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CHAPTER 6
PARAMETER ESTIMATION

6.1 INTRODUCTION

In Chapter 5, a range of informative graphical methods are presented for identifying the
parameters to include in an ARMA model for fitting to a given nonseasonal time series. As
explained in that chapter, prior to deciding upon the form of the ARMA model, the data may be
transformed using the Box-Cox transformation in [3.4.30] in order to alleviate problems with
nonnormality and/or changing variance. Additionally, the differencing given in [4.3.3] may be
required for removing nonstationarity. Whatever the case, at the identification stage, one must
select one or more appropriate ARMA models from [3.4.4] or [4.3.4] for fitting to either the
series as given or some modified version thereof.

As shown in Figure III.1, subsequent to identifying one or more tentative models for fitting
to a particular series, one must obtain estimates for the parameters in the models. The main
objectives of Chapter 6 are to present procedures for estimating the parameters in ARMA models
and to explain how an automatic selection criterion such as the Akaike information criterion
(Akaike, 1974) can be employed for choosing the best overall model when more than one model
is calibrated.

For an identified ARMA model in [3.4.4] or [4.3.4], the following parameters must be
estimated using the available data:

mean of the series,

AR parameters,

innovation series,

1
2
3.  MA parameters,
4
5. variance of the innovations.

Because one often knows a priori the best type of Box-Cox transformation to use with a given
kind of time series such as annual riverflows, one can first fix A in [3.4.30] at a specified value
before estimating the model parameters mentioned above. If A is not known, it is possible to
estimate A along with the other model parameters. However, this requires a significant increase
in the amount of computer time needed to estimate all the model parameters. Finally, one should
keep in mind that the integer value for the differencing parameter d contained in ARIMA(p.d,q)
models in Chapter 4 is selected using identification methods (see Sections 5.3.3 and 5.3.4). If
differencing is used, often one may wish to fix the mean of the differenced series at zero and not
estimate it (see discussion in Section 4.3.1). When d is allowed to take on real values to form
the fractional ARMA models described in Chapter 11, one must estimate the value of d.

A given time series is just one possible realization or set of measurements from the
phenomenon that generated it (see discussion in Sections 2.2 and 2.3). Because a time series
contains only partial information about the phenomenon under study, the true or population
values of the parameters of a model fitted to the series are not known. Consequently, there is
uncertainty about the estimation of the model parameters. As explained in Section 6.2.3 and



204 Chapter 6

Appendix A6.2, the uncertainty for a specified parameter estimate is quantified by what is called
the standard error (SE) of the estimate.

Estimation theory was initiated by the great German mathematician Karl Friederich Gauss
who developed the method of least squares for solving practical problems. Since the time of
Gauss, well known researchers such as Sir R.A. Fisher, Norbert Wiener and R.E. Kalman, have
developed an impressive array of estimation procedures and associated algorithms. These gen-
eral approaches from estimation theory have been formulated for use with specific families of
statistical models. For example, in this chapter the method of maximum likelihood is described
and used for estimating the parameters of ARMA models. In Section 3.2.2, the Yule-Walker
equations given in [3.2.11] can be employed for obtaining what are called moment estimates for
AR models.

A great number of textbooks and research papers about estimation theory are available.
Mendel’s (1987) book, for example, covers a wide variety of estimation techniques including
least squares, maximum likelihood and the Kalman filter (Kalman, 1960) approaches. A
research paper by Norden (1972, 1973) presents a survey of maximum likelihood estimation
which was originally developed by Fisher (1922, 1925). The monograph of Edwards (1972) also
deals with the maximum likelihood approach to estimation. Most textbooks, in statistics, such as
the ones by Kempthorne and Folks (1971) and Cox and Hinkley (1974) contain large sections
dealing with estimation. In addition, statistical encyclopediae (Kotz and Johnson, 1988; Kruskal
and Tanur, 1978; Kendall and Buckland, 1971) and handbooks (Sachs, 1984) have good explana-
tions about estimation procedures.

Because of many attractive theoretical properties, maximum likelihood estimation is the
most popular general approach to parameter estimation. In the next section, some of these pro-
perties are pointed out and maximum likelihood estimation for calibrating ARMA models is
described. Subsequent to this, it is explained how the Akaike information criterion (Akaike,
1974) can be used to select the overall best model when more than one model is fitted to a speci-
fied time series. Practical applications are used for illustrating how estimation is carried out in
practice and the Akaike information criterion can be used for mode! discrimination.

6.2 MAXIMUM LIKELIHOOD ESTIMATION

6.2.1 Introduction

The probability distribution function (pdf) of a set of random variables is written as a func-
tion of these variables and certain given parameters. For example, for the case of a single ran-
dom variable following a normal distribution, the pdf is a function of this random variable and
the parameters in the pdf are the mean and variance. When the actual values of the mean and
variance are known for the normally distributed random variable, one can calculate the probabil-
ity that the random variable takes on a value within a specified range by integrating the pdf over
this range. On the other hand, if the measurements for a random variable are substituted into the
pdf and the pdf is then considered as a function of the parameters that have not been estimated,
the likelihood function is created. In other words, the likelihood function is essentially the pro-
bability of the actual data as a function of the parameters.
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To be more specific, suppose that one is dealing with the sequence of observations in
[4.3.3] which consists of n values represented by the vector W’ = (w;,w;, . ..,w,). The sample
of n observations, w, can be associated with an n-dimensional random variable having a known
pdf, p(wlﬂ), which depends on a vector of unknown parameters B. For the case of the ARMA
model in [3.4.4] or the ARIMA model in [4.3.4], the parameters contained in 3 are the p AR
parameters ¢ = (@1.92, - - . . 9,), ¢ MA parameters 8= (8,,8,, . . .,6,), and the variance, 67, of

the innovations. Hence, B = (¢,0,62).

In advance of having the data, the pdf given by p(w![) associates a density with a possible
realization of w, for fixed §. When the observations are available, one would like to find out
values of 3 which could have produced the set of time series entries, w. To accomplish this, one
substitutes the data, w, into the pdf and considers [3 as the variable in order to produce the likeli-
hood function L(Blw). Because of the way it is defined, the likelihood function has the same
form as p(wlB). However, in the likelihood function the set of observations, w, is fixed and the
parameters contained in [ are variable.

Because the relative value of the likelihood function, L(Blw), is of main interest, the likeli-
hood function often contains an arbitrary multiplicative constant. For simplifying calculations, it
is usually more convenient to use the natural logarithm of the likelihood function given by
InLBiw) = I(Blw), which possesses an arbitrary additive constant. This function is commonly
referred to as the log likelihood function.

In maximum likelihood estimation, one wants to determine the values of the parameters
contained in 3 that maximize the likelihood function or, equivalently, the log likelihood func-
tion. These estimates are called maximum likelihood estimates (MLE’s).

One approach to finding the maximum value for a given function is to set the first order
partial derivative with respect to each variable parameter equal to zero and then to solve these
equations to find the values of the variables which maximize the function. Because the likeli-
hood function for ARMA models is quite complicated, this simple approach cannot be used.
Consequently, after defining the likelihood function for ARMA models in Section 6.2.3 and
Appendix A6.1, some useful optimization algorithms are recommended for optimizing the likeli-
hood function.

The second order partial derivative of the likelihood or log likelihood function with respect
to each of the variable parameters reflects the rate of change of the slope or, in other words, the
“‘spread’’ of the function. Accordingly, these second order derivatives, which are contained in
the information matrix defined in Appendix A6.2, are used to determine approximate standard
errors (SE's) for the MLE’s. However, before going into the details of the likelihood function
and the associated information matrix, the motivations for using maximum likelihood estimation
are explained next.

6.2.2 Properties of Maximum Likelihood Estimators

Likelihood Principle

Prior to describing some of the attractive properties of maximum likelihood estimation,
consider first an important characteristic of the likelihood function. One main reason why the
likelihood function is of such great import in estimation theory is because of what is called the



206 Chapter 6

likelihood principle summarized below.
Likelihood Principle: Assuming that the underlying model is correct, all the information that the
data can provide about the model parameters is contained in the likelihood function. All other
aspects of the data are irrelevant with respect to characterizing the model parameters (Fisher,
1956; Barnard, 1949; Bimhaum, 1962).

