ARMA model is written as
(1-0.88 +0.128%)z, = (1 - 0.2B)q

Prove whether or not this model is stationary.

3.10 Using the hints given with [3.4.20), prove that for stationarity, the roots of ¢(B) =0 must
lie outside the unit circle.

3.11 An ARMA(p.q) model is given as
(1-0.7B)z, = (1 - 0.4B - 0.21B%)q,

Prove whether or not this model is invertible.

3.12 The constrained AR(3) model for the annual flows of the St Lawrence River at
Ogdensburg, New York, is given in [3.2.19] as

(1-0.6198 - 0.17783)(2, -6818.63)=gq,

Write this model in inverted form.
3.13 For the ARMA(1,1) model in [3.4.2), determine
a) the parameters y, y, and v; in the random shock operator, and

b)  the parameters n;, m, and &5 in the inverted operator.
3.14 Express the model given by
(1-0.6B)(z; - 15)=(1-0.8B)a,
in
a) random shock form, and
b) inverted form.

3.15 Prove that the Box-Cox power transformation in [3.4.30] is continuous at A = 0.

3.16 One method for causing non-normal data to become normal is to invoke the Box-Cox
transformation in [3.4.30). Subsequent to this, an ARMA(p,q) model can be fitted to the
data that now approximately follow a normal distribution. Other approaches are also avail-
able for modelling non-normal data. Describe other transformations suggested by Jain and
Singh (1986) for applying to non-normal data sets. Briefly explain how Lewis (1985) and
other authors cited in his paper handle the problem of modelling data that do not follow a
normal distribution.

3.17 By employing [3.5.7] and [3.5.10], obtain the autocovariance function and normalized
spectrum for an
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a) AR(1) model, and
b) ARMA(1,1) model.

3.18 An environmental systems model of a watershed is depicted in Figure 3.6.1. Suppose that
the precipitation input to this system is ARMA(2,1). Derive the types of models that this
precipitation causes for groundwater storage and streamflow runoff. Write down the
theoretical ACF’s for the precipitation, groundwater storage and runoff models.

3.19 Section 3.6 explains how ARMA models can realistically describe the watershed system
displayed in Figure 3.6.1. Investigate the validity of ARMA models for describing another
environmental system such as a system of reservoirs or a sewage treatment facility.
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