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CHAPTER 7
DIAGNOSTIC CHECKING

7.1 INTRODUCTION

In Chapter 5, a variety of useful graphical tools are presented for identifying one or more
promising ARMA or ARIMA models to fit to a given time series. Subsequent to model identifi-
cation, the method of maximum likelihood described in Chapter 6 can be employed for obtaining
MLE’s and SE’s for the model parameters. When parameter estimates are calculated for more
than one model, the AIC of Section 6.3, or another appropriatc ASC mentioned in Section 6.3.6,
can be used to select the overall best model. The objective of Chapter 7 is to ensure that this
model adequately describes the time series under consideration by subjecting the calibrated
model to a range of statistical tests which are referred to as diagnostic checks. The overall
approach to model construction is displayed in Figure IIL.I while Figure 6.3.1 shows the ways in
which the AIC can be used in conjunction with the model building stages.

One class of diagnostic checks is devised to test model adequacy by overfitting. This
approach assumes that the possible types of model inadequacies are known in advance. The pro-
cedure of overfitting consists of including one or more extra parameters in the model to ascertain
if an improved model can be designed (Box and Jenkins, 1976, Ch. 8; Granger and Newbold,
1977, Ch. 3). Section 7.2 explains how overfitting can be carried out in practice.

The most useful and informative diagnostic checks deal with determining whether or not
the assumptions underlying the innovation series are satisfied by the residuals of the calibrated
ARMA or ARIMA model. As pointed out in Section 3.4.5 and many other locations in the book,
when fitting a model to a time series the estimated innovations or residuals are assumed to be
independent, homoscedastic (i.e. have a constant variance) and normally distributed. Estimates
for the g,’s are automatically calculated at the estimation stage along with MLE’s and SE’s for

the model parameters (see Appendices A6.1 and A6.2).

Of the three innovation assumptions, independence and, hence, whiteness, is by far the
most important. A data transformation cannot correct dependence of the residuals because the
lack of independence indicates the present model is inadequate. Rather, the identification and
estimation stages must be repeated in order to determine a suitable model. If the less important
assumptions of homoscedasticity and normality are violated, they can often be corrected by a
Box-Cox transformation of the data defined in [3.4.30].

Table 7.1.1 lists the main problems that can occur with the statistical properties of the resi-
duals of a fitted model and how they can be corrected. Diagnostic checks for whiteness, normal-
ity and homoscedasticity of the residuals are presented in Sections 7.3 to 7.5, respectively, along
with explanations regarding corrective actions that can be taken. Practical applications of apply-
ing these tests to a yearly riverflow series and sunspot numbers are presented in Section 7.6.

One should keep in mind that diagnostic checks only have meaning if the parameters of the
model are efficiently estimated using the maximum likelihood approach of Chapter 6 at the esti-
mation stage. If, for example, the method of moments were used to estimate the parameters of
an ARMA model containing MA parameters, these moment estimates would be inefficient and
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Table 7.1.1. Rectifying violations of the assumptions

underlying the model residuals.

Violations of Residual { Corrective Actions Sections
Assumptions
Dependence and Consider other models |- 7.3
non-whiteness
Variance change or Box-Cox data 74
heteroscedasticity transformation
Non-normality Box-Cox data 1.5

transformation

probably quite different from the corresponding MLE’s. Problems arising in the residuals of the
ARMA model calibrated using moment estimates may be due to the inefficiency of the estimator
rather than the specific parameters included in the model. Accordingly, for all of the diagnostic
checks presented in Chapter 7 it is assumed that a maximum likelihood estimator is used to esti-
mate the model parameters. For ARMA models, the only exception to this is the case of a pure
AR model in [3.2.5]. Recall that for an AR model, both the method of moments using the Yule-
Walker equations in [3.2.12] and the technique of maximum likelihood fumnish efficient parame-
ter estimates.

7.2 OVERFITTING

Overfitting involves fitting a more elaborate model than the one estimated to see if includ-
ing one or more additional parameters greatly improves the fit. Extra parameters should be
estimated for the more complex model only where it is feared that the simpler model may
require more parameters. For example, the sample PACF and the IACF for an annual time series
may possess decreasing but significant values at lags 1, 2, and 9. If an AR(2) model were origi-
nally estimated, then a model to check by overfitting the model would be

(1-¢;B - $,B% - $oB%)(w, - W) =4,

In Section 6.4.3, this is the type of model which is fitted to the square roots of the yearly sunspot
numbers. Because, as shown in Table 6.4.3, the MLE of ¢y is more than three times the value of
its SE, this indicates that the more elaborate AR model containing ¢9 should be selected. More-
over, the AIC (Table 6.4.2) and diagnostic checks applied to the residuals of the constrained
AR(9) model fitted to the square roots of the annual sunspot numbers (Section 7.6.3) confirm

that the more complex model should be employed. Box and Newbold (1971, Section 3.6) as
well as Box and Jenkins (1976, Section 8.1.2) show other interesting applications of overfitting.