The likelihood principle is in consonance with the Bayesian approach to statistics. This is
because the likelihood function is a component in the posterior distribution of the parameters
coming from the data.

As noted in the previous section, when the likelihood function, or equivalently, the log
likelihood function is maximized, one obtains MLE’s for the model parameters. The general
mathematical expression which defines how one obtains MLE’s for any set of data for a given
family of models, is called the maximum likelihood estimator. In Appendix A6.1, for example, a
maximum likelihood estimator is presented for calculating MLE’s for the parameters of an
ARMA model fitted to a given time series.

In general, most maximum likelihood estimators possess some fundamental statistical pro-
perties which, in turn, have led to the widespread development, acceptance and application of
these estimators. To characterize estimators, Fisher (1925) introduced the concepts of con-
sistency and large-sample efficiency. Although these concepts are defined in terms of large sam-
ples, estimators having these characteristics are usually well suited for use in practical applica-
tions. Because maximum likelihood estimators usually satisfy these concepts, Fisher and many
other statisticians have advocated their employment for application purposes. The maximum
likelihood estimators referred to in Section 6.2.3 and the one described in Appendix A6.1 are
consistent and efficient. These two concepts are now briefly summarized. For detailed
mathematical definitions of the concepts, the reader can refer to the references cited in this sec-
tion as well as statistical encyclopediae, handbooks and standard textbooks.

Consistency

A consistent estimator is one which converges in probability as the sample size increases to
the true value of the parameter or parameters being estimated. More specifically, let 1| be the
estimate of a model parameter 1 using a given estimator for a sample size of n. The estimate 7
of m, or equivalently its estimator, is consistent if

imP[M-1n!>€]=0 [6.2.1]
n—yee

where P stands for probability, and € is any positive number which can, of course, be very close
to zero.
In practice, one would like to have an estimator which produces estimates that converge to

the true values of the model parameters as the sample size increases. Although exceptions can
be found, most maximum likelihood estimators are consistent.
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Efficiency
Suppose that two estimators are consistent. Let ﬁl and ﬁz denote the two consistent esti-

mators or estimates for a model parameter N} where the sample size is n. The asymptotic relative
efficiency (ARE) of "11 with respect to 'qz is:

var M
ARE = lim [6.2.2]

n—=var 1,

If the above ratio is less (more) than one, the estimator ﬁl is asymptotically more (less) efficient
than ﬁz for estimating 1. When the limit is equal to one, the estimators are equally efficient.
The asymptotic relative efficiency is the limiting value of the relative efficiency (RE) given by:

va N
E=24 (6.2.3]
varn,

For maximum likelihood estimators or MLE’s, the variance of the MLE of a model param-
eter possesses minimum asymptotic variance and is asymptotically normally distributed when
consistency and other conditions are satisfied (Cramer, 1946; Rao, 1973). Therefore, when
investigating the properncs of a given estimator, it is informative to compare it to its MLE coun-
terpart. Suppose that 1, is the maximum likelihood estimator for a model parameter 1t and le is

another estimator in [6.2.2]. Because the maximum likelihood estimator possesses minimum
variance O‘S ARE < 1. Furthermore, the ratio is referred to as the first order asymptotic effi-
ciency of n, with respect to the maximum likelihood estimator 1. If the first order efficiency is

less than unity, the estimator ﬁz is less efficient than the maximum likelihood estimator ﬁl for

large samples. However, when the first order efficiency is equal to one, the ratio in [6.2.2] can-
not distinguish between the two estimators. One must then examine what is called second order
efficiency (Rao, 1961, 1962) in order to select the most efficient estimator. Second order effi-
ciency is concerned with the speed of convergence of the ratio in [6.2.2] and usually requires
rather complicated expressions in order to be properly defined. Whatever the case, the max-
imum likelihood estimator is the only known estimator that possesses second order efficiency.

Gaussian Efficiency: In the definitions of the ARMA family of models in [3.4.4] and the
ARIMA class of models in [4.3.4], the innovation series represented by a, is assumed to be
identically and independently distributed with a mean of zero and variance of 62 [ie.
IID(O,G})]. To allow one to derive the likelihood function for these models, one must specify a
distribution for the innovations. In practice, the a,’s are assumed to be normally independently
distributed with a mean of zero and variance of 62 [i.c. NID(0,62)]. The likelihood function for
the Gaussian or normal case is discussed in Section 6.2.3 and presented in detail in Appendix
A6.1. By determining the values of the model parameters which maximize the value of the likel-
ihood or log likelihood function, one determines MLE’s for the parameters. As explained in
Appendix A6.2, the covariance matrix is obtained as the inverse of the information matrix and
the entries along the diagonal give the variance of the estimates for the corresponding model
parameters. The square root of these variances are called the SE’s of estimation for the model

parameters. Because the maximum likelihood procedure is used to obtain the parameter esti-
mates, these SE’s or, equivalently, the variances, possess Fisherian efficiency and, therefore, are
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the smallest values that can be obtained in large samples.

If the innovations are not normally distributed, one can use the same technique as for the
NID case to obtain estimates for the model parameters. Even though the innovations do not fol-
low a normal distribution, these estimates are called Gaussian estimates because the maximum
likelihood estimator for NID innovations is used to calculate the estimates. It can be shown
theoretically that the large sample covariance matrix for Gaussian estimates is the same as that
for the situations for which the innovations are NID. This robustness property of maximum
likelihood estimation under the normality assumption is referred to as Gaussian efficiency (Whit-
tle, 1961; Hannan, 1970, pp. 377-383). However, the reader should keep in mind that even
though the Gaussian estimates possess Gaussian efficiency, they are not Fisherian efficient (i.e.
have minimum variances for the estimates) because the innovations do not follow a normal dis-
tribution.

Li and McLeod (1988) show how maximum likelihood may be used to fit ARMA models
when the innovations, a,, are non-Gaussian. For example, when the a, are log-normal or gamma

distributed, improved estimates of the parameters can be obtained by using maximum likelihood
estimation.

6.2.3 Maximum Likelihood Estimators

A given nonseasonal series, z,, may first be transformed using the Box-Cox transformation
in [3.4.30] in order to make the series approximately normally distributed. Subsequent to a
power transformation, the series can be differenced as in [4.3.3] just enough times to remove any
nonstationarity. One then ends up with a stationary series w;, t =12, ..., n, which follows a
normal distribution. By employing the identification procedures of Section 5.3, one can decide
upon an appropriate ARMA(p,q) model to fit to the w, series. Of course, if no Box-Cox transfor-

mation or differencing are needed, the w; series is simply the original z, observations.

Assuming that the innovations in [4.3.4] or [3.4.4] are NID, which also implies that the w,
or z, sequences follow a normal distribution, one can derive the likelihood function for an

ARMA model. By employing a suitable optimization algorithm to maximize the likelihood or
log likelihood function with respect to the ARMA model parameters, one should theoretically be
able to obtain MLE’s for the parameters. However, the likelihood function is a fairly compli-
cated expression and flexible algorithms are needed in order to make it computationally possible
within a reasonable amount of time to maximize the likelihood function in order to find the
MLE’s. As a result, rescarchers have suggested saving computational time by maximizing
approximations to the likelihood function to calculate approximate MLE’ s for the model parame-
ters. As the sample size increases, the approximate MLE’s approach closer and closer to the true
MLE’s. Box and Jenkins (1976, Ch. 7), for example, have put forward two approximate max-
imum likelihood procedures for ARMA models which are called the conditional and the uncon-
ditional or iterated methods. Generally speaking, their approaches do not work as well for
ARMA models containing MA parameters and for time series that are fairly short (McLeod,
1977).

McLeod (1977) derives an approximate maximum likelihood procedure which is almost

exact. His technique is referred to as the modified sum of squares algorithm. Besides providing
parameter estimates that are very close to the true or exact MLE’s, the approach is very efficient
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computationally and, therefore, requires relatively little computer time. Moreover, it works well
with models containing MA parameters and series having relatively few observations.

