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PART III
MODEL CONSTRUCTION

In Part II, a range of flexible types of nonseasonal models are defined and some useful
theoretical properties of these models are presented. More specifically, Chapter 3 describes
AR, MA, and ARMA models, which can be applied to stationary nonseasonal time series.
Chapter 4 deals with ARIMA models which can be fitted to nonstationary nonseasonal time
series. Within Chapters 3 and 4, it is pointed out that one can decide upon which particular kind
of model to fit to a given data set by selecting a model whose theoretical properties are compati-
ble with the statistical properties of the time series. For example, if the sample ACF of the data
only has values which are significantly different from zero at lags one and two, one may wish to
fit a MA(2) model to the time series because it is known that the theoretical ACF of a MA(2)
model is exactly equal to zero after lag 2 (see Section 3.3.2). Although the foregoing and other
aspects of how to fit models to data are described in Part II, there are many other valuable tools
that are required in order to use the theoretical models of Part II in practical applications. Conse-
quently, the major objectives of Part III are to present a comprehensive methodology for
applying theoretical models to actual time series and to describe a wide range of useful
tools for implementing this methodology in practice.

The overall methodology to fitting models to data is referred to as model construction. As
portrayed in Figure III.1 and also Figure 1.3.1, model construction consists of identification, esti-
mation and diagnostic checking. Before starting these three model development stages, one
must decide upon which families of models should be considered for fitting to a time series. If,
for example, one wishes to determine the most appropriate model to fit to a stationary nonsea-
sonal time series, then the ARMA(p,q) models defined in Chapter 3 can be entertained. At the
identification stage the most suitable models to fit to the data can be selected by examining
various types of graphs. Although sometimes it is possible to choose the best model based
solely upon identification results, in practice often it is not obvious which model is most
appropriate, and hence two or three models must be tentatively entertained. For the case of
ARMA(p,q) models, one must determine the number of AR and MA parameters which may be
needed in the model. Efficient estimates of the model parameters can be obtained at the estima-
tion stage by employing the method of maximum likelihood. Following this, the fitted models
can be checked for possible inadequacies. If the diagnostic tests reveal serious model anomo-
lies for the fitted model which appears to be most appropriate, then the necessary model modifi-
cations can be made by repeating the three stages of model development. As shown in Figure
I11.1, the model which is ultimately selected can then be used for application purposes.
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Figure III.1. Model construction.

Specific model construction tools that can be used with the theoretical models of Part Il
are described in Part III. In particular, useful identification, estimation and diagnostic check
techniques are presented in Chapters S to 7, respectively. When applying the many other
kinds of models described later in this book in Parts V to IX, one can follow the same basic
methodology given in Figure III.1. As a matter of fact, many of the methods and algorithms
presented in Part III, or appropriate variations thereof, can be used as part of the model building
for the other kinds of models in this book.

Adherence to the three phases of model development is analogous to a client obtaining a
tailor-made suit from a merchant. When the customer enters the tailor’s shop, he must decide
upon the style and colour of the suit that he wants and the tailor then "identifies" the pattern for
the suit by taking appropriate measurements of his client. At the next stage, the tailor cuts out
his pattern on a bolt of cloth and sews the suit together. Finally, the customer determines if the
suit fits properly by trying on the new clothing and viewing himself in front of a mirror. If
alterations are required, the tailor can take suitable measurements and then make the necessary
adjustments to the suit. This procedure can be repeated until the client is satisfied with his new
attire. The details of the tailor’s three step approach to doing business are now described in the
next three chapters.
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CHAPTER S
MODEL IDENTIFICATION

5.1 INTRODUCTION

Because observations measured from natural phenomena possess an inherent probabilistic
structure, time series models are employed for modelling water resources and environmental sys-
tems. The purpose of this chapter is to present informative graphical methods for identifying the
most appropriate type of ARMA (Chapter 3) or ARIMA (Chapter 4) model to fit to a specified
nonseasonal sequence of observations. Following a discussion of modelling philosophies in the
next section, some useful graphical techniques are described in Section 5.3. Applications
presented in Section 5.4, as well as identification examples introduced in Part II, clearly demon-
strate that the identification methods can be conveniently applied in practice to natural time
series. Prior to the conclusions, other identification methods for designing ARMA and ARIMA
models are discussed in Section 5.5.

As shown in Figure I11.1, the next step after model identification is parameter estimation.
In Chapter 6 procedures are given to obtain efficient estimates for the parameters of a nonsea-
sonal ARMA or ARIMA model and it is explained how an information criterion can be
employed for model selection after the value of the maximized likelihood is known. Chapter 7
then deals with methods for checking the adequacy of the fitted models to ensure that relevant
modelling assumptions have not been violated. Although only nonseasonal models are con-
sidered in Chapters 5 to 7, the three stage approach to model construction is also utilized for the
other types of stochastic models which are discussed in this book. Furthermore, numerous prac-
tical applications demonstrate the flexibility and usefulness of the procedures which are
presented.

5.2 MODELLING PHILOSOPHIES

5.2.1 Overview

Hydrologists are aware of certain types of problems which arise when modelling natural
time series and these issues are outlined in Section 5.2.2. Since the practitioner is usually con-
fronted with selecting the most suitable model from a large set of possible models for fitting to a
given time series, the general topic of model discrimination is addressed in Section 5.2.3. When
choosing the most appropriate model, the fundamental modelling principles of Section 5.2.4 can
be satisfied by following the three stages of model building described in the general introduction
to Part I as well as Section 5.2.5. Other issues related to the philosophy of model building are
discussed in Section 1.3. Finally, for an overview on the philosophy of model building as well
as an earlier version of the ideas expressed in this section, readers can refer to a paper presented
by Hipel (1993) at a stochastic hydrology conference held in Peniscola, Spain, in 1989.
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5.22 Hydrological Uncertainties

Engineers are concerned with the role that uncertainty plays in the design, analysis, opera-
tion and control of water resource and environmental systems. When a stochastic or time series
model which is fitted to a hydrological time series is to be employed in various water resources
applications, three types of uncertainties have been delineated (Kisiel and Duckstein, 1972;
Wood and Rodriguez-Iturbe, 1975; Vicens et al., 1975; Wood, 1978). Firstly, there is natural
uncertainty which is the uncertainty inherent in the natural phenomenon itself. By fitting a suit-
able time series model to the time series measured from the phenomenon under consideration, it
is hoped that this natural uncertainty will be reflected in the mathematical structure of the model.
Because the parameters of the model must be estimated statistically from a finite amount of his-
torical data, the second kind of uncertainty is labelled parameter uncertainty. Finally, due to the
fact that a particular model of the phenomenon may not be the "true" or best model, this creates a
third category of uncertainty which is model uncertainty. Since the latter two types of uncer-
tainty are dependent upon the available data, these have been jointly referred to as information
uncertainties (Vicens et al., 1975).

Traditionally, the field of stochastic hydrology has been mainly concerned with the prob-
lem of natural uncertainty. A host of stochastic models have been developed to model natural
time series and many of these models are discussed throughout this book. For instance, in addi-
tion to ARMA models, fractional Gaussian noise models and approximations to FGN have been
suggested for modelling annual geophysical data sequences (see Part V). Parameter uncertainty
can be measured by the standard errors for the parameter estimates and a procedure for incor-
porating parameter uncertainty into simulation studies is presented in Section 9.7. As reported
by hydrological researchers (Vicens et al., 1975; Wood, 1978), little work has been done regard-
ing the issue of model uncertainty. Consequently, within this chapter as well as other parts of
the book, methods are described for alleviating the problem of model uncertainty. Finally, Beck
(1987) provides a comprehensive review of the analysis of uncertainty in water quality model-
ling.