The practitioner must take care to avoid model redundancy which could occur if the AR
and MA components were simultaneously enlarged. For example, suppose that one initially fits
an AR(1) model to a series but then expands the model by adding one more AR plus an addi-
tional MA parameter to form an ARMA(2,1) model. Suppose that the difference equation for an
ARMA(2,1) model fitted to a given series given as w, is
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(1-0.808 +0.12B%)(w, - 26) = (1 - 0.20B)a,

Upon examining the SE’s for some of the MLE’s for the parameters one sees that they are very
large. For example, the SE for ¢, may be 0.22 which is much larger than 62 =0.12, even though
there are 200 entries in the series. The reason for a large SE is the instability introduced into the
estimation algorithm due to parameter redundancy. Notice that the difference equation can be
written as

(1 -0.60B)(1 -0.20B)(w, = 26) = (1 = 0.20B)aq,
which simplifies to
(1 -0.60B)(w, — 26) =gq,

Therefore, the AR(1) model is more appropriate than the ARMA(2,1) model for fitting to the
series.

Whenever one notices abnormally large SE’s one should check for redundant or nearly
redundant factors in a model due to overspecifying the model and then take corrective action by
removing the redundant factors and fitting a simpler model. - The over specification of the model
parameters may cause rather large flat regions near the maximum point of the likelihood func-
tion and this in turn means that the SE’s must be large (see Appendix A6.2). The large SE’s sug-
gest that a wide range of models could suitably model the data. However, in keeping with the
principle of model parsimony, the simpler model should be chosen and, hence, redundancy
should be avoided.

The problem of model redundancy provides an explanation as to why one cannot start out
by fitting an overspecified model having many parameters and then reducing the number of
parameters until an adequate model is found. Rather, one must begin with a fairly simple model
and then carefully expand to a more complicated model, if necessary.

Another method of testing model adequacy by overfitting, which was originally suggested
by Whittle (1952), is to fit a high-order AR model of order r where 20 < 7 < 30. Suppose the
original model has k estimated parameters plus the estimated residual variance, Gf(k). Then it is

shown (McLeod, 1974; Hipel et al., 1977) that the likelihood ratio statistic is
nln [&3(k)/&3(r)] =xXr-k) [7.2.1]

where éf(r) is the residual variance estimate for an AR process of order r. If the calculated

xz(r -~ k) from [7.2.1] is greater than xz(r - k) from the tables at a chosen significance level,
then a model with more parameters is needed.

The likelihood ratio test in [7.2.1] can also be used to determine if a model containing
fewer parameters gives as good a fit as the full model. An application of this test is presented in
Section 6.4.2 where three types of AR models are fitted to the average annual flows of the St.
Lawrence River. The likelihood ratio test, as well as the AIC, select a constrained AR(3)
without ¢, as the best AR model to fit to the St. Lawrence flows.

When using the likelihood ratio test, the models being compared must be nested. Hence,
the less complex model must be contained within the more complicated one. For instance, an
AR(1) model is nested within an AR(k) model for k>2. As pointed out in Section 6.3, when
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using the AIC for model discrimination, the models do not have to be nested and one can com-
pare any number of different kinds of models at the same time.

7.3 WHITENESS TESTS

7.3.1 Introduction
The a,; sequence for AR (see Section 3.2), MA (Section 3.3), ARMA (Section 3.4) and

ARIMA (Section 4.3) models are assumed to be independently distributed in the theoretical
definition of these models. This implies that the estimated innovations or residuals are uncorre-
lated or white. In the next subsections, a number of statistical tests are described for determining
whether or not the residuals, represented as d,, t = 1,2, . . . , a, are white.

7.3.2 Graph of the Residual Autocorrelation Function

The most informative approach to check for whiteness is to examine a graph of the residual
autocorrelation function (RACF). The RACF at lag k is calculated as

n@s= ¥ [d,d,_,‘/id,? [7.3.1]

t=k+1 i=1

Because of the term in the denominator in [7.3.1], the values of the RACF can range between -1
and +1. Additionally, since the RACF is symmetric about lag zero, one can plot the RACF
against lags for positive lags from lag one to about lag n/4.