More recently, a number of authors have developed exact maximum likelihood estimators
for use with ARMA models. These exact techniques include contributions by:

1. Newbold (1974),

2.  Ansley (1979),

3. Ljung and Box (1979), and

4. Meélard (1984) who uses a Kalman filter approach to maximum likelihood estimation.

As just noted, McLeod’s (1977) estimation technique for ARMA models is computation-
ally efficient and produces estimates that are almost exact MLE’s. Furthermore, the procedure
has been extended for use with seasonal ARMA models (McLeod and Sales, 1983). Accord-
ingly, this flexible algorithm is recommended for use in practical ARMA modelling and is out-
lined in Appendix A6.1. The McLeod-Hipel time series package referred to in Section 1.7 con-
tains the estimation algorithm of Appendix A6.1 as well as other approximate and exact max-
imum likelihood estimators.

In addition to possessing desirable statistical properties, maximum likelihood estimation is
computationally convenient. This is because a range of useful and powerful optimization tech-
niques are available to maximize or minimize a function such as the likelihood or log likelihood
function with respect to the model parameters. Some of the optimization algorithms that have
been extensively utilized in practical applications include:

Gauss linearization (Draper and Smith, 1980),
steepest descent (Draper and Smith, 1980),

Marquardt algorithm which is a combination of the above two algorithms (Marquardt,
1963),

conjugate directions (Powell, 1964, 1965).

5. Davidon’s Algorithm (Davidon, 1968) for which a FORTRAN subroutine is provided by
Ishiguro and Akaike (1989) for log likelihood maximization.

For the applications given in Section 6.4 and other chapters in this textbook conjugate directions
is used in conjunction with the estimation procedure of Appendix A6.1 to obtain MLE’s for the
ARMA model parameters. For an explanation of the variety of optimization methods, the reader
can refer to textbooks such as those by Luenberger (1984), Gill et al. (1981) and VanderPlaats
(1984).

To obtain estimates for the parameters in an ARMA model, a time series of observations is
used with an appropriate maximum likelihood estimator. Because this time series is only a finite
sample realization of the phenomenon generating the series, the MLE for a given parameter is
not the population value. The SE or standard derivation of the estimate is used to reflect the
uncertainty contained in the estimate. In Appendix A6.2, it is explained how the SE’s for the
parameter estimates are defined. More specifically, the variance-covariance matrix of the
parameter estimates is the inverse of what is called the information matrix. The square roots of
the diagonal entries in the variance-covariance matrix provide the estimates of the SE’s for the
estimated model parameters. Furthermore, because it is known that MLE’s are asymptotically
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normally distributed, one can obtain 95% confidence limits for a given parameter estimate. If
for example, zero were contained within the interval formed by a parameter estimate + 1.96SE,
one could argue that the parameter estimate is not significantly different from zero and perhaps
the parameter should be left out of the model.

6.3 MODEL DISCRIMINATION USING THE AKAIKE INFORMATION CRITERION

6.3.1 Introduction

As noted in Chapter 5, the practitioner is usually confronted with the problem of choosing
the most appropriate model for fitting to a given data set from a large number of available
models. Consequently, model discrimination procedures are required and some possible selec-
tion methods are listed in Section 5.2.3. The identification methods in Section 5.3 constitute
graphical and tabular techniques that can assist in deciding upon which model to choose. How-
ever, these methods require some skill when being used in applications since the modeller must
be cognizant of the properties of the various types of identification graphs in order to ascertain
which parameters should be included in the model. To increase the speed, flexibility, accuracy
and simplicity involved in choosing a model, the Akaike Information Criterion (AIC) (Akaike,
1974) has been found to be quite useful. The AIC was first suggested for use in hydrology by
Hipel et al. (1977) and McLeod et al. (1977). Hipel (1981) explains in detail how the AIC can
be used in geophysical model discrimination and provides references for its application to many
different kinds of time series.

6.3.2 Definition of the Akaike Information Criterion

Based upon information theory, Akaike (1972a, 1973, 1974) developed the AIC which is
defined as

AIC =-2InML + 2k [6.3.1]

where ML denotes maximum likelihood, InML is the value of the maximized log likelihood
function for a model fitted to a given data set, and £ is the number of independently adjusted
parameters within the model. A desirable attribute of the AIC is that the modelling principles
described in Sections 1.3 and 5.2.4 are formally incorporated into the equation. The first term on
the right hand side of [6.3.1] reflects the doctrine of good statistical fit while the second entry
accounts for model parsimony. Because of the form of [6.3.1], when there are several available
models for modelling a given time series, the model that possesses the minimum value of the
AIC should be selected. This procedure is referred to by Akaike (1974) as MAICE (minimum
AIC estimation).

The original mathematical development for the AIC formula in [6.3.1] is given by Akaike
(1973, 1974) while a summary of the derivation is presented by Ozaki (1977) and also Kitagawa
(1979). Even though the entries in [6.3.1] reflect sound modelling principles, as noted by
Akaike (1978) ““... the only justification of its use will come from its performance in applica-
tions.”” The MAICE procedure has previously been successfully applied to a wide range of sta-
tistical problems. The method has been used to decide upon the order of an ARMA model to fit
to a time series (Akaike, 1974; Hipel et al., 1977; McLeod et al., 1977; Ozaki, 1977), to ascertain
the type of nonstationary ARIMA model to describe a time series (Ozaki, 1977), to determine
the order of an AR model (Akaike, 1978; Akaike, 1979; Shibata, 1976), to select the order of a



Parameter Estimation 211

Markov chain (Tong, 1975), to decide upon the order of a polynomial regression (Akaike,
1972b; Tanabe, 1974), to determine the number of factors needed in a factor analysis (Akaike,
1971), to assist in robot data screening (Akaike, 1972b), to detect outliers in a data set (Kita-
gawa, 1979), to analyze cross classified data (Sakamoto and Akaike, 1977), and to assist in
canonical correlation analysis of time series (Akaike, 1976). The AIC can be employed to select
the most suitable model when more than one family of models are being considered and McLeod
and Hipel (1978) used the MAICE procedure to determine whether an ARMA or Fractional
Gaussian noise model should be utilized to model a given annual hydrological time series (see
Section 10.4). The AIC can be employed to select the best model from the families of seasonal
models discussed in Part VI, and to choose the most appropriate intervention model (see Chapter
19). In fact, the MAICE procedure can be used with all the models considered in this book (see
Table 1.6.2) and the wide range of applications presented by Hipel (1981) confirm the versatility
of this method for selecting the most appropriate model to fit to a time series.

6.3.3 The Akaike Information Criterion in Model Construction

Employment of the MAICE procedure reinforces and complements the identification, esti-
mation and diagnostic stages of model constructions illustrated in Figure III.1 at the start of Part
II. Figure 6.3.1 depicts how MAICE can be incorporated into the three stages of model
development. Even though this chapter is concemed with nonseasonal ARMA and ARIMA
models, the same general methodology can be employed no matter what types of time series
models are being considered. For instance, the AIC model building procedure is recommended
for use with the long memory, seasonal, transfer function-noise, intervention and multivariate
models of Parts V to IX, respectively.

As shown by the flow chart in Figure 6.3.1, there are basically two approaches for employ-
ing the MAICE procedure in model construction. One method is to calculate the AIC for all pos-
sible models which are considered worthwhile for fitting to a given data set. For example, after
specifying the Box-Cox parameter A in [3.4.30] (often A is set equal to unity if it is not known
beforehand that a transformation is needed) maximum values for p, ¢ and perhaps d may be set
for ARIMA(p,d,q) models. The AIC can then be calculated for all possible combinations of p, d
and ¢ and the ARIMA model with the minimum AIC value is chosen. Although the selected
model can usually be shown to adequately satisfy the important residual assumptions, as shown
in Figure 6.3.1 it is always advisable to check for whiteness, normality, and homoscedasticity of
the residuals using the methods in Sections 7.3 to 7.5, respectively. When the residuals are not
white, other models should be considered by specifying a more flexible range for p, d and ¢q. If
the residuals do not possess constant variance and perhaps are not normally distributed then a
suitable Box-Cox transformation may rectify the situation. To select the most suitable value of
A, a range of values of A may be tried for the best ARIMA(p,d,q) model which was just chosen
using the MAICE procedure. The value of A which minimizes the AIC for the ARIMA model is
then chosen. Another method is to obtain a MLE of A for the best model and then to fix A at this
value if the exhaustive enumeration is repeated. Of course, A could be estimated for all possible
combinations of p, d and ¢ in the exhaustive enumeration, but this would require a very large
amount of computer usage.