5.2.3 Model Discrimination

Model uncertainty arises because the practitioner must select the most appropriate model
from the total array of models which are available for fitting to a given time series. Hence,
discrimination procedures are required for choosing the most suitable model. The basic idea
behind model selection is to choose a model from the set of models under consideration such
that the selected model describes the data best according to some criterion. Ljung (1978)
presents a unified description of model discrimination methods and other comprehensive articles
can be found in the available literature (see for example Caines (1976, 1978) and Kashyap and
Rao (1976)). Criteria for choosing the most suitable model include the capability of a model to
satisfy the identification standards in Sections 5.3.2 to 5.3.7, the requirement that the model resi-
duals pass sensitive diagnostic checks (see Chapter 7), the ability of a model to forecast accu-
rately (see Table 1.6.3 for a summary of the forecasting work in the book), the capability of a
model to preserve important historical statistics (see Sections 10.6 and 14.8 for nonseasonal and
seasonal models, respectively), and other methods which are discussed in Section 6.3. A particu-
larly flexible approach to model discrimination is the Akaike information criterion (AIC)
(Akaike, 1974) which is described in Section 6.3 and initially referred to in Section 1.3.3.
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5.2.4 Modelling Principles

An attractive feature of the AIC is that it automatically accounts for the certain fundamen-
tal modelling principles. As expressed by the principle of Occam’s razor described in Section
1.3.1, one precept of stochastic model building is to keep the model as simple as possible. This
can be effected by developing a model which incorporates a minimum number of parameters in
order to adequately describe the data. Box and Jenkins (1976) recommend adhering to the prin-
ciple of model parsimony (i.e. keeping the number of model parameters to a minimum) and this
rule has also been of concern to hydrologists (see, for example, Jackson (1975), Tao and Delleur
(1976), Hipel et al. (1977) and McLeod et al. (1977)). Besides designing a parsimonious model,
a second modelling tenet is to develop a model that imparts a good statistical fit to the data. To
achieve a good statistical fit, efficient estimates must be obtained for the model parameters
(Chapter 6) and the fitted model must pass rigorous diagnostic checks to insure that the underly-
ing modelling assumptions are satisfied (Chapter 7).

5.2.5 Model Building

In practice the key modelling doctrines of parsimony and good statistical fit can be satisfied
by following the identification, estimation and diagnostic check stages of model construction.
This common sense approach to model development has been advocated by both statisticians
and engineers (see for example Box and Jenkins (1976), Box and Tiao (1973), Kempthorne and
Folks (1971), Tao and Delleur (1976), and Hipel et al. (1977)). A flow chart for carrying out
model construction is displayed in Figure II.1. As is explained in Section 6.3, an information
criterion can be used in conjunction with the three model building stages in order to arrive at a
simple model which fits the data well.

S.3 IDENTIFICATION METHODS

5.3.1 Introduction

When modelling a given data set a large number of models are often available for con-
sideration. The purpose of the identification stage is to ascertain the subset of models that
appear to hold more promise for adequately modelling the time series. For the case of nonsea-
sonal ARIMA models it is necessary to determine the order of differencing if homogeneous non-
stationarity is present, to ascertain the approximate number of AR and MA parameters that are
required, and possibly to decide if a Box-Cox transformation is needed (see Section 3.4.5 for a
discussion of the Box-Cox transformation). When the observations are stationary, differencing
is, of course, not required and one must only decide upon the ARMA model parameters that are
needed for adequately describing the time series that may be transformed using a Box-Cox
transformation. By employing the simple graphical identification tools described in this section,
usually the number of models which are worthwhile entertaining can be reduced to just a few
models. In many applications, the best ARMA or ARIMA model is readily evident from the
identification studies. Although each identification technique is discussed separately, in practi-
cal applications the output from all the techniques is interpreted and compared together in order
to design the type of model to be estimated.
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5.3.2 Background Information

Important ingredients to the identification stage are a sound understanding of the
phenomenon being modelled and also an appreciation of the mathematical attributes and limita-
tions of the stochastic models that are being considered to model the observations from that
phenomenon. For example, as noted in Section 2.4.1 it is often reasonable to assume that sta-
tionary models can be fit to many kinds of annual hydrological and geophysical series of up to a
few hundred years in length if the series have not been significantly influenced by external
interactions. When there are external interventions such as certain types of land use changes, the
effects of the interventions upon the mean level of the time series being modelled can be readily
handled by employing the intervention model of Part VIII. However, when no interventions are
present, it is argued in Chapter 10 that the inherent mathematical properties of the ARMA
models make these models more attractive for modelling annual data than the less flexible frac-
tional Gaussian noise models. This fact is further substantiated by using rigorous discrimination
procedures to determine which type of model is more suitable according to criteria such as the
Akaike information criterion (see Section 6.3) and also forecasting ability (see Chapter 8).

No matter what class of models is being entertained for modelling a given time series, the
success of any modelling study is of course highly dependent upon the quantity and quality of
the data (see Sections 1.2.3 and 19.7). With regard to the minimum amount of information that
should be available when fitting a model to a time series various "rules of thumb" have been sug-
gested. In a typical ARIMA modelling application of nonseasonal data it is usually preferable
that there be a minimum of about 50 data points to get reasonably accurate MLE’s (maximum
likelihood estimates) for the model parameters (Box and Jenkins, 1976). For a fixed number of
model parameters, the smaller the number of observations the larger the SE’s (standard errors) of
the parameter estimates will be and, hence, the relative magnitude of the SE’s and parameter
estimates can be examined when there are not many data points. If the SE’s are quite large, the
fitted model should be used with caution in certain kinds of applications and for simulation stu-
dies it may be advisable to consider parameter uncertainty as is discussed in Section 9.7.
Another means to check roughly if there are sufficient data is to consider the ratio of the number
of observations to the number of model parameters. If this ratio is less than three or four to one,
some researchers have recommended either a more parsimonious model should be employed or
else the model should not be utilized until more information becomes available. Consequently,
because seasonal models (see Part VI) almost always require more parameters than nonseasonal
models the minimum number of data points needed is lower for nonseasonal models.

Nonseasonal models are fitted to data such as annual riverflows and precipitation series
which must be collected over quite a few years. Accordingly, for present day purposes the
design of a data collection procedure may not be of immediate concern to the modeller since
only the information which is currently available can be used when fitting stochastic models to
observed time series. Nonetheless, the quality of data can be greatly enhanced by collecting the
information properly and, consequently, network design is of great import to engineers (see Sec-
tion 1.2.3). Knowihg the mathematical properties of the model which may be eventually used to
analyze the collected data may aid in the design of the data collection scheme. For example,
Lettenmaier et al. (1978) suggest how data should be collected based upon the power of the
intervention model (see the discussion in Section 19.7).
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After a data collection scheme has been implemented, various factors can affect the quality
of a data set. If there are errors in the measurement of the time series, this may influence the
form of the model which is fitted to the data sequences. When the measurement errors are
known, they should be removed before fitting a model to the time series. Systematic errors may
adversely affect the estimates for the AR and MA parameters whereas random measurement
errors may inflate the size of the estimated variance for the model residuals.