When examining a plot of the RACF, one would like to know if a given value is signifi-
cantly different from zero. Asymptotically, the RACF is normally distributed as N (0,-1—) for any
n

lag. Therefore, to draw the 95% confidence interval, for example, one can plot %%6- and

7’}%‘1 above and below, respectively, the lag axis. If a given value of the RACF is significantly

different from zero, it will fall outside the confidence interval.
A more accurate derivation for the large sample distribution of the RACF is provided by
McLeod (1978). Define the vector of the first L values of the RACF as
r(d) = [ri(d@).rd), ..., (@Y [7.3.2]

Denote by v, () the coefficient of B* in the Maclaurin series expansion of [¢(B I, where ¢(B)
is the AR operator defined in [3.4.4] as ¢(B)=1—-¢,B —%Bz- R -¢,,B" . Likewise, let
Y, (0) be the coefficient of B* in the Maclaurin series expansion of [G(B)]‘l. where 6(B) is the
MA operator given in [3.4.4] as 6(B)=1-0,B —6,8>— --- —@,B7. Then it can be proven for
large samples that the residuals in r(d) in [7.3.2] follow the multivariate normal distribution
given as:

r(d)~N [0,%] [7.3.3]

where U=1;, -XT" x, 1, is the identity matrix, / =X’X is the large-sample information
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matrix, and X =[y;_;(¢),y;_;(6)] are the i,j entries in the two partitions of the X matrix. The
dimensions of the matrices X, W;_;(¢), and y;_;(6) are, respectively, Lx(p + q), Lxp, and Lxgq.

Notice in [7.3.3] that U is a function of the AR and MA parameters in the ARMA model
fitted to the original series. This is the reason why the findings are better than earlier work. Pre-
viously, Box and Pierce (1970) obtained [7.3.3] for an AR model but the result in [7.3.3] is valid
for a more general ARMA model. Finally, equation [7.3.3] can be extended for use with sea-
sonal ARIMA models (Section 12.3.4) as well as the other ARMA based models presented in
Parts VI to IX.

To obtain the 95% confidence interval for the RACF at lag k, one calculates

95% =i1.96‘\,—1 Uu
confidence n

interval
where Uy, is the diagonal entry at location k& in the matrix U in [7.3.3]. For each lag
k=12,...,L= % one can determine the 95% confidence interval which can be plotted on a

graph of the values of the RACF against lag k. Usually, the most important values of the RACF
to examine are those located at the first few lags for nonseasonal data. If one or more of the
values of the RACF fall outside the 95% confidence interval, this means that the current model is
inadequate. The use of these confidence limits for checking model adequacy is discussed by
Hipel et al. (1977), McLeod et al. (1977) and McLeod (1977).

When the present model is insufficient due to correlated residuals, one can use the results
contained in a graph of the RACF to update the model. Suppose, for example, that an examina-
tion of the graph of the RACF reveals that the residuals of an AR(1) model fitted to the given w,

series are correlated at lag one. Hence, the inadequate model can be written as
(1-¢,B)(w, - li) =b,

where ¢, is the AR parameter, W is the mean of the w; series and b, is the residual series that is

correlated at lag one. Because the RACF has a significantly large value at lag one, the following
MA(1) model can be fitted to the b, series representing the correlated residuals:

b,=(1-6,B)a,

where 0, is the MA parameter. By substituting b, into the previous equation, one obtains the
ARMAC(1,1) model written as

(1-¢,8)(w; —u) =(1-0;B)q,

Consequently, one can fit an ARMA(1,1) model to the original w, series in order to obtain
MLE’s for the parameters when the parameters are all estimated together within the same
ARMA(1,1) model framework. The residuals of the ARMA(1,1) can then be subjected to
rigorous diagnostic checks in order to ascertain if further model modifications are required.

In the foregoing example for redesigning a model having correlated residuals, the form of
the RACEF clearly indicates how to expand the model. When this is not the case, other pro-
cedures can be employed for developing a more suitable model. One approach is to repeat the
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identification and estimation stages of model construction shown in Figure III.1 in order to dis-
cover a more suitable model. Another alternative is to use the AIC in conjunction with the ear-
lier stages of model construction by following an appropriate path in Figure 6.3.1.

7.3.3 Portmanteau Tests

Rather than examine the magnitude of the value of RACF at each lag as is done in the pre-
vious subsection, one could look at an overall test statistic which is a function of the RACF
values from lags one to L in order to perform a significance test for whiteness. However, this
type of test is less sensitive because the lag locations of significantly large correlations and their
magnitudes are buried in the test statistic. When a test statistic indicates a correlation problem in
the RACF, one must then examine the graph of the RACF in order to understand what is happen-
ing and, subsequently, take corrective action.