If the diagnostic check stage is skipped and information from the identification and estima-

tion stages is ignored when employing the exhaustive enumeration procedure with the AIC, it is
possible that the best model may be missed. For example, in Section 6.4.3 it is shown that the
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most suitable type of ARMA model to fit to the annual sunspot series is an AR model of order 9
with the third to eighth AR parameter omitted from the model and the data transformed by a
square root transformation. As explained in that section, if diagnostic testing had not been done
and the SE’s of the parameter estimates had not been considered, the most suitable model would
not have been discovered. Besides the annual sunspot series, the MAICE procedure is used in
Section 6.4.2 to decide upon the most appropriate ARMA model to fit to the average annual
flows of the St. Lawrence River at Ogdensburg, New York.
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An exhaustive AIC study may prove to be rather expensive due to the amount of computa-
tions. Consequently, as illustrated in Figure 6.3.1 an alternative approach is to only estimate the
parameters and hence the AIC for a subset of models. For example, information from the iden-
tification stage (see Chapter 5) may indicate three tentative models to fit to the time series. The
AIC is then only calculated for these three models and the model with the minimum AIC value is
selected. If there are any problems with the residuals, appropriate action may be taken as shown
in Figure 6.3.1. Otherwise, the chosen model can be employed in practical applications such as
forecasting (see Chapter 8) or simulation (Chapter 9).

6.3.4 Plausibility

A question which is often asked by practitioners is how to interpret the relative differences
in the values of the AIC for the various models which are fit to a specified data set. In fact, the
different AIC values can be interpreted in a variety of manners. For example, if one model
possesses an AIC value which is approximately 2k less than that of another model, this is analo-
gous to the superior model having k less parameters than the other model. A lower AIC value
can also be considered to be mainly due to a better statistical fit because of the first term on the
right hand side of [6.3.1]. However, a lower AIC value is usually caused by both components of
the formula in [6.3.1] and, therefore, an alternative approach for interpreting the differences in
the AIC values between two models is to consider plausibility.

As shown by Akaike (1978), exp(—0.5AIC) is asymptotically a reasonable definition of the
plausibility of a model specified by the parameters which are determined by the method of max-
imum likelihood. Consequently, the plausibility of model i versus model j can be calculated
using

Plausibility = exp[0.5(AIC; - AIC))] [6.3.2]

where AIC; is the value of the AIC for the ith model and AIC; is the AIC value for the jth

model. Table 6.3.1 displays some representative results for the plausibility of model i against
model j where the jth model is assumed to have a lower AIC value than model i. As can be
seen in Table 6.3.1, it is only the relative difference of the AIC values that is important and as
these differences increase the plausibility decreases exponentially. Notice that when the AIC
values differ by 6 the plausibility is only about 5%.

6.3.5 Akaike Information Criterion for ARMA and ARIMA Models

To determine the value of the AIC for an ARMA(p,q) model, both terms in [6.3.1] must be
calculated separately. By optimizing the log likelihood function with respect to the model
parameters (see Section 6.2.3 and Appendix A6.1), the value of the maximized log likelihood
can be found for substitution into 6.3.1. The number of model parameters k is due to p AR
parameters, ¢ MA parameters, the variance of the model residuals, the Box-Cox exponent A if it
is included in the model, and the mean of the transformed series.

When considering a nonstationary series of length N, the data is differenced d times using
[4.3.3] to produce a stationary series of length n =N —d. Because the differencing reduces the
amount of information, this will certainly affect the first term on the right hand side of [6.3.1].
Hence, the AIC for an ARIMA model can be roughly calculated as
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Table 6.3.1. Plausibility of model i versus model j.
-AIC j-AlC,-) Plausibility

0.6065
0.3679
0.2313
0.1353
0.0821
0.0498
0.0302
0.0183
0.0111
0.0067
0.0006

N O VOOV A WN R~

(SR

AIC = %(—ZlnML) +2% (6.3.3]

where the value of the maximized log likelihood is obtained by optimizing the logarithm of
[A6.1.5]. The total number of parameters k is the same as that for the ARMA model except
when the mean of the differenced series is assumed to be zero and hence is not estimated, the
number of parameters is decreased by one.

Another alternative for developing an AIC formula for an ARIMA model is to alter both
components on the right hand side of [6.3.1]. As argued by Ozaki (1977), an increase in the
number of data points contributes to decreasing the penalty due to the number of parameters.
This effect can be incorporated into the AIC by writing the formula as

AIC = —:!'(—ZInML +2k) [6.3.4]

6.3.6 Other Automatic Selection Criteria

As shown by Figure 6.3.1 the MAICE procedure tends to ‘‘automate’’ model construction
and to simplify model selection. In practice, it has been found that the MAICE methodology
almost always chooses the same models which would be selected using more time consuming
methods such as those presented in Section 5.3 and elsewhere. For example, when one model is
a subset of another, a likelihood ratio test can be employed to determine if the model with more
parameters is required for modelling a specified data set. However, as shown by McLeod et al.
(1977), results from likelihood ratio tests usually confirm the conclusions reached using the
MAICE procedure. An additional advantage of MAICE is that it is not necessary to select sub-
jectively a significance level as is done with the likelihood ratio test.

The AIC is not the only automatic selection criterion (ASC) that can be used in model
discrimination, although it is probably the most flexible and comprehensive of the methods
which are presently available. For choosing the order of an AR model, Akaike (1969, 1970)
developed the point estimation method called the final prediction error (FPE) technique (see
Appendix A6.3 for a definition of the FPE and its relationship to the AIC). McLave (1975)
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presented an algorithm to be used in subset autoregression for obtaining the best constrained AR
model where model selection is based upon the FPE criterion (see Section 3.4.4 for a discussion
of constrained models). In another paper, McLave (1978) compared the FPE technique and a
sequential testing approach which he referred to as the ‘‘max xz method’’ for choosing the con-
strained AR model. Other ASC’s which can only be used for AR modelling include the tech-
nique devised by Anderson (1971), the “‘CAT"’ criterion of Parzen (1974), and the method of
Hannan and Quinn (1979). The *‘D-statistic”’ of Gray et al. (1978) can be utilized for choosing
the most appropriate nonseasonal ARMA(p,q) model, although the statistic has not been suffi-
ciently developed for use in nonstationary and seasonal modelling. Mallows (1973) developed a
statistic for use in model discrimination that is related to what he calls the C, statistic. Based

upon the characteristics of the sample ACF and the sample PACF (refer to Sections 5.3.4 and
5.3.5 for explanations of the sample ACF and PACF, respectively), Hill and Woodworth (1980)
employed a pattern recognition technique to identify the more promising ARIMA models that
should be considered for fitting to a specified time series. Following this, they recommended
using an appropriate ASC to select the overall best model. Akaike (1977), Rissanen (1978) and
Schwarz (1978) developed similar selection criteria for use with ARMA models while Chow
(1978) proposed an improved version of these methods. Sawa (1978) defined a criterion for sta-
tistical model discrimination called the minimum attainable Bayes risk. Stone (1979) compared
the asymptotic properties of the AIC and Schwarz criterion while Hannan (1979, 1980) derived
important theoretical results for various kinds of ASC’s. Based on the Kullback Leibler infor-
mation number, Shibata (1989) obtained the TIC (Takeuchi’s Information Criterion) as a natural
extension of the AIC. He then went on to develop the RIC (Regularization Information Cri-
terion) as a meaningful expansion of both the AIC and TIC. Moreover, Shibata (1989) compared
various ASC’s in terms of criteria which include consistency and efficiency.