Often there are one or more missing values in a given time series. This is especially true
for an environmental time series such as water quality measurements where data are sometimes
not collected on a regular basis. When measuring riverflows, the measuring gauge may break
down occasionally or perhaps may become inaccessible during severe climatic conditions and
hence methods are needed to estimate the missing information. In Section 19.3, a number of
useful approaches are described for estimating missing observations. For example, when there
are only a few missing values, a special type of intervention model can be used.

When there is a known intervention, this can be accounted for by properly designing an
intervention model (see Part VIII). For example, in Section 19.2.4, the effect of the Aswan dam
upon the average annual flows of the Nile River is conveniently modelled using the method of
intervention analysis. However, in certain situations the time of occurrence of an intervention or
the fact that there was an intervention may not be known. For instance, the date when a precipi-
tation gauge was replaced by a new type of gauge may not have been recorded and eventually
the changing of the gauge may have been completely forgotten. Likewise, the relocation of a
precipitation gauge may not have been written down in the book where the historical data are
listed. Potter (1976) maintains that some precipitation time series in the United States may be
"non-homogeneous” due to unknown interventions such as those just mentioned. Whatever the
reason, unknown interventions sometimes occur and should be watched for when analyzing data
sequences so that the series can be properly modelled.

To check for the presence of unknown interventions and also other statistical characteristics
of a given time series, simple graphical procedures can be employed. Tukey (1977) refers to the
numerical detective work required to discover important properties of the data as exploratory
data analysis. A wide variety of simple graphical and numerical methods are available for use in
exploratory data analysis. These methods are especially useful for dealing with messy environ-
mental data, which may, for example, have many missing observations, be nonnormally distri-
buted and possess outliers. A detailed discussion of exploratory data analysis is presented in
Part X along with extensive water quality applications while introductory comments are put for-
ward in Section 1.2.4. The exploratory data analysis methods described in Section 22.3 are:

1. time series plots (Section 22.3.2);

2.  box-and-whisker graphs (Section 22.3.3);

3. cross-correlation function (Section 22.3.4);

4. Tukey smoothing (Section 23.3.5);

5. autocorrelation function (Section 23.3.6 and [2.5.4]).

In this section, exploratory techniques which are specifically well designed for identifying
ARMA or ARIMA models are discussed. Section 5.3.3 and also Section 22.3.2 explain how a
plot of the time series under consideration can reveal many of the essential mathematical
features of the data. After surveying the general properties of the series using a plot of the series
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or other exploratory data analysis tools, the identification techniques described in Sections 5.3.4
to 5.3.7 are employed for determining the approximate orders of the operators of an ARMA or
ARIMA model which could be fitted to the time series.

After a model has been fitted to the sample data, confirmatory data analysis techniques can
be employed to investigate the capabilities or characteristics of the fitted model (Tukey, 1977)
and, hence, the data set it describes. For example, in Section 10.6 it is shown how significance
testing can be used to determine whether or not important historical statistics are preserved by
the fitted model. In Section 8.3 the relative forecasting performance of the different kinds of
nonseasonal models are examined. A general description of both exploratory and confirmatory
data analysis is presented in Sections 1.2.4 and 22.1 as well as the overview to Part X.

5.3.3 Plot of the Data

A visual inspection of a graph of the given observations against time can often reveal both
obvious and also less apparent statistical characteristics of the data. Identification information
which may be gleaned from a perusal of a graph include:

1)  Autocorrelation - Linear dependence existing among observations may cause certain types
of loose patterns in the data. For instance, at certain sections of the time series the observa-
tions may be consistently above an overall mean level whereas at other locations values
below the mean level may be grouped together. Hydrologists refer to this property as per-
sistence and from a statistical viewpoint this means that the data are probably autocorre-
lated. The form of the data set displayed in Figure 2.3.1 shows that the historical observa-
tions of the annual flows of the St. Lawrence River at Ogdensburg, New York are corre-
lated. The same conclusion holds for the simulation sequences in Figures 2.3.2 and 2.3.3
which were generated by the AR model in [3.2.19] fitted to the St. Lawrence flows. A
situation where the data do not seem to follow any kind of pattern may indicate that the
time series is white noise. The behaviour of a white noise sequence is exemplified by the

“simulated white noise series in Figure 4.3.2.

2) Seasonality - Usually it is known in advance whether or not a data set is seasonal and a
graphical display will simply confirm what is already obvious. For geophysical data
seasonality is of course caused by the annual rotation of the earth about the sun and hence
usually only annual data are nonseasonal. Figure V1.1 at the start of the part of the book on
seasonal models displays a graph of the average monthly flows in m3/s of the Saugeen
River at Walkerton, Ontario, Canada, from January 1915 until December 1976. The cyclic
behaviour of the graph demonstrates that the series is indeed seasonal. Three types of sea-
sonal models for fitting to time series are described in Chapters 12 to 14 in Part V1.

In certain situations it may not be obvious before examining a plot of the data whether or
not a given series is seasonal. This may be the case for a socio-economic time series such
as monthly water demand for a highly industrialized city located in a temperate climate.
Some types of monthly or weekly pollution time series may also exhibit nonseasonality.
For example, in Section 19.4.5 a nonseasonal intervention model is fitted to the series of
monthly phosphorous levels in a river shown in Figure 1.1.1.

3) Nonstationarity - The presence of nonstationarity is usually suspected or known before
plotting the time series. The explosive type of nonstationarity which is discussed in Sec-
tion 4.2 may be indicated by plots similar to those given in Figures 4.2.1 and 4.2.2.
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4)

5)

6)

Examples of homogeneous nonstationarity described in Section 4.3 are shown in Figure
4.3.1 and also Figures 4.3.3 to 4.3.5. Other illustrations of homogeneous nonstationarity
are displayed by the annual water use series in Figure 4.3.8, the yearly electricity consump-
tion in Figure 4.3.10, and also the Beveridge wheat price indices in Figure 4.3.15. These
figures clearly indicate various manners in which data may not follow an overall mean

. level.

Trends - The presence of trends in the data is a form of nonstationarity. As discussed in
Section 4.6, trends can be classed as either deterministic or stochastic. Deterministic trends
can be expressed as a function of time as shown in [4.6.1] whereas stochastic trends can
often be accounted for by using the differencing operator of sufficiently high order in
[4.3.3]. If trends are present in the plot of a data that do not appear to follow the path of a
deterministic function but rather evolve in a stochastic fashion, then differencing may
account for these trends. Trends may not only affect the level of a series but they may also
be associated with changes in variance in the series. Consider, for example, the average
monthly water useage in millions of litres per day depicted in Figure V1.2 for the city of
London, Ontario, Canada, from January, 1966, until the end of December, 1988. This fig-
ure reveals that the water demand data fluctuates in a cyclic pattern due to the seasonality
and contains a linear trend component coupled with an increase in variance in later years as
the data spreads further apart around the linear trend for increasing time. An appropriate
Box-Cox transformation from [3.4.30] has the effect of pulling the data together and reduc-
ing the change in variance over time for the time series given in Figure V1.2 and modelled
in Section 12.4.2.