Box and Pierce (1970) developed a Portmanteau statistic given as
L
Q'L =nY rid) [7.34)
k=1

which is xz distributed on (L — p — q) degrees of freedom. Later, Davies et al. (1977) and Ljung
and Box (1978) derived an improved version of the Portmanteau statistic which is written as

L
0", =n(n +2) Y rXd)(n - k) [7.3.5]
k=1

and is also x2 distributed on (L - p — q) degrees of freedom. More recently, Li and McLeod
(1981) devised another enhanced Portmanteau statistic to test for whiteness. Specifically, if L is
large enough so that the weights y,(¢) and y,(8) in [7.3.3] have damped out, then

LL+1)

o [7.3.6]

L 2
QL=nYri@d+

k=1

where Q; is xz distributed on (L — p - q) degrees of fréedom, and L can be given a value from

about 15 to 25 for nonseasonal time series where L is not greater than about n/4. A test of this
hypothesis can be done for model adequacy by choosing a level of significance and then compar-
ing the value of the calculated xz to the actual x2 value for (L-p-q) degrees of freedom from the
tables. If the calculated value is greater, on the basis of the available data the present model is
inadequate, and appropriate changes must be made by examining in detail a plot of the RACF
and, perhaps, also identification graphs of the original w; series.

The modified Portmanteau statistics in [7.3.5] and [7.3.6] are recommended for employ-
ment over the first version in [7.3.4]. Moreover, the statistic in [7.3.6] has advantages over the
one defined in [7.3.5]. In particular, using simulation experiments, Kheoh and McLeod (1992)
demonstrate that the Portmanteau test statistic in [7.3.6] has a more accurate significance level
than the one in [7.3.5] and possesses about the same power as that statistic. Also, the test statis-
tic in [7.3.6] can be naturally extended for use in the multivariate case as in [21.3.2].
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7.3.4 Other Whiteness Tests

A range of other whiteness tests can be employed for checking whether or not the residuals
of a fitted ARMA model are white. For example, one can use the cumulative periodogram
graph of Section 2.6 to test for whiteness. However, when examining model residuals, it is
known that this test is inefficient. Often the cumulative periodogram test fails to indicate model
inadequacy due to dependence of the residuals unless the model is a very poor fit to the given
data.

A quite different approach to whiteness tests is to examine the autocorrelation function
(ACF) of the squared model residuals, 4%, ¢ =12, . .., n, which is estimated at lag k as

rd@)= i [(:f,2 - 0622, - &3)] /|3 @2 - &3)2] [7.3.7]
t=k+1 1=1 .

where the variance of the residuals is calculated using

a n
6l= Zd,zln
1=1

Consider the vector of squared residuals given by
r(d®) =@ @, ..., r @1 [7.3.8]

For fixed L, McLeod and Li (1983) show that n r(a“z) is asymptotically multivariate normal
with mean zero and unit covariance matrix. Hence, one could check for correlation of the
squared residuals by examining a graph of rk(a‘l) against lagk =1,2,...,L, along with the 95%
confidence limits. Furthermore, a significance test is provided by the Portmanteau statistic
(Ljung and Box, 1978)

L
0@ =n(n+2)Y r2di(n - k) [7.3.9]
k=1
which is asymptotically x2 distributed on (L — p — q) degrees of freedom if the a, are indepen-
dent.

In some applications, the autocorrelation function of the squared residuals is more sensitive
than the RACF for detecting residual dependence. In particular, the autocorrelation function of
squared residuals have been found especially useful for detecting nonlinear types of statistical
dependence in the residuals of fitted ARMA models (Granger and Andersen, 1978; Miller, 1979;
McLeod and Li, 1983).

7.4 NORMALITY TESTS

7.4.1 Introduction

The theoretical definitions for AR, MA, ARMA and ARIMA models are presented in Sec-
tions 3.2.2, 3.3.2, 3.4.2, and 4.3.1, respectively. Recall that for each of these models it is
assumed that the innovations, represented by the g,’s, are identically and independently distri-
buted. This means that the disturbances must follow the same distribution, such as a Gamma or
Gaussian distribution, and be independent of one another. As pointed out in Section 6.2, in order
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to obtain estimates for the model parameters one must assume that the innovations follow a
specific distribution. In particular, comprehensive maximum likelihood estimators for ARMA
models have been developed for the situation where the a,’s are Gaussian or normally distri-
buted. A maximum likelihood estimator which is both statistically and computationally efficient
is described in Appendix A6.1.