As pointed out in Section 1.3.3, many of the ASC’s have a structure which is quite similar
to that of the AIC in [6.3.1]. Consider, for instance, Schwarz’s approximation of the Bayes
information criterion (BIC) (Schwarz, 1978) which is written as

BIC =-=2InML + kln(n) [6.3.5]

As is also the case for the AIC in [6.3.1], the first term on the right hand side of [6.3.5] reflects
good statistical fit while the second component is concened with model parsimony. When fit-
ting more than one model to a given time series, one selects the model which gives the lowest
value of the BIC. To employ an ASC such as the BIC in [6.3.5] in model construction, simply
replace the AIC by the other ASC in Figure 6.3.1. As explained in Section 6.3.3, there are two
basic approaches for utilizing an ASC in model development.

Certainly further theoretical and practical research is required to compare the capabilities of
the more promising automatic selection procedures. However, the efficacy of MAICE is clearly
demonstrated by the many and varied applications cited in this book and elsewhere. For
instance, MAICE can be employed to choose the best model from different families of seasonal
models (see Part VI), and to design transfer-function noise (Part VII), intervention (Part VIII)
and multivariatt ARMA (Part IX) models. Furthermore, when considering different types of
models for forecasting, usually the kind of model which forecasts most accurately also possesses
the lowest AIC value (see Chapter 15). Some disadvantages of MAICE and the other ASC’s are
that an overall statistic tends to cover up much of the information in the data and the practitioner
may lose his or her sense of feeling for the inherent characteristics of the time series if he or she



216 Chapter 6

bases his or her decisions solely upon one statistic. However, when MAICE is used in conjunc-
tion with the three stages of model construction as is shown in Figure 6.3.1, there is no doubt
that MAICE greatly enhances the modelling process.

Akaike (1985) clearly explains how the derivation of the AIC is based upon the concept of
entropy. In fact, the minimum AIC procedure can be considered as a realization of the entropy-
maximization principle (Akaike, 1977). A further attractive theoretical feature of the MAICE
approach is that it can be used to compare models which are not nested. Therefore, as noted ear-
lier, one can use the MAICE procedure to select the best overall model across different families
of models, as is done in Part VI for seasonal models. The practical import of the MAICE
method for use in model discrimination is demonstrated by the two applications in the next sec-
tion.

6.4 APPLICATIONS

6.4.1 Introduction

Table 5.4.1 in the previous chapter lists ARMA models identified for fitting to five nonsea-
sonal stationary natural time series. In addition, Table 5.4.2 and Section 4.3.3 presents ARIMA
models selected for fitting to three nonseasonal nonstationary time series. The maximum likeli-
hood estimator described in Appendix A6.1 and mentioned in Section 6.2.3 can be used to calcu-
late MLE’s and SE’s for the parameters in all of the foregoing models. Moreover, when more
than one model is fitted to a given time series, the AIC of Section 6.3 can be employed for
choosing the most appropriate model.

In the next two sections, estimation results along with applications of the AIC are presented
for the same two case studies for which detailed identification findings are given in Section 5.4.
The first application deals with modelling the average annual flows of the St. Lawrence River at
Ogdensburg, New York, while the second one is concerned with modelling average annual sun-
spot numbers.

6.4.2 Yearly St. Lawrence Riverflows

Average annual flows for the St. Lawrence River at Ogdensburg, New York, are available
from 1860 to 1957 (Yevjevich, 1963) and plotted in Figures 2.3.1 and 5.4.1 in m>/s. The sample
ACF, PACEF, IACF, IPACF for these flows are displayed in Figures 5.4.2 to 5.4.5, respectively.
As explained in Section 5.4.2, these identification graphs indicate that probably the best type of
ARMA model to fit to the St. Lawrence flows is a constrained AR(3) model without the ¢,

parameter. However, one may also wish to try fitting AR(1) and unconstrained AR(3) models.

Table 6.4.1 lists the MLE’s and SE’s for AR(1), AR(3) and constrained AR(3) models fit-
ted to the St. Lawrence flows. The theoretical definition for AR models can be found by refer-
ring to [3.2.5].

Model discrimination can be accomplished by comparing parameter estimates to their SE’s,
by using the AIC or by performing the likelihood ratio test. In order to employ the first pro-
cedure, first consider the models listed in Table 6.4.1. Notice that for both the AR(3) model and
the AR(3) model without ¢, the estimate 4;3 for ¢3 is more than twice its standard error. There-

fore, it can be argued that even at the 1% significance level, ¢; is significantly different from



Parameter Estimation 217

Table 6.4.1. Parameter estimates for the AR models fitted to
the annual St. Lawrence riverflows.

Models Parameters | MLE’s | SE’s AIC’s
AR(1) o, 0.708 | 0.072 | 1176.38

C, 419.73

o1 0.659 | 0.099 | 1175.59
AR(3) o, -0.087 | 0.119

o3 0.216 | 0.099

O, 409.15 '
Constrained 91 0.619 | 0.084 | 1174.11
ARQ3) 03 0.177 | 0.084
without ¢, G, 410.27

zero and should be included in the model. Consequently, the AR(1) model should not be utilized
to model the St. Lawrence riverflows. Furthermore, because the SE for ¢, in the AR(3) model is

greater than 432, for model parsimony the AR(3) model without ¢, is the proper model to select.

When the AIC is employed for model selection, it is not necessary to choose subjectively a
significance level, as is done in hypothesis testing. By using [6.3.1], the values for the AIC are
calculated for the three AR models and listed in the right hand column of Table 6.4.1. As can be
seen, the AR(3) model without ¢, has the minimum AIC, and, therefore, the AIC also indicates

that this model should be chosen in preference to the others.
Suppose that one wishes to discriminate between models where one model is a subset of
another. For the case of an AR model, let the order of one AR model be k and the order of

another model containing more AR parameters be r. Let the residual variances of these two
models be cf(k) and cf(r), respectively. The likelihood ratio statistic given by

nln [&3(k)/&3(r)] ~xXr-k) [6.4.1]

is %2 distributed with r — k degrees of freedom. If the calculated x%(r - k) from [6.4.1] is greater
than %2(r — k) from the tables at a chosen significance level, a model with more parameters is
needed.

The above likelihood ratio can be utilized to choose between the AR(1) model and the
AR(3) model with ¢, =0. By substituting n =97, k =1, the residual variance of the AR(1)
model for &f(k), r =2, and the residual variance of the AR(3) model with ¢, =0 for éf(r), the

calculated x? statistic from [6.4.1] has a magnitude of 4.58. For 1 degree of freedom, this value
is significant at the 5% significance level. Therefore, this test indicates that the constrained
AR(3) model should be selected in preference to the AR(1) model.

The likelihood ratio test can also be employed to test whether an AR(3) model without ¢,
gives as good a fit as the AR(3) model. Simplg substitute into [6.4.1] n =97, k = 2, the residual

A

variance of the AR(3) model with ¢, =0 for 6;(k), r =3, and the residual variance of the AR(3)
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model for 6‘,,2(r). The calculated xz statistic possesses a value of 0.0569. For 1 degree of free-

dom this value is certainly not significant even at the 50% significance level. Consequently, the
constrained model without ¢, gives an adequate fit and should be used in preference to the

AR(3) model in order to achieve model parsimony.

By substituting the estimated AR parameters into [3.2.5], one can write the constrained
AR(3) model without ¢, as

(1-0.6198 -0.177B%(z, - 6819) =q, [6.4.2]

where z, is the average annual flow at time ¢, and 6819 is the MLE of the mean for the z, series.

Diagnostic checks presented in the next chapter in Section 7.6.2 demonstrate that the constrained
AR(3) model without ¢, adequately models the average annual flows of the St. Lawrence River.

6.4.3 Annual Sunspot Numbers

The yearly Wolfer sunspot number series is available from 1700 to 1960 (Waldmeier,
1961) where a plot of the series from 1770 to 1869 is shown in Figure 5.4.6. The sample ACF,
PACF, IACF and IPACF are presented in Figures 5.4.7 to 5.4.10 in the identification chapter.
As explained in Section 5.4.3, these identification graphs in conjunction with the output from
diagnostic checks (see Section 7.6.3) indicate that an appropriate model may be a constrained
AR(9) model without ¢; to ¢g fitted to the square roots of the sunspot series.