Need for a transformation - Figure V1.2 is an example of a data plot where it appears from
a graph of the original data that a Box-Cox transformation is needed. If a transformation is
required but this fact is not discovered at the identification stage, the need for a data
transformation will probably be detected at the diagnostic check stage of model develop-
ment when the properties of the residuals are examined (see Chapter 7). In practice, it has
been found that a transformation of the data usually does not affect the form of the model
to fit to the data (i.e. the orders of p, d and ¢q in an ARIMA(p,d,q) model). However, this is
not true for all situations and as pointed out by Granger and Newbold (1976), certain
transformations can change the type of model to estimate. Consequently, when a specific
form of transformation is decided upon at the identification stage, it is preferable to com-
plete all three stages of model construction using the transformed data. On the other hand,
if the requirement for a Box-Cox transformation is not determined until the diagnostic
check stage, it is usually not necessary to repeat the identification stage for the transformed
data. Instead, the parameters of the model can be estimated for the transformed data and
only if diagnostic checks reveal the model is unsatisfactory would it be necessary to return
to the identification stage to ascertain the proper orders of p, d and q.

Extreme values - The presence of extreme values or outliers is easily detected in a graphical
display of the data. When dealing with riverflow time series, large values could be due to
excessive precipitation while extremely low flows occur during times of drought. If inves-
tigation into the collection and processing of the data indicates that the extreme values
appear to be correct, various courses of action are available to ensure that the outliers are
properly handled. When an outlier is caused by a known external intervention, an interven-
tion component can be introduced into the model to allow for this (see Chapter 19).
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7)

8)
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Sometimes a transformation such as a Box-Cox transformation (see Section 3.4.5) may
reduce undesirable consequences that outliers may have in stochastic model building. For
example, taking natural logarithms of the data may pull the observations together so that
the outliers do not have a significant detrimental effect upon the residuals of the fitted
model. Other types of data transformations are also discussed by Granger and Orr (1972).
Of particular interest is the method of data clipping which was also used for various types
of applications by Tukey (1962), Rothenberg et al. (1964), Fama and Roll (1968, 1971) and
Rosenfeld (1976). To clip the time series, the data are firstly ranked from smallest to larg-
est. If it is desired to clip only the larger observations, the last k percent of values are
replaced by the mean of the remaining (100-k) percent of data. When it is required to clip
both the smaller and larger outliers, the last k/2 percent and also the first k/2 percent of
values can be removed and then replaced by the mean of the remaining (100-k) percent of
data. If the clipped and unclipped time series produce similar results at the three stages of
model construction, then the outliers do not hinder the stochastic model building procedure.
However, if the results differ, appropriate action may be taken. For instance, after
transforming the data using a Box-Cox transformation, the models which are selected to fit
to both the clipped and unclipped data of the transformed time series, may be the same.
Rosenfeld (1976) discusses the use of data clipping in model identification. If, for exam-
ple, an important identification feature such as a large value of the sample ACF at a given
lag appears for both the clipped and unclipped data, it is likely to be a true feature of the
model. On the other hand, Rosenfeld (1976) claims that if a significant identification
characteristic in the original time series is lost by clipping, it is probably the result of coin-
cidentally placed extreme outliers. In situations where clipping results in an identifying
feature which does not appear in the original identifying function such as the sample ACF,
it is probably caused by the clipping and is not a true feature of an underlying model.

Long term cycles - Often natural data sets are too short to detect any long term cycles
which, for instance, may be due to gradual changes in climate. However, tree ring index
series are available for time spans of thousands of years (Stokes et al., 1973) and hence for
certain data sets it may be possible to graphically detect long term cycles.

Known or unknown interventions - The effects of a known intervention can often be
detected by an examination of the plot of the time series. For example, Figure 19.2.1
clearly portrays the drop in the mean level of the annual flow of the Nile River at Aswan,
Egypt, due to the construction of the Aswan dam in 1902. The yearly flows are calculated
for the water year from October 1st to September 30th of the following year and are avail-
able from October 1, 1870 to October 1, 1945. An intervention model for the Nile River
data is designed in Section 19.2.4.

When a data plot indicates that there may be a significant change in the mean level due to
an unknown intervention, an investigation should be carried out to see if a physical reason
can be found. For instance, as discussed in Section 5.3.2 precipitation records may be sig-
nificantly affected by changing the type gauge. If it is ascertained that there is a physical
cause for the mean level change, an intervention model can be developed (see Part VIII).
Alternatively, the apparent change in the mean of the series may only be due to inherent
natural fluctuations in the series and a regular ARMA model may adequately model the
data.
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5.3.4 Sample Autocorrelation Function

By utilizing [2.5.9], the sample autocorrelation function (ACF) of a time series can be cal-
culated and then plotted against lag k up to a maximum lag of approximately N/4 where N is the
length of the series. If the theoretical ACF is assumed to be zero after lag ¢, [2.5.11] can be used
to calculate confidence limits. When it is not certain beyond which lag p; is zero, it is often con-

venient to start out by plotting the confidence limits for white noise (i.e. p; is assumed to be zero
after lag zero).

As noted in Section 5.3.3, it is often known in advance whether or not the series under con-
sideration is nonstationarity. A plot of the series will usually reveal nonstationarity, although
when the data are only marginally nonstationary it may not be certain as to whether differencing
is required to account for homogeneous nonstationarity. In Section 4.3.2 it was explained why
the ACF of a process which possesses homogeneous nonstationarity attenuates slowly. Conse-
quently, when the sample ACF of the given nonseasonal data set dies off slowly it may be advis-
able to difference the data once. If the sample ACF of the differenced series still does not damp
out quickly, the series should be differenced again. The data should be differenced just enough
times to remove the homogeneous nonstationarity which in turn will cause the sample ACF to
die off rather quickly. When differencing is required, usually it is not greater than 2 for nonsta-
tionary series which arise in practice.

Following differencing, the resulting stationary w, series of length n =N —d in [4.3.3] is

examined to determine the orders of p and q. If the given data is approximately stationary, then
the w, series is in fact the z,o‘) data set and, hence, the properties of the z,o‘) series are investi-

gated to determine how many AR and MA terms may be needed in the model. When the sample
ACEF of the stationary w, series is plotted along with the appropriate confidence limits up to a lag

of about n/4, the following general rules may be invoked to help to determine the orders of p and

q.

1)  If the series can be modelled by a white noise model, then r; in [2.5.9] is not significantly
different from zero after lag zero. From Section 2.5.4, r; is approximately NID(0,1/n).

2) For a pure MA model, r; cuts off and is not significantly different from zero after lag q.

3) When r; damps out and does not appear to truncate, this suggests that AR terms are needed
to model the time series.

5.3.5 Sample Partial Autocorrelation Function

The theoretical definition for the partial autocorrelation function (PACF) is given by the
Yule-Walker equations in [3.2.17] while the algorithm of Pagano (1972) for estimating the
values of the PACF is outlined in Appendix A3.1. Assuming that the process is AR(p), the
estimated values of the PACF at lags greater than p are asymptotically normally independently
distributed with a mean of zero and standard error of 1\n in [3.2.18]. Because the asymptotic
distribution is known, one can plot 95% confidence limits. When differencing is required, the
sample PACF is only plotted for the stationary w, series in [4.3.3] up to a lag of about n/4.
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When used in conjunction with an identification aid such as a plot of the sample ACF, the
estimated PACF is useful for determining the number of AR and MA parameters. The following
general characteristics of the PACF may be of assistance in model identification.

1) When the series is white noise, the estimated values of the PACF are not significantly dif-
ferent from zero for all lags.

2) For a pure AR model, the sample PACF truncates and is not significantly different from
zero after lag p.

3) If the sample PACF attenuates and does not appear to cut off, this may indicate that MA
parameters are needed in the model.