A wide range of flexible tests are available for ascertaining whether or not the residuals of a
fitted ARMA model follow a normal distribution. Some of these normality tests are described in
the subsequent subsections. If, for example, tests reveal that the residuals are not normal, one
can transform the given data using the Box-Cox transformation in [3.4.30]. After fitting an
ARMA model to the transformed series, one can employ appropriate normality tests to check
whether or not the residuals from this model are Gaussian.

In addition to the statistical tests presented in the next three subsections and elsewhere, one
can employ graphical methods for visually detecting departures from normality. A range of
graphical techniques for use in exploratory data analysis are presented in Section 22.3 and
referred to in Section 5.3.2. Some of these graphs can be used as visual normality checks. For
example, if the box and whisker graph in Section 22.3.3 for the given time series is fairly sym-
metric, one can argue that the data follow a symmetric distribution such as a normal distribution.
In a plot of the series against time, one should not see a lot of extreme values if the w, series is

Gaussian.

7.4.2 Skewness and Kurtosis Coefficients

Let the residual series for the fited ARMA or ARIMA model be given as d,
t=1.2,...,n. If the d,’s are normally distributed, they should possess no significant skewness.
The skewness coefficient g, for the d; series is calculated using

32
12. 12.
g= |=3a | |-x4? (7.4.1]
n, n,

To test the null hypothesis that the data are normal and therefore possess no significant skew-
ness, one must know the distribution of g;,. D’Agostino (1970) presents a method for transform-

ing g, so that the transformed value is distributed as N (0,1). This allows one to calculate the sig-
nificant level for g;.

The steps required in transforming g, to a random variable which is N(0,1) are as follows
(D’ Agostino, 1970):

6(n-2)

B.= 3(n2+27n —70)(n + 1)(n + 3)
27 (n=-2(n+5)n+T)(n+9)

3. W2=-1+[2(8,- 1))"?
4. &5=(Qnw) 2

12
L Y=g nt1)nt3) ] where g, is calculated from the d, series using [7.4.1].

2.
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5. a=[/W?2-1))"?
12

Z =8In[Y/o. + {(Y/a)2 +1 } ]

The random variable Z, which is a transformation of the skewness coefficient g,, is distributed as
NQ@©.1).

After calculating Z and choosing a level of significance, one can refer to standard normal
tables to determine whether or not Z is significantly large. If, for example, Z has a significance

level which is_ less than 0.05 according to the tables, one can assume that based upon the current
information the d; series possesses significant skewness and is, therefore, not normally distri-

buted.
The kurtosis coefficient for the d, series is determined as

2
l n N 1 n
&= “2‘114 / _24}2 -3 [7.4.2]
R R

If the given data are normal, the statistic g, is approximately distributed as N(0,24/n). Hence,
for an estimated g,, one can calculate the significance level for testing the null hypothesis that
the data are normally distributed.

7.4.3 Normal Probability Plot
As before, suppose that a residual series is given as d, t = 1,2, ...,n. When the entries in
the d; series are ordered from smallest to largest, the sample order statistic is

d(l) < (i(z) £--- <L d(,.) [7.4.3]

Let the hypothesized cumulative distribution function of the transformed data be F (d/&a). Also,
let p;, which is called the plotting position, be an estimate of F (cz‘(i)léa). Hence, F~!(p;) is the
theoretical standard quantile. To construct a probability plot, the d;yand F~ l(p,~) are plotted as
the abscissae and ordinates, respectively.

Following the recommendation of Looney and Gulledge (1985), for the case of a normal
probability plot, the plotting position of Blom (1958) is recommended for use in practical appli-
cations. This plotting position is defined as

_i-0375
Pi=a¥02s

When the d,’s are N (0,63), a normal probability plot, consisting of the theoretical standard
normal quantile F~ l(p,-) being plotted against the empirical quantile d), should form a straight
line. The 95% Kilmogorov-Smirnov confidence interval (CI) can also be included with the nor-
mal probability plot. For a given plotting position, p;, the two sides of the confidence interval

are calculated using (Lilliefors, 1967)

[7.4.4]
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0.886
n

95%CI =d, +G, - F~! F,- + [7.4.5)

The reader should keep in mind that this procedure is known to not be very sensitive to depar-
tures from normality, particularly in the tails. Additional research on probability plots includes
contributions by Stirling (1982), Michael (1983) and Royston (1993).