The MAICE procedure of Section 6.3 can be used to select the best type of ARMA model
to fit to the sunspot series. Previously, Ozaki (1977) found using MAICE that an ARMA(6,3)
model is the most appropriate model to fit to the given sunspot series having no data transforma-
tion. Akaike (1978) employed the AIC to select an ARMA(7,3) model with a square root
transformation as the best sunspot model. However, Akaike (1978) did note that, because of the
nature of sunspot activity, a model based on some physical consideration of the generating
mechanism may produce a better fit to the data. Nevertheless, in this section it is shown how the
model building procedure outlined in Figure 6.3.1 can be used to select an even better model
from the family of ARMA models. As was suggested by McLeod et al. (1977) and also Hipel
(1981), the AR(9) model, with a square-root transformation and the third to eighth AR parame-
ters omitted from the model, produces a lower value of the AIC than all of the other aforemen-
tioned ARMA models. Earlier, Schaerf (1964) suggested modelling the sunspot data using a
constrained AR(9) model but without the square-root transformation.

Because Ozaki (1977) used the series of 100 sunspot values listed as series E in the book of
Box and Jenkins (1976), the same data set is used here for comparison purposes. By using an
exhaustive enumeration procedure, Ozaki (1977) calculated the AIC for all ARMA(p,q) models
for Osp <9 and found that an ARMA(6,3) model possessed the minimum AIC value. Employ-
ing [6.3.1], the values of the AIC were calculated for the same set of models examined by Ozaki
(1977). The second column of Table 6.4.2 lists the AIC values for some of the models when the
data is not transformed using [3.4.30] (i.e., A=1 and ¢=0 in [3.4.30]). It can be seen that the
minimum AIC value occurs for the ARMA(6,2) model, which is almost the same as the value of
the AIC for the constrained AR(9) model. Notice that the ARMA(6,3) model suggested by
Ozaki (1977) has a much higher AIC value than those for the ARMA(6,2) and constrained AR(9)
models. This discrepancy is probably due to the different estimation procedure used by Ozaki.
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The estimation method of McLeod (1977) described in Appendix A6.1 provides parameter esti-
mates that are closer approximations than those of Box and Jenkins (1976) to the exact MLE’s.
As shown by McLeod (1977), implementation of his estimation method can result in improved
estimates of the model parameters especially when MA parameters are contained in the model.
As far as Table 6.4.2 is concerned, the improved estimation procedure affects the log likelihood
in [6.3.1] and this in turn causes the AIC values to be slightly different than those given by
Ozaki (1977, p. 297, Table 6).

Because information from the three stages of model construction is essentially ignored
when using an exhaustive AIC enumeration such as the one adopted by Ozaki (1977), the best
ARMA model is missed. To avoid this type of problem, the AIC can be combined with model
construction as shown in Figure 6.3.1. From the plots of the sample ACF, PACF, IACF, and
IPACEF in Figures 5.4.7 to 5.4.10, respectively, it is difficult to decide upon which model to esti-
mate. However, the sample PACF does possess values at lags 1 and 2 which are significantly
different from zero and also some rather larger values at lags 6 to 9. When an ARMA(2,0)
model is fitted to the data the independence, normality and homoscedastic assumptions (see Sec-
tions 7.3 to 7.5, respectively) are not satisfied. The residual ACF (see Section 7.3.2) has a large
value at lag 9 and this fact suggests that an AR parameter at lag 9 should perhaps be incorporated
into the model. The value of the AIC is lowest in column 2 of Table 6.4.2 for the AR(9) model
without AR parameters from lags 3 to 8. However, because the statistic for changes in residual
variance depending on the current level of the series, the statistic for trends in variance over time
(see Section 7.5.2) and the skewness coefficient (see Section 7.4.2) all possess magnitudes which
are more than twice their standard error, this points out the need for a Box-Cox transformation to
eliminate heteroscedasticity and nonnormality. A square-root transformation can be invoked by
setting A equal to 0.5 in [3.4.30] and assigning the constant ¢ a value of 1.0 due to the zero
values in the sunspot series. Notice from the entries in the third column in Table 6.4.2 that a
square-root transformation drastically lowers the AIC values for all of the models. The best
model is an AR(9) or ARMA(9,0) model with a square-root transformation and without the third
to eighth AR parameters. This constrained model was not missed because information from the
model construction stages was used in conjunction with the MAICE procedure. Hence, when
modelling a complex time series such as the sunspot data, it is advantageous for the practitioner
to interact at all stages of model development by following the logic in Figure 6.3.1.

In Table 6.4.3, the MLE’s and SE’s are shown for the parameters of the most appropriate
ARMA model which is fitted to the sunspot time series. When considering the 100 observations
from 1770 to 1869 which are listed as Series E in Box and Jenkins (1976), the difference equa-
tion for the constrained AR(9) model with a square-root transformation is written as

(1-1.325B +0.6058% - 0.130B%)(w, — 10.718) = q, [6.4.3]

where
w, = (10.5)[(z + 1.0)°% - 1.0]

is the transformation of the given z, series for the sunspot numbers. The calibrated difference
equation for the model fitted to the entire sunspot series from 1700 to 1960 is
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Table 6.4.2. AIC values for the ARMA sunspot models.

ARMA AIC AIC
P9 forA=1, | for A=0.5,
Model ¢=0.0 c=1.0
1,0) 618.30 580.40
2,0) 551.85 518.41
2,1 547.63 519.19
3,0 549.57 519.13
4.9 546.98 516.10
G, 547.29 523.82
5,4) 548.20 517.96
5.5) 547.23 517.38
6,1) 548.11 517.39
6,2) 545.05 518.43
6,3) 551.35 523.34
6,4) 550.73 502.40
a1 548.17 518.98
7.,3) 551.01 521.37
8,0 545.67 519.83
3,1 547.65 520.44
9,0) 547.65 519.72
o,1) 548.18 518.78
Constrained 545.64 511.58
9.0
(1~ 1.245B +0.524B2 - 0. 19289)(w, -10.673) =aq, [6.4.4]

As shown in Section 7.6.3, the sunspot model in [6.4.4] satisfies diagnostic checks.

Table 6.4.3. Parameter estimates for the constrained AR(9) model
fitted to the square roots of the yearly sunspot observations.

Parameters | MLE’s SE’s

o 1325 | 0.074
¢, 0.605 | 0.076
dg 0.130 | 0.042
mn 10.718 | 1.417
o? 4.560
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By using [6.3.2] the relative plausibility of the sunspot models can be obtained. For
instance, from Table 6.4.2 the next best model to the one in [6.4.3], according to the AIC, is an
ARMA(4,4) model with a square-root transformation. When the appropriate AIC values from
Table 6.4.2 are substituted into [6.3.2], the plausibility of the ARMA(4,4) model with a square-
root transformation as compared to the best model is 0.10. According to the AIC, all of the other
ARMA models with a square-root transformation are less plausible than even the ARMA(4,4)
model. In addition, a comparison of the entries in columns two and three of Table 6.4.2 reveals
how a square-root transformation significantly lowers the AIC values and hence increases the
plausibility of a given ARMA model.

6.5 CONCLUSIONS

As explained in Section 6.2.2, maximum likelihood estimators possess a range of very
desirable statistical properties which makes them highly attractive for use in practical applica-
tions. For example, maximum likelihood estimators are efficient and therefore produce parame-
ter estimates having minimum variances in large samples. Accordingly, maximum likelihood
estimation is the best approach for estimating the parameters in an ARMA model which is fitted
to a given time series. Of particular, practical importance is the maximum likelihood estimator
of McLeod (1977) described in Appendix A6.1 which is efficient both from statistical and com-
putational viewpoints. This estimation procedure is used for estimating parameters in not only
ARMA and ARIMA models but also many of the extensions to nonseasonal ARMA models
presented later in the book and listed in Table 1.6.2.

Often the identification procedures of Section 5.3 suggest more than one model to fit to a
specific time series. After calibrating the parameters for the ARMA models, the best overall
model can be selected using the MAICE procedure of Section 6.3. The ways in which the
MAICE approach can be incorporated into the three stages of model construction given in Figure
IIL.1, are shown in Figure 6.3.1.