5.3.6 Sample Inverse Autocorrelation Function

Cleveland (1972) defines the inverse autocorrelation function (IACF) of a time series as
the ACF associated with the reciprocal of the spectral density function of the series. The theoret-
ical IACF, &i, can also be specified in an alternative equivalent fashion within the time domain.

When considering the ARIMA(p,d,q) process in [4.3.4], the theoretical IACF of w, in [4.3.3] is
defined to be the ACF of the (q,d,p) process which is written as

0(B)w, = ¢(B)a, [5.3.1]

A similar definition for the theoretical IACF also holds for the seasonal case. The theoretical
IACF is the ACF of the process where not only the nonseasonal AR and MA operators have been
interchanged but the seasonal AR and MA operators have also been switched (see Section 12.3.2
for a description of identification tools for seasonal ARIMA models).

Besides the original paper of Cleveland (1972), applications and theoretical developments
regarding the IACF are given in papers by Hipel et al. (1977), McLeod et al. (1977), Chatfield
(1979), Hosking (1980), Bhansali (1980, 1983a,b), Abraham and Ledolter (1984), and Battaglia
(1988). The IACF is also mentioned briefly by Parzen (1974), McClave (1975, p. 213), Granger
and Newbold (1977, p. 109) and also Shaman (1975). As noted by Cleveland (1972), one reason
why the IACF was not a popular identification tool may be due to the fact that the reciprocal of
the spectrum is not an intuitively meaningful quantity. Certainly, the time domain definition of
the theoretical IACF which is employed by Hipel et al. (1977) and Chatfield (1979) is much
more appealing.

Another explanation why the IACF was not used extensively in the past may be caused by
the lack of a good estimation procedure for determining the sample IACF for a given time series
(Hipel et al., 1977, p. 569). However, progress has been made on developing estimation tech-
niques for calculating the sample IACF (Bhansali, 1983a,b; Battaglia, 1988). To obtain an esti-
mate ri;, for £ij, at lag k, Cleveland (1972) suggests using either an AR or smoothed periodogram
estimation procedure. If the AR approach is adopted, the first step is to model the w, series by
an AR model of order r. The estimates q‘>,- where i =1,2, .. .,r, for the AR parameters, can be
determined from the Yule-Walker equations in [3.2.12] or from the maximum likelihood esti-
mates of an AR(r) model which is fit to the time series under consideration. The estimate ri; for

the theoretical IACF at lag k can then be obtained from
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i=1 i=1

If the w, series is white noise, ri; is approximately NID(0,1/n).

To utilize the IACF for model identification calculate and plot ri; versus lag k, where ri,
can go from -1 to +1. A recommended procedure is to choose about four values of r between 10
and 40 (where r < n/4) and then to select the most representative graph from the set for use in
identification. One of the reasons why Hipel et al. (1977) suggest that an improved estimation
procedure should be developed for the IACF is because a selection procedure is needed to
choose an appropriate plot of the sample IACF. From a knowledge of the distribution of rij,
confidence limits can be drawn on the graph of the sample IACF. For white noise, ri; is approx-
imately NID(0,1/n) while for a correlated series ri; is normally distributed with a mean of zero

and the variance of ri, after lag p is given by

p
var(riy) = %{1 +2 zrif} k>p 5.3.3]
=i

When using the sample IACF for model identification to ascertain the orders of p and ¢q,
the following rules may be utilized:

1) If the series can be modelled by a white noise model, ri; is not significantly different from
zero after lag zero.

2) For a pure AR model, ri; truncates and is not significantly different from zero after lag p.

In practice, it has been found that the IACF is useful for identifying AR models where
some of the AR parameters should be constrained to be zero (see Section 3.4.4 for a discus-
sion of constrained models). At the same lags at which the AR parameters are zero, the
sample IACF often possesses values that are not significantly different from zero (Cleve-
land, 1972; Hipel et al., 1977; McLeod et al., 1977).

3) When ri, attenuates and does not appear to cut off, this indicates that MA terms are needed
to model the time series.

As can be seen, the foregoing general properties of the sample IACF are similar to those
listed for the sample PACF in Section 5.3.5. Due to this fact and also the estimation problems
with the IACF, the sample IACF is not used extensively by practitioners. However, as shown by
the applications in Section 5.4, the sample IACF along with other identification graphs are very
helpful when employed together for identifying ARMA models. Furthermore, Cleveland (1972)
has shown how the sample IACF can be utilized for identifying the components in transfer
function-noise models (see Part VII for a presentation of these models). In fact, Cleveland
(1972) recommends using the sample ACF and IACF for model identification rather than the
sample ACF and PACF.
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5.3.7 Sample Inverse Partial Autocorrelation Function

Hipel et al. (1977) provide the original definition of the inverse partial autocorrelation
Sunction (IPACF) as the PACF of an ARMA(q,p) process. To define mathematically the theoret-
ical IPACEF, consider the inverse Yule-Walker equations given by

[ 1 piy Pz ... Pikr|[Bu] [Pix
Ph 1 Ph Pir2|[O2| |Pi2

=’ [5.3.4]
Pik-1 P2 Pl =~ 1 |[Bu] [Pk ]

where pi, is the theoretical IACF at lag k and 6,; is the jth coefficient in a MA process of order
k such that 8, is the last coefficient.

The coefficient ,, is called the theoretical IPACF. To obtain an estimate 6, for 0,
replace pi; by the sample IACF ri, and solve the inverse Yule-Walker equations for éu«
Because of the problems encountered when estimating pi;, another approach would be to first
estimate 6, as the kth coefficient in a MA model of order k. Based upon results in the inverse
Yule-Walker equations, appropriate methods could then be used to estimate pi,. Bhansali
(1983c) presents another procedure for estimating the IPACF.

For model identification, plot ékk against lag k for the same number of lags as were chosen

for the sample IACF. The values of the sample IPACF can range from -1 to +1. Furthermore,
when the theoretical IPACF is known to be zero after lag g, the sample IPACF is approximately
NID(0,1/n) after lag ¢ (McLeod, 1984). Consequently, the 95% confidence limits can be plotted
on the graph of the sample IPACF. When employing the plot of the sample IPACF for model
identification, the following properties can be kept in mind.

1)  When the time series is white noise, the sample IPACF is not significantly different from
zero after lag zero.

2) For a pure MA model, ékk cuts off and is not significantly different from zero after lag q.

3)  When the sample IPACF damps out and does not appear to truncate, this suggests that AR
terms are needed in order to suitably model the series.

The inherent characteristics of the sample IPACF are similar to those of the sample ACF in
Section 5.3.4. Even though this pair of functions possesses the same general properties for iden-
tifying an ARMA model to fit to a series, the two functions are defined differently. In a given
situation, for instance, one identification function may more clearly reveal a characteristic of the
data than the other. Consequently, both the IPACF and ACF are recommended for application to
the series under consideration. Likewise, as noted earlier, common relationships also exist
between the PACF and IACF, and both of these functions should also be used in the application.
The general attributes of all these useful identification functions are summarized in Table 5.3.1.



Identification 185

Table 5.3.1. Properties of four identification methods.

Identification Types of Models
Method AR(p) MA(Q | ARMAQ.9)
ACF Attenuates | Truncates Attenuates
after lag q ,
PACF Truncates | Attenuates Attenuates
after lag p
IACF Truncates | Attenuates Attenuates
after lag p
IPACF Attenuates | Truncates Attenuates
after lag q

5.4 APPLICATIONS

§5.4.1 Introduction

After examining a plot of a time series to pick out basic statistical properties of the data set,
the sample ACF, PACF, IACF and IPACF, described in Sections 5.3.4 to 5.3.7, respectively, can
be used to identify the AR and MA parameters needed in an ARMA or ARIMA model to fit to
the series. Table 5.3.1 describes the main characteristics to look for when using these functions
for model identification.