7.4.4 Other Normality Tests

Besides those tests described in the previous two subsections, many other tests are avail-
able for determining whether or not a time series such as the sequence of model residuals is nor-
mally distributed. Normality tests are described in most standard statistical textbooks, statistical
encyclopediae and handbooks, plus research papers. Shapiro et al. (1968), for instance, review
and compare nine methods for testing for normality in a single sample. Two normality tests are
briefly referred to below.

Shapiro-Wilk Test
The Shapiro-Wilk test for normality is based on the test statistic

W = by 62 [7.4.6]
- t 4.
=1

where b? is proportional to the best linear unbiased estimate of the slope of the linear regression
of di; in [7.4.3] on the expected value of the ith normal order statistic (Shapiro and Wilk, 1965).
A general algorithm for calculating W and its significance level is given by Royston (1982).
Simulation experiments suggest that the Shapiro-Wilk test is a good general omnibus test for
normality in many situations. Finally, Filliben (1975) defines the normal probability plot corre-
lation coefficient, which is closely related to the Shapiro-Wilk statistic, and compares the power
of this test statistic for normality with six others.

Blom’s Correlation Coefficient

Looney and Gulledge (1985) recommend the use of a correlation coefficient test for nor-
mality. The test, which is based upon Blom’s plotting position, summarizes and objectively
evaluates the information contained in a normal probability plot.

The test statistic for the composite test of normality is constructed using the Pearson
product-moment correlation coefficient between F~ 1(p,-) and d;). As with the Shapiro-Wilk test,
““large’’ values for the test statistic tend to support the assumption of normality. The signifi-
cance range for the correlation coefficient test is obtained from the tabulated empirical percen-
tage points printed in Looney and Gulledge’s (1985) paper. Monte Carlo results indicate that
this correlation coefficient test compares quite favourably to the Shapiro-Wilk test.
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7.5 CONSTANT VARIANCE TESTS

7.5.1 Introduction

For the ARMA and ARIMA models of Chapters 3 and 4, respectively, as well as most of
the other models in the book, the innovation scries is assumed to have a constant variance, 2.

The statistical word for constant variance is homoscedasticity. One would like the residuals of a
fitted ARMA or ARIMA model to be homoscedastic.

If the variance of the innovations change, they are said to be heteroscedastic. Changing
variance or heteroscedasticity can occur in a number of different ways. Firstly, the variance of
the residuals may increase or decrease over time. Secondly, the variance may be a function of
the magnitude of the series. For instance, the variance may be greater for higher values of the
innovations and lower for smaller values. In the next section, tests are presented for checking for
variance changes that occur over time and changes that are dependent upon level.

The plot of the Beveridge wheat price indices are shown in Figure 4.3.15. As can be seen,
the variance or ‘‘spread”” of the data is increasing over time. If an ARIMA model were fitted
directly to the given time series, the variance of the residuals of the model would also become
greater with increasing time. Consequently, as explained in Section 4.3.3, to alleviate problems
with heteroscedasticity the wheat price indices are first transformed using the natural logarithmic
transformation contained in [3.4.30] before fitting an ARIMA model to the series. In general, an
appropriate Box-Cox transformation can often alleviate the problem of heteroscedasticity in the
model residuals.

7.5.2 Tests for Homoscedasticity

The following tests were developed by McLeod (1974), and their application described by
Hipel et al. (1977) and McLeod et al. (1977), are useful for determining whether a transforma-
tion of the data is needed by checking for changes in variance (heteroscedasticity) of the residu-
als. As is mentioned earlier, the variance of the normally independently distributed residuals is
assumed to be constant (homoscedastic). Suppose that g, is NID[O,oaz(t)] and that the variance

changes with time as caz(t). Let the stochastic random variable {, be NID (0,0%) and hence have
constant variance. Suppose then that

a, = exp {(x/z)[x(:) -K) }g (7.5.1]

where ) is some constant to be estimated, K'(¢) is a function of time to be specified, and K is the

n
mean of K (¢) and equals n! Y K(t). The variance of the g, residuals is then
1=1

cl(t)=E {cxp[x(K ) -K )]C:z}

=exp {x[x(r) -E]]u-’ [7.5.2]

It can be shown that the natural logarithm of the likelihood Lk for 62 and ¥ is
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1 =
Lh=- —;—-lncs2 - FZ-:I {cxp[— K@) -K )]a,z} [7.5.3]
and
%x’l =7-17,.}-:1 {K(r)exp[— x(K(r)-I?)laf} [7.5.4]

One solves dLh/d02 = 0 exactly for 62, and substitutes for o2 into [7.5.4]. Next, equation [7.5.4]
is set equal to zero, and the residual estimates d, obtained from the estimation stage in Section

6.2 are used for g,. This equation is then solved for a MLE of ¥ by using the Newton-Raphson
method with an initial value of x =0.