After selecting the best overall fitted model using the AIC or another appropriate ASC, the
chosen model should be subjected to rigorous diagnostic checking. Procedures for making sure
that various modelling assumptions are satisfied are described in detail in the next chapter.

APPENDIX Aé6.1
ESTIMATOR FOR ARMA MODELS

The purpose of this appendix is to describe the modified sum of squares algorithm of
McLeod (1977) for obtaining approximate MLE’s for the parameters in an ARMA model. As
pointed out in Section 6.2.3 this estimator is computationally efficient and produces parameter
estimates which are usually identical to the exact MLE'’s.

Let w,, t=12,...,n, be a stationary time series which is normally distributed. One

wishes to use the maximum likelihood estimator to obtain estimates for the parameters in the
ARMA model defined in [3.4.4] or [4.3.4]. The parameters to estimate are:
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1. the mean  for the series. If the series has been differenced at least once, one may wish to
set u=0 for the w, series. Otherwise, {1 can be estimated using
- _ i‘, w,
u =w= ——
=1 1

and then fixed at w when estimating the other model parameters. Another approach is to
include p as an additional parameter to estimate along with those mentioned below. For
time series of moderate length (i.c., n 2 30), the estimate given by w will be very close to
that obtained when L is iteratively estimated along with the other model parameters.

2. the p AR parameters contained in the set
O=192-...9,)

3. the ¢ MA parameters in the set
0=(8,0,,...,6,).

4. the innovation series given by a,,a,, . . . , a,.

5.  the variance, G2, of the innovations.

To write down the likelihood function for an ARMA(p,q) model, one must assume a distri-
bution for the innovations and hence the w, series. In particular, assume the innovations are

NID(0, 62) and the w, sequence is N(u,62).
Recall that for a single random variable, w, which is N(1,62), the pdf is written as

1 2
pw) = 2n6?) Zexp {M }

262

Suppose that one has a time series, w,, of n random variables given by wy,w», . . ., w,, where the
w’s are jointly normally distributed as

N@.L#)
where

TR Y (TR
since B == - =}, r,(,’ “9)(9,8) = E(ww') is the variance-covariance matrix of the w,’s
where

wT=(W1—|.l,W2-u:---»wn—u)

and the (i,j) element of I'¥? is Yii-jy for which the autocovariance is defined by
Y = Elw;,w,;] as in [2.5.3]. The joint normal distribution of the w,’s is given by
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—w (P4 ,0))!
p(w|¢,e.o,},u)=(21:)""2|1‘,‘,’”')(¢,e)l'”2exp{ Ca 2(¢ ) w} [A6.1.1]
2 M(l’ﬂ)@,e)
MP4)($,0) = ——=—— and, hence, [[?9($,0)]! = —————. Then,
Let M?P4%(¢,9) l",?"")(d),ﬂ) and, hence, [ (\X9))} oaz en
-wMP9(0,0
p(w10,8,62,1) = 2rc2) ™ 2IMP4)(0,0)1exp 202@ w [A6.1.2]
a

n
When the unconditional sum of squares function is given by S(9,0) = ¥ d,z, Box and Jen-

(=
kins (1976, Ch. 7, A7.4) show that the above can be used to evaluate wl MP4 )(¢,8)w,, con-
veniently. The d;’s can be calculated using the back-forecasting procedure of Box and Jenkins
(Box and Jenkins, 1976, pp. 215-220) as

d, = E[a,|w,0,0]
More specifically, let [w,] and [g,] denote conditional expectations given w,_;,w,_y, ..., w;.
Then,

¢(B)[w,]1=6(8)l4a,] [A6.1.3]

where [g,] =0, ¢t > n. Similarly,
O(F)w,]1 =6(F)le] [A6.1.4]

where F is the forward differencing operator defined by Fw, =w,,,, and e, ~ NID(0,62) with
[e]=0,t < 1. Then, the unconditional sum of squares function 5(9.,0) is calculated as follows:

Step 0: Initialization. Set Q large enough so the model is well approximated by a MA(Q) pro-
cess. Typically, Q = 100 is sufficient.

Step 1: Calculate [w,}] (t=n+Q,...,1) using [A6.1.4]. Begin this calculation by setting
w1=0,t2n-p.

Step 2: Calculate [e,] (t =n+Q, ..., 1) using [A6.1.3]. Start this calculation by setting [¢,] =0,
t=n-p.

Step 3: Back forecast w, (t =0,~1,...,1 - Q). This is done by using [A6.1.4] to calculate first
[wo) then[w_], ..., [wl_Q].

Step 4: Calculate [q,] (t =1-Q, .. .,n) using [A6.1.3].

Step5: S(9,0)= i [a)%

1=1-Q
Consequently, the likelihood function is given by
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o;

L(9.9.621w)ac;"IMP9(0,0)1 2exp {--5—2‘2—6-)-} [A6.1.5]

Because the term IM@9(9,0)! is dominated by the expression exp{-S 9,8)/262 in
[A6.1.5] for large n and IM,(,’"")(¢,9)I is difficult to calculate, Box and Jenkins (1976, p. 213)

suggest that the determinant can be disregarded and approximate MLE’s can be obtained for the
model parameters. However, if the sample is small and/or MA parameters are included in the
model, the resulting parameter estimates may differ appreciably from the exact MLE’s (McLeod,
1977). To rectify these problems various authors have suggested different approaches for calcu-
lating IM®*9(0,8)1. McLeod (1977) devised a procedure whereby IM®4)(0,0)! is replaced by

its asymptotic limit given by
m, 1(9,0) = 31_:2 IM®9(6,0)! [A6.1.6]
When there are no MA parameters in an ARMA(p,q) model and hence g =0, it is known
that for n 2 p (Box and Jenkins, 1976, p. 275)
IMPO@)! = IMP V()1

and the matrix M#9(0) has the (i,j)th element (Pagano, 1973; McLeod, 1977)
min(i.j)
(Oi—k-10j-k-1~Fp+ 14k Dp+14k-})
k=0

where ¢ = —1. To calculate m, o(9), one can use

m, o(0,8) = IMZO0)!. [A6.1.7]
As shown by McLeod (1977)
2 2
m 0(¢)m 0(9)
m, .(,8) = —-———— [A6.1.8]
.q (@ T

where ¢*; is the ith parameter in the operator of order p+¢ that is defined by

$*(B) = ¢(B)6(B)
and 0* = (¢*1,9%2 . . ., 9*p.q)- Consequently, to compute m, 4($,8) in [A6.1.8], it is only
necessary to calculate the determinants of the three positive definite matrices which are obtained
from [A6.1.7].
For convenience, McLeod (1977) defines the modified sum of squares function given by

5,,(9,8) = S(9.8)(m, ,(©.0)1" [A6.1.9]

and this is the function called the modified sum of squares (MSS) referred to in Section 6.2.3.
To obtain MLE’s for the model parameters, the modified sum of squares must be minimized by
using a standard optimization algorithm such as the method of Powell (1964, 1965). When
modelling seasonal time series, it is a straightforward procedure to appropriately alter [A6.1.9]
for use with seasonal ARMA models (McLeod and Sales, 1983).
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As noted in Section 6.1, often the value of the Box-Cox parameter A in [3.4.30] is known in
advance for a given type of time series. If A is not known, this parameter can be iteratively
estimated along with the other ARMA model parameters. However, one must take into account
the Jacobian of the transformation to obtain the log likelihood function given by (McLeod, 1974;
Hipel et al., 1977)

n
1,,6,0,62) =-12'-1nins§ + (=T In(w, +¢) [A6.1.10]
=1
where ¢ is the constant in the Box-Cox transformation in [3.4.30] that causes all entries in the w,
series to be positive. When all the entries in the w, series are greater than zero, one sets ¢ = 0.
When A is fixed beforehand or estimated, one should minimize [A6.1.10] to obtain MLE’s for
the model parameters. If a computer package does not possess the capability of obtaining the

MLE of A, the log likelihood can be calculated for a range of fixed values of A, and the A which
gives the largest value of the log likelihood can be chosen.