In Chapters 2 to 4, a variety of nonseasonal time series are examined for explaining con-
cepts presented in those chapters. Tables 5.4.1 and 5.4.2 summarize the identification results for
the stationary and nonstationary series, respectively. Notice that wherever an identification
graph for a series appears in the book, the figure number is given in the tables. For illustration
purposes, the manner in which the ARMA models are identified for the annual St. Lawrence
riverflows and also the Wolfer sunspot numbers in Table 5.4.1 are explained in detail in this sec-
tion following the modelling of these two series carried out by McLeod et al. (1977).

In Section 4.3.3, nonstationary ARIMA(p,d,q) models are identified for fitting to the fol-
lowing three series:

1.  annual water use for New York City,
2.  annual electricity consumption in the U.S,,
3. Beveridge wheat price index.

As explained in that section, sometimes a graph of the original series indicates whether or not a
data transformation is needed. The next step is to ascertain the order of differencing that is
required. The need for differencing can be determined from a graph of the series or the fact that
the sample ACF dies off very slowly. After the data are differenced just enough times to remove
nonstationarity, the sample ACF, PACF, IACF and IPACF are employed to determine the AR
and MA parameters required in the ARMA(p,q) model in [4.3.4] to fit to the w; series in [4.3.3).

Table 5.4.2 summarizes the identification results for the three aforementioned nonstationary
series.
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Table 5.4.1. Identification of ARMA models to fit to nonseasonal stationary series.
Annual Time Box- |Sample Sample Sample Sample ARMA Model
Series Series Cox |ACF PACF IACF IPACF Identified
(Source) Plot A
St.  Lawrence|Fig.’s 2.3.1 and 5.4.1.{1 Fig.’s 3.2.1 and|Fig.’s 3.2.4 and|Fig. 5.4.4. Trun-|Fig. 5.4.5. May|Constrained AR(3)
flows at 5.4.2. Diesoff. }5.4.3. Cuts off.|cates. Large|die off. model without ¢,.
Ogdensburg, Large values at{values at lags 1
New York. lags 1 and 3. and 3.
1860-1957.
(Yevjevich,
1963)
Temperatures 1 Fig.’s 2.5.1 and|Fig. 3.3.1. Cuts|Truncates. Big{Cuts off. Large| AR(2) or MA(2).
from English 2.5.2. Truncates.| off, Large values|values at first|values at first two
Midlands 1813- Large values at{atlags 1 and 2. [two lags. lags.
1912. (Manley, first two lags.
1953)
Rhine River 1 Fig. 2.5.4.| White noise. White noise. White noise. ARMA(0,0)
flows at Basle, White noise.
Switzerland
1837-1957.
(Yevjevich,
1963)
Douglas fir tree 1 Fig. 3.4.1. Dies|Fig. 3.4.2.| Dies off. Attenuates ARMA(1,1)
ring data at off. Perhaps attenu-
Navajo Natoinal ales.
Monument  in
Arizona. 1263-
1962. (Stokes et
al, 1973)
Wolfer sunspot|Fig. 5.4.6 0.5 Fig. 54.7 for|Fig. 548 for|Fig. 549 for|Fig. 5.4.10 for|Constrained AR(9)
numbers.  1700- A=l1. Cyclic.[A=1. Large|A=1. Large{A=1. Large values|model without ¢; to
1869. (Wald- Dies off slowly. {values at lags 1,|valueatlag 1. |at low lags andgq.
meier, 1961) 2 and around lag also around lag 2.
8.

5.4.2 Yearly St. Lawrence Riverflows

Average annual riverflows for the St. Lawrence River at Ogdensburg, New York, are avail-
able from 1860 to 1957 (Yevjevich, 1963) and are plotted in Figure 2.3.1. For convenience,
these flows are also displayed in this section in Figure 5.4.1. The sample ACF and PACF, and
their accompanying 95% confidence limits, for the St. Lawrence riverflows are displayed in Fig-
ures 3.2.1 and 3.2.4, respectively, as well as Figures 5.4.2 and 5.4.3, respectively, in this section.
In addition, the sample IACF and IPACF, along with the 95% confidence limits, for the St.
Lawrence flows are drawn in Figures 5.4.4 and 5.4.5, respectively. In practice, one can quickly
peruse these graphs as they are displayed on a computer screen in order to identify the type of
ARMA model to fit to the series.

Because the St. Lawrence riverflows appear to fluctuate around an overall mean level and
not follow a trend in Figure 5.4.1, one can argue that the flows are stationary. This fact is also
confirmed by the behaviour of the sample ACF in Figure 5.4.2, which dies off fairly quickly.
Since the sample ACF does not truncate but rather damps out, this suggests that AR parameters
are needed in the ARMA model to fit to the series. The 95% confidence limits for the graph of
the sample PACF in Figure 5.4.3 are for values of the PACF at lags greater than p if the process
were ARMA(p,0). Notice that the sample PACF possesses a significantly large value at lag 1
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Table 5.4.2. Identification of ARIMA models to fit to nonseasonal
nonstationary series (see Section 4.3.3).

Annual Time Box- |Sample Sampl Sampl Sample ARIMA
Senies Series Cox |ACF PACF IACP IPACF Model
(Source) Plot A Identified
Water use for|Fig. 438 |1 Because sample|Differenced Diff d Diff d ARIMA(0,1,0)
New York City. ACF in Fig.|series is whitc|series is white]series is white
1898-1968. 439 dies off|noise. noise. noise.
(Salas and slowly, dif-
Yevjevich, ferencing is
1972) needed. Differ-

enced series is

white noise.
 Electricity con-|Fig. 4.3.10 [0.533 |Sample ACF in|Sample PACF|Sampic IACF|Sample IPACF|ARIMA(0.2.1)
sumption in Fig. 4.3.11 for|for d=2 in Fig.[for series with|for series with
U.S. 1920-1970. given series and(4.3.14 can be|d=2 dies off. d=2 cuts off after,
(United  States also sample|interpreted  as lag 1.
Bureau of the ACF in Fig.|attenuating.
Census, 1976) 4.3.12 for differ-

enced series die

off slowly.

Hence, order of|

differencing

needed is d=2.

Sample ACF in

Fig. 4.3.13 for

data differenced

twice has large

value at lag 1.
Beveridge Fig. 4.3.15|0 Since  sample|Sample PACF|Sample IACF|Sampie IPACF]Constrained
Wheat Price|shows level ACF in Fig.|in Fig. 43.18[for logarithmic|for logarithmic] ARIMA(8,1,1) model
Index. 1500- jand variance 4.3.16 for loga-|for loganithmic|data with d=2|data with d=2 has|without ¢, to ¢,
1869. are increas- rithmic data|data with d=2|has large values|large values at
(Beveridge, ing with attenuates has large values|at low lags and|low lags and lag
1921) time. slowly dif-{at lags 2 and 8. |lag 8. 8.

ferencing is

necded. Sample

ACF in Fig.