In order to carry out a test of the hypothesis, the first step is to postulate the null hypothesis
that x =0 and, therefore, to assume that the residuals have constant variance. The alternative
hypothesis is that the residuals are heteroscedastic and that ) # 0. By putting K(t) =t in the pre-
vious equations, it is possible to test for trends in variance of the residuals over time. If
K (t) =w, — 4, then one can check for changes of variance depending on the current level of the
w, series in [4.3.3]. A likelihood ratio test of the null hypothesis is obtained by computing the

MLE of ¥ and comparing it with its standard error. The variance for the MLE i for  is calcu-
lated by using the equation

Vary, = -1/(9*Lh/ox?) [7.5.5]

Because the MLE for x is asymptotically normally distributed, after a level of significance
is chosen it is a straightforward procedure to determine whether to accept or to reject the null
hypothesis. This test is also valid for transfer function-noise, intervention, multivariatt ARMA
and regression models. In regression models, the test for heteroscedasticity can indicate whether
an important covariate is missing (Anscombe, 1961; Pierce, 1971).

If model inadequacy is revealed by either of the tests, a simultaneous estimation procedure
can be used to estimate the AR and MA parameters, 6%, and x. This would involve an enormous
amount of computer time. However, in practice, the Box-Cox transformation in [3.4.30] will
often stabilize the variance.

7.6 APPLICATIONS

7.6.1 Introduction

Tables 5.4.1 and 5.4.2 list ARMA and ARIMA models identified for fitting to five nonsea-
sonal stationary and three yearly nonstationary time series, respectively. Detailed identification
and estimation results are presented in Sections 5.4 and 6.4, respectively, for the average annual
St. Lawrence riverflows and the yearly sunspot numbers. Likewise, in this section representative
output from the diagnostic check stage of model construction is given for these same two annual
geophysical time series. However, the reader should keep in mind that all of the models identi-
fied in Tables 5.4.1 and 5.4.2 passed the tests for whiteness, normality and homoscedasticity
given in Sections 7.3 to 7.5, respectively.
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7.6.2 Yearly St. Lawrence Riverflows

Figures 2.3.1 and 5.4.1 display the average annual flows of the St. Lawrence River (Yevije-
vich, 1963) in m%/s at Ogdensburg, New York, from 1860 to 1957. Identification graphs in Fig-
ures 5.4.2 to 5.4.5 indicate that a constrained AR(3) model without ¢, is the most appropriate
AR model to fit to this series. Parameter estimates for this model along with their SE’s are given
in Table 6.4.1 while [6.4.2] is the difference equation for the calibrated model. Furthermore,
both the likelihood ratio test (see [6.4.1] and [7.2.1]) and the AIC (see Section 6.3) select the
constrained AR(3) model for describing to the St. Lawrence flows over the AR(1) and uncon-
strained AR(3) models, which are also listed in Table 6.4.1.

The St. Lawrence riverflow model in [6.4.2] is now subjected to rigorous diagnostic tests to
ensure that the independence, normality and constant variance assumptions are satisfied. Figure
7.6.1 shows a plot of the RACF of Section 7.3.2 for the AR(3) model without ¢,. The 95% con-
fidence limits in Figure 7.6.1 have jagged edges at low lags because the more accurate technique
of Section 7.3.2, that is a function of both the fitted model parameters and the lag, is used to cal-
culate these limits. Although the value of the RACF at lag 18 is rather large, it actually lies
within the 1% significance interval. This larger value could be due to inherent random variation
or to the length of the time series used to estimate it. However, the important values of the
RACEF for the lower lags all lic well within the 95% confidence interval. Therefore, the RACF
indicates that the chosen model for the St. Lawrence River satisfies the whiteness assumption.
This fact is also confirmed by the x2 distributed Portmanteau statistic Q, in [7.3.6]) whose calcu-

lated magnitude for Q, is 13.46 for 18 degrees of freedom and is, therefore, not significant.

The less important assumptions of normality and homoscedasticity of the residuals are also
satisfied. The skewness statistic 8 in [7.4.1] has a value of -0.1482 and a SE of 0.3046.

Because g, is much less than 1.96SE, there is no significant skewness and this indicates that the

residuals are normally distributed. Likewise, the kurtosis coefficient in [7.4.2] confirms that the
residuals are Gaussian. In particular, the kurtosis coefficient, g,, has a value of -0.3240 which is

less than its SE of 0.4974.