When using the estimator of this appendix to obtain MLE’s for an ARMA model or other
types of models given in this text, it is recommended that the w, series be standardized before
using the estimator. For example, each observation in the w, series can be standardized by sub-
tracting out the mean of the series and dividing this by the standard deviation of the series. If the
series is not standardized, one may run into numerical problems when optimizing the likelihood
function. This is especially true for the transfer function-noise and intervention models in Parts
VII and VIII, respectively where the absolute magnitude of an estimated transfer function param-
eter may be much greater than the absolute magnitudes of the AR and MA parameters contained
in the correlated noise terms.

APPENDIX A6.2
INFORMATION MATRIX

To obtain SE’s for the MLE’s of the AR and MA parameters in an ARMA model, one must
calculate the variance-covariance matrix for the model parameters. The square roots of the diag-
onal entries in this matrix constitute the SE’s for the corresponding parameter estimates.

Because the variance-covariance matrix is the inverse of the Fisher information matrix, first
consider the definition for the information matrix. Let the sets of AR and MA parameters given
in Section 6.2.1 as ¢ =(¢1,9;....,9,) and 0=(8,,9,,.. ., 6,), respectively, be included in a
single set as B = ($,0). The variance of the innovations is denoted by 62. The likelihood func-
tion is written as L(ﬁlw), where w = (w;,w,, . . . ,w,) is the set of observations. Let
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IP) = lim {——(p'lls_ﬁln} [A6.2.1]

9p;0B;

where the (i,j) element is defined inside the brackets on the right hand side, the dimension of the
information matrix is (p+¢) by (p+¢), B; and B; ; are the ith and jth parameters, respectively, and

B=(0.0) is the set of MLE’s for the AR and MA parameters. Then, /() is said to be the
theoretical Fisher large sample information per observation on B. In practice / (B) is estimated by
1P).

The variance-covariance matrix for V(B) for the set of MLE’s B is given in large samples
by the inverse of the information matrix. Hence,

v =) [A6.2.2]

The square roots of the diagonal entries in the variance-covariance matrix in [A6.2.2) provide the
estimates for the standard errors (SE's) of the corresponding parameters. The variance-
covariance matrix is often referred to as simply the covariance matrix.

The second order partial derivatives with respect to the model parameters reflect the rate of
change of slope of the log likelihood function. When this slope change is high, there is less
spread around an optimum point in the log likelihood function. This in turn means that the
inverse of the slope change is small which indicates a smaller SE when considering a diagonal
entry in the variance-covariance matrix.

For an ARMA model, the variance-covariance matrix can be written in terms of the AR and
MA parameters. In practice, the entries in the matrix can be calculated numerically.

Because it is known that MLE’s are asymptotically normally distributed, one can test
whether or not a given MLE is significantly different from zero. For example, if zero falls out-
side the interval given by the MLE + 1.96 SE, one can state that the estimate under consideration
is significantly different from zero at the 5% significance level. If this were not the case, one
may wish to omit this parameter from the model fitted to the series. Constrained models are
described in Section 3.4.4 while an example of a constrained model is the constrained ARQ(3)
model fitted to the yearly St. Lawrence riverflow in Sections 5.4.2, 6.4.2 and 7.6.2.

From the definition [A6.2.1] it may be shown that

Tw (‘ _j ) You (l —j )
1B)= [A6.2.3]
Yuv (l _j ) Yuu (‘ —j )

where the (i,j) element in each partitioned matrix is indicated and Yw@XP): Yuu @%q), ¥,. 0%q),
Yuv(gxp) are the theoretical auto and cross covariances defined by

¢(B)V, =-a,,
0By, =a,,
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Y (k) = E(viVy i)
You (k) = E (y14y4),
You(K) = E,t413),
Yiw (k) = Yy (). [A6.2.4]

The covariance functions in [A6.2.4] may be obtained from a generalization of the algorithm
given in Appendix A3.2.

APPENDIX A6.3
FINAL PREDICTION ERROR

Suppose that it is required to determine the order of an AR model to fit to a stationary time
series wy,wy, ..., w,. Prior to the introduction of the AIC defined in [6.3.1], Akaike (1969,
1970) developed a statistic called the final prediction error (FPE) for selecting the order of the
AR model. The FPE is an estimate of the one step ahead prediction error variance of the AR(p)

model in [3.2.5] and is defined as
-1

_pt1
n

1 [A6.3.1]

FPE =62(p) [1+”+1
n

" n
where 63(p) = —-1; ¥ 42 is the unbiased estimate of the residual variance of the AR(p)
- t=p+1
model. According to Akaike (1969, 1970), the AR model with the minimum value of the FPE in
[A6.3.1] should be selected for modeling the series.

Taking natural logarithms of [A6.3.1] produces the result
InFPE =In62(p) + A%” +0(n) [A6.3.2]

It is known that (-2) times the log likelihood of a Gaussian AR(p) model is approximately given
by nlno,,z(p)+ constant. Hence, as noted by Ozaki (1977),

nInFPE = AIC + constant + 0(n™)) [A6.3.3]

Consequently, the MAICE procedure for AR model fitting is asymptotically equivalent to choos-
ing the minimum value of the FPE.
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Chapter 6

PROBLEMS

Chapter 6 concentrates on explaining how the method of maximum likelihood can be used
for estimating the parameters of ARMA models. However, other parameter estimation
approaches are also available. Make a list of the names of six other estimation techniques.
Outline the main ideas behind any two of these six methods.

In Section 6.2.2, first order and second order efficiency are referred to. Using equations
where necessary, discuss these two concepts in more depth than that given in Section 6.2.2.

A criterion for characterizing an estimator is sufficiency. Define what is meant by suffi-
ciency. Are maximum likelihood estimators sufficient?

What is an approximate maximum likelihood estimator? Outline the main components
contained in the conditional and unconditional approximate maximum likelihood estima-
tors suggested by Box and Jenkins (1976).

What is an exact maximum likelihoood estimator? Describe the main steps followed when
applying the exact maximum likelihood estimators provided by Ansley (1979) as well as
Ljung and Box (1979).

To optimize a likelihood or log likelihood function, a number of optimization algorithms
are listed in Section 6.2.3. Outline the steps contained in the conjugate directions algo-
rithm of Powell (1964, 1965). Discuss the advantages and limitations of Powell’s algo-
rithm.

Explain the difference between maximum likelihood estimation and Gaussian estimation.
Show that the exact log likelihood function for a Gaussian AR(1) is:

Z=p+ 41z -W+a
where a, ~NID(0,62)and =1, . . . ,n may be written as

1 1
logL(91,4.03) = 7 10gog + 7 1og(1 - 67) = ——=S (@)
a

where

S@D) =1 - 0Dz - WP+ T [z — ) - by(zs WP
1=2

Simulate z,,¢ =1, ... ., n several times for various n and plot L(¢;,1,62) for I¢,! < 1.
Suppose that
(1-¢;B)z, =gq,
where log a, ~ NID(0,62). Show that I(9;) = (1 + 6™
(@) Consider the AR(1) model
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(1-¢B)s =g,

1
2

If a, ~ NID(0,1), show that I(¢) = 1

() Now consider the AR(1) model
a- $B)z, =a,,
where log @, ~ NID(0,1). Show that in this case, that

l(¢)=282 [e(e—;) + € 5
| 1-¢ " -9
() Compare the relative efficiency of Gaussian estimation versus maximum likelihood
estimation when log a, ~ NID(0,1). Verify your theoretical calculation by simulation

(see Chapter 9 for an explanation of simulation).
6.10 Outline the theoretical development of the AIC given in [6.3.1].
6.11 Two approaches for employing the AIC in conjunction with model construction are

described in Section 6.3.3. Using an annual time series of your choice, employ these two
procedures for determining the best overall ARMA or ARIMA model to fit to the series.

6.12 Compare the MA(2) and AR(2) models for the Mean Annual Temperatures in Central Eng-
land. Calculate the plausibility of the MA(2) model versus the AR(2) model.

6.13 The general form of an automatic selection criterion for model discrimination is given in
Section 1.3.3 while the AIC and BIC are defined in [6.3.1] and [6.3.5]. Excluding the AIC
and BIC, give the definitions of three other ASC’s. Discuss the domains of applicability,
advantages and drawbacks of each of these ASC’s.
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