4.3.17 for differ-

enced loga-

rithmic data has

large values at

low lags and lag

8.

and has a value at lag 3 that just touches the upper 95% confidence limit. This effect is more
clearly illustrated by the sample IACF in Figure 5.4.4 which has definite large values at lags 1
and 3. It may, therefore, be appropriate to entertain an ARMA(3,0) model with ¢, constrained to
zero as a possible process to fit to the St. Lawrence River data. Although there are rather large
values of the estimated PACF at lag 19 and of the sample IACF at lag 18, these could be due to
chance alone. The sample IPACF in Figure 5.4.5 appears to be attenuating rather than truncat-
ing. However, for this particular example the sample ACF definitely damps out, and therefore
one would suspect that the sample IPACF is behaving likewise, thereby indicating the need for
AR terms. On the graph for the sample IPACF, the 95% confidence intervals are for values of
the IPACEF at lags greater than q if the process were ARMA(0,q).

For the case of the Saint Lawrence River data, the sample IACF in Figure 5.4.4 most
vividly defines the type of model to estimate. However, the remaining three identification
graphs reinforce the conclusions drawn from the IACF.
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Figure 5.4.1. Annual flows of the St. Lawrence River at Ogdensburg,

New York from 1860 to 1957.
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Figure 5.4.2. Sample ACF and 95% confidence limits for the average
annual flows of the St. Lawrence River at Ogdensburg, New York.
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Figure 5.4.3. Sample PACF and 95% confidence limits for the average yearly
flows of the St. Lawrence River at Ogdensburg, New York.
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Figure 5.4.4. Sample IACF and 95% confidence limits for the average
annual flows of the St. Lawrence River at Ogdensburg, New York.
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Figure 5.4.5. Sample IPACF and 95% confidence limits for the average
annual flows of the St. Lawrence River at Ogdensburg, New York.
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Figure 5.4.6. Annual Wolfer sunspot numbers from 1770 to 1869.
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5.4.3 Annual Sunspot Numbers

Annual sunspot numbers are examined here because of the historical controversies regard-
ing the selection of a suitable model to fit to yearly sunspot numbers and also because sunspot
data are of practical importance to geophysicists and environmental scientists. Climatologists
have discovered that sunspot activity may be important for studying climatic change because of
its effect upon global temperature variations (Schneider and Mass, 1975). However, in Chapter
16, it is shown statistically that sunspot numbers do not affect the yearly flows of the Volga
River in the Soviet Union. Nonetheless, sunspots have long been known to affect the transmis-
sion of electromagnetic signals.

The Wolfer sunspot number series is available from 1700 to 1960 in the work of Wald-
meier (1961), while Box and Jenkins (1976) list the average annual sunspot series from 1770 to
1869 as series E in their textbook. Granger (1957) found that the periodicity of sunspot data fol-
lows a uniform distribution with a mean of about 11 years, and for this and other reasons
researchers have had difficulties in modeling sunspot numbers. Indeed, the graph of the annual
sunspot numbers from 1770 to 1869 displayed in Figure 5.4.6 clearly shows this periodicity.
Yule (1927) employed an AR model of order 2 to model yearly sunspot numbers. Moran (1954)
examined various types of models for predicting annual sunspot numbers and expressed the need
for a better model than an ARMA(2,0) model. Box and Jenkins (1976) fitted ARMA(2,0) and
ARMA(3,0) models to yearly sunspot data, Bailey (1965) entertained an ARMA(6,0) model,
Davis (1979) employed ARMA(2,0) and ARMA(9,0) models, and Craddock (1967) and Morris
(1977) considered AR models up to lag 30 for forecasting annual sunspot numbers. Phadke and
Wu (1974) modelled yearly sunspot numbers using an ARMA(1,1) model while Woodward and
Gray (1978) utilized an ARMA(8,1) model.

Other researchers have determined stochastic sunspot models when the basic time interval
is smaller than one year. For example, Whittle (1954) considered a unit of time of six months
and developed a bivariate AR scheme to fit to the observed sunspot intensities in the northern
and southern solar hemispheres. Granger (1957) proposed a special two-parameter curve for the
monthly sunspot numbers, but unfortunately, this curve is not useful for forecasting.

Even though the annual sunspot numbers are difficult to model, the identification graphs
defined in Sections 5.3.4 to 5.3.7 can be used to design a reasonable ARMA model to fit to the
annual sunspot series. In Section 6.3, it is explained how the Akaike information criterion
(Akaike, 1974) can be used in conjunction with these graphs to come up with the same model.
The sample ACF, PACF, IACF and IPACF graphs, along with their 95% confidence limits, are
displayed in Figures 5.4.7 to 5.4.10, respectively, for the annual sunspot numbers. As can be
seen in Figure 5.4.7, the sample ACF follows an attenuating sine wave pattern that reflects the
random periodicity of the data and possibly indicates the need for nonseasonal and/or seasonal
AR terms in the model. The behaviour of the sample PACF shown in Figure 5.4.8 could also
signify the need for some type of AR model. In addition to possessing significant values at lags
1 and 2, the PACF also has rather large values at lags 6 to 9. The sample IACF in Figure 5.4.9
has a large magnitude at lag 1, which suggests the importance of a nonseasonal AR lag 1 term in
any eventual process that is chosen to estimate. The dying out effect in the first four lags of the
sample IPACF displayed in Figure 5.4.10 could be a result of a nonseasonal AR component.
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Figure 5.4.7. Sample ACF and 95% confidence limits for the yearly sunspot numbers.
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Figure 5.4.8. Sample PACF and 95% confidence limits for the annual sunspot numbers.
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Figure 5.4.9. Sample IACF and 95% confidence limits for the yearly sunspot numbers.
1.0

W 0.5—_

< ]

a _

8 i l | 1 l

L 00 ) T n A'.'I' AL llllI.'l 1ol !

J

& -

2 -

q p

) -0.51
TIIlllllYlllllllI'll'l‘lll"’l"('llll'lll'lll"'l

0 0 20 30 40 50
LAG

Figure 5.4.10. Sample IPACF and 95% confidence limits for the annual sunspot numbers.
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Diagnostic checks are discussed in detail in Chapter 7. For the case of the sunspot
numbers, results of diagnostic checks from ARMA models fitted to the series, as well as the
identification graphs, are needed to come up with the best overall model. When an AR(2) model
is fit to the yearly sunspot numbers, the independence, normality, and homoscedasticity assump-
tions of the residuals are not satisfied. As explained in Section 3.4.5, to overcome problems with
nonnormality and heteroscedasticity (i.e. changing variance) in the model residuals, one can
employ the Box-Cox transformation in [3.4.30]. By substituting A = 0.5 and ¢ = 1.0 in [3.4.30],
one can obtain a square root transformation for the annual sunspot series. It is necessary to set
¢ =1 because there are some zero entries in the sunspot series and the Box-Cox transformation
in [3.4.30] can only be used with positive values. This square root transformation causes the
residuals of an AR(2) model fitted to the transformed sunspot series to become approximately
normally distributed and homoscedastic. However, because the residuals are autocorrelated a
better model is required to fit to the transformed series.

If an AR(3) model with A =0.5 and ¢ = 1.0 is estimated, the 5 parameter has a magnitude
of -0.103 and a SE of 0.062. Because 433 is less than twice its standard error, for the sake of

model parsimony it should not be incorporated into the model. Note that Box and Jenkins (1976,
p. 239, Table 7.13) obtain a parameter estimate for ¢3 that is just slightly more than twice its

standard error. However, they do not employ a data transformation to remove heteroscedasticity
and nonnormality and only use the Wolfer sunspot series from 1770 to 1869.

When one examines the ACF of the residuals of the AR(3) model fitted to the transformed
series, one finds a large value at lag 9. This fact implies that it may be advisable to estimate a
constrained AR(9) model without the parameters ¢3 to ¢g included in the model. In Section

6.4.3, the Akaike information criterion (Akaike, 1974) also selects the constrained AR(9) model
fitted to the sunspot series transformed using square roots as the best overall type of ARMA
model to use. Previously, Schaerf (1964) also suggested modelling the sunspot data using a con-
strained AR(9) model but without the square root transformation.

5.5 OTHER IDENTIFICATION METHODS

5.5.1 Introduction

As demonstrated in the previous section, the sample ACF, PACF, IACF and IPACF are
quite useful for ascertaining which subset of ARMA or ARIMA models are more suitable for fit-
ting to a given time series. When these identification methods are used in conjunction with the
Akaike information criterion (Akaike, 1974) in the manner described in Section 6.3, usually it is
quite straightforward to select the most appropriate model. In addition, as exemplified by the
application of ARMA modelling to the yearly sunspot series, the results of diagnostic checks can
also be useful for iteratively designing the best specific model. Nonetheless, in most practical
applications it is usually not necessary to employ other kinds of identification techniques beyond
those described in Section 5.3. However, other identification methods are available and some of
these procedures are now briefly outlined. Additional identification approaches are also men-
tioned in Section 6.3 where the Akaike information criterion is described.
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5.52 R and S Arrays

Gray et al. (1978) develop a useful representation of the dependence structure of an ARMA
process by transforming the theoretical ACF into two functions which they refer to as R and §
arrays. In addition, Woodward and Gray (1979) define improved versions of these arrays, called
the shifted R and S arrays. Moreover, Woodward and Gray (1979) present the generalized par-
tial autocorrelation function as a related approach for model identification.

The R and S arrays are used for determining the orders of the operators in an
ARIMA(p,d,q) model. Although it is usually more informative to display the identification
results in tabular form, the R and S arrays can also be presented graphically. Computer pro-
grams are listed in the paper of Gray et al. (1978) for calculating the R and S plots. Moreover,
Gray et al. (1978) present numerous practical applications while Woodward and Gray (1978)
identify an ARMA(8,1) model to fit to yearly sunspot numbers by using the R and S arrays. The
R and S arrays could be extended for identifying the seasonal ARIMA models of Chapter 12.

Salas and Obeysekera (1982) demonstrate the use of the generalized partial autocorrelation
function as well as the R and S arrays for identifying ARMA models to fit to hydrologic time
series. Furthermore, they present some recursive relationships for calculating the aforesaid iden-
tification methods.

5.5.3 The Corner Method

Beguin et al. (1980) present theoretical results for an identification procedure to ascertain
the orders of p and ¢ in an ARMA(p,q) model. To determine the orders of the AR and MA
operators, the entries of what is termed a "A-array" are examined. Depending upon the form of
the model, zero entries occur in a corner of the A-array according to a specified pattern and hence
the approach is called the corner method. Beguin et al. (1980) claim that their identification
methods are much simpler to use than those proposed by Gray et al. (1978).

5.5.4 Extended Sample Autocorrelation Function

Tsay and Tiao (1984) develop a unified approach for specifying the order of the operators
required in an ARIMA(p,d,q) model to fit to a given time series. First, they propose an iterative
regression procedure for obtaining consistent least square estimates for the AR parameters.
Next, based upon the consistent AR estimates produced by iterated regressions, they define an
extended sample autocorrelation function for use in model identification. The extended sample
autocorelation function can be used to decide upon the order of differencing and also the
numbers of AR and MA parameters that are needed. In practical applications, the authors pro-
pose that the calculations for the extended sample autocorrelation function be displayed in tabu-
lar form for conveniently identifying the ARIMA model.

5.6 CONCLUSIONS

The stages for constructing a time series model to fit to a given data set are portrayed in
Figure III.1. At the identification stage, one must decide upon the parameters required in a
model for fitting to a given data set. In particular, when designing an ARMA or ARIMA model
to describe a nonseasonal time series, one must select the order of differencing as well as the
number of AR and MA parameters that are needed. After examining a plot of the data, the
parameters needed in the model can be ascertained by examining graphs of the sample ACF,
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PACF, IACF and IPACF, presented in Sections 5.3.4 to 5.3.7, respectively. Applications for
illustrating how model identification is carried out in practice are presented in Section 5.4 for the
cases of an annual riverflow series and a yearly sunspot series.

After identifying one or more tentative models to fit to the time series under consideration,
one can obtain efficient estimates for the model parameters. In Chapter 6, the method of max-
imum likelihood is recommended for estimating the AR and MA parameters after any nonsta-
tionarity has been removed by differencing. Additionally, it is explained in Chapter 6 how an
information criterion can be used to select the best model subsequent to estimating the parame-
ters for more than one model. Finally, in Chapter 7 diagnostic checks are presented for deciding
upon whether the fitted model adequately describes the time series. As shown in Figure IIL1,
when the model possesses inadequacies one can return to the identification stage in order to
design an improved model which overcomes any difficulties. Usually, the results from the diag-
nostic check stage can be used for designing this improved model.

PROBLEMS

5.1 Three types of hydrological uncertainties are mentioned in Section 5.2.2. By referring to
the references given in that section, explain in your own words what these uncertainties
mean to you. Enhance your presentation by referring to specific examples of these uncer-
tainties.

5.2 Summarize the types of modelling errors discussed by Warwick (1989). Compare these
errors to the kinds of uncertainties discussed in Section 5.2.2.

5.3 Outline the unified description of model discrimination developed by Ljung (1978) and
referenced in Section 5.2.3.

5.4 Suggest other types of modelling principles that are not mentioned in Section 5.2.4.

5.5 In Section 5.3.3 a list is presented for the kinds of information that may be found from exa-
mining a graph of a given time series. Describe three other benefits that may be realized by
plotting observations over time.

5.6 Examine the graph of a time series which is of direct interest to you. Describe general sta-
tistical properties of the series that you can detect in the graph.

5.7 In Section 5.3.6, the IACF is defined. Why does Cleveland (1972) recommend using the
sample ACF and IACF for ARMA model identification rather than the sample ACF and
PACF? Summarize Chatfield’s (1979) viewpoint about the use of the IACF in practical
applications.

5.8 The original definition of the IPACF was made by Hipel et al. (1977) and is given in Sec-
tion 5.3.7. Summarize Bhansali’s (1983c) contributions to the development of the IPACF
as an identification tool.

5.9 Develop the equations for determining the theoretical ACF and PACF for an ARMA(1,1)
process.
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5.10 Write down the equations for the theoretical IACF and IPACF for an ARMAC(1,1) process.

5.11 Select a nonseasonal time series that is of interest to you. Obtain each of the identification
graphs in Sections 5.3.3 to 5.3.7 for the series. Based upon these identification results,
what is the most appropriate type of ARMA or ARIMA model to fit to the data set?

5.12 Using equations in your explanation, outline the approach of Gray et al. (1978) for deter-
mining the orders of the operators in an ARIMA(p,d,q) model. List advantages and draw-
backs to their identification procedure.

5.13 Employing equations where necessary, describe the extended sample autocorrelation tech-
nique of Tsay and Tiao (1984) for identifying an ARIMA model. Discuss the advantages
and disadvantages of their method as compared to its competitors.
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