The y statistic from Section 7.5.2 for changes in variance depending on the current level of
the series has a magnitude of 0.000081 and a SE of 0.000341, while the X statistic for trends in
the variance over time possesses a value of 0.002917 with a corresponding SE of 0.00504.
Because, in both instances, the SE’s are greater than the X statistics, based upon the information
used, it can be assumed that the residuals are homoscedastic.

The flows used for the St. Lawrence River are in cubic meters per second. However, if the
flows had been in cubic feet per second and a model had been fit to these data, all the AR param-
eters and SE’s would have been identical with the metric model in [6.4.2). Only the mean level
of the series and 6’3 would be different. In general, no matter what units of measurement are

used the AR and the MA parameter estimates and the SE’s will remain the same, while the mean
level and caz will be different.

The type of model fit to the St. Lawrence River data reflects the actual physical situation.
The Great Lakes all flow into the St. Lawrence River, and due to their immense size they are
capable of over-year storage. If there is an unusually wet or an unusually dry year, the Great
Lakes dampen the effect of extreme precipitation on the flows of the St. Lawrence River.
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Figure 7.6.1. RACF and 95% confidence limits for the constrained AR(3) model without ¢,
fitted to the average annual flows of the St. Lawrence River from 1860 to 1957.
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Because of this, the average annual flows are correlated, and the correct model is an AR process
rather than white noise. For a general discussion of the employment of ARMA models in
hydrology, the reader can refer to Section 3.6.

7.6.3 Annual Sunspot Numbers

Yearly Wolfer sunspot numbers are available from 1700 to 1960 (Waldmeier, 1961) and a
plot of the series from 1770 to 1869 is shown in Figure 5.4.6. The identification graphs for this
time series are presented in Figures 5.4.7 to 5.4.10. As explained in Section 5.4.3, these identifi-
cation graphs in conjunction with diagnostic check output point out that an appropriate model to
fit to the square roots of the sunspot series is a constrained AR(9) model without ¢3 to ¢g. In
Section 6.4.3, the MAICE procedure also selects this model as the best overall ARMA model to
describe the sunspot series. The finite difference equation for the best model is presented in
[6.4.3] for the series of 100 sunspot values from 1770 to 1869 which is listed as Series E in Box
and Jenkins (1976). In addition, the calibrated model for the entire sunspot series from 1700 to
1960 is written in [6.4.4].

The constrained AR(9) model in [6.4.4] without ¢; to ¢g satisfies all the modelling assump-

tions for the residuals. A plot of the RACF in Figure 7.6.2 shows that the residuals are uncorre-
lated. All of the estimated values of the RACF fall within the 5% significance interval. The x?
distributed portmanteau statistic Q; in [7.3.9] has a value of 18.85 for 22 degrees of freedom.

Therefore, the O, statistic in [7.3.6] also confirms that the residuals are not correlated. The
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diagnostic checks for homoscedasticity and normality of the residuals reveal that these assump-
tions are also fulfilled. The model in [6.4.4], therefore, adequately models the yearly Wolfer
sunspot numbers. Other types of constrained models were examined, but the AR(9) process with
93 to ¢g constrained to zero is the only model that is found to be satisfactory.
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Figure 7.6.2. RACF and 95% confidence limits for the constrained AR(9)
model without ¢ to ¢ fitted to the square

roots of the yearly sunspot series from 1700 to 1960.

7.7 CONCLUSIONS

When fitting a time series model, such as an ARMA or ARIMA model, to a time series,
one can follow the three stage procedure of model identification, estimation and diagnostic
checking depicted in Figure IIL.I. The ways in which the AIC can enhance model construction
are outlined in Figure 6.3.1. As explained in this and the previous two chapters, a variety of use-
ful techniques are now available for allowing a practitioner to develop systematically and con-
veniently an appropriate model for describing a data set. The informative identification graphs
of Section 5.3 permit a user to decide upon fairly quickly one or more tentative models to fit to
the time series. These models can then be calibrated by using the method of maximum likeli-
hood estimator presented in Appendix A6.1. When parameters for more than one model have
been estimated, the AIC of Section 6.3 can be utilized to choose the overall best model. The
model residuals can then be subjected to rigorous diagnostic checks to ascertain whether or not
the residuals are white (Section 7.3), normally distributed (Section 7.4) and homoscedastic (Sec-
tion 7.5). When the residuals are not white, then one must redesign the model by adding other
parameters and, perhaps, eliminating unnecessary ones. The RACF of Section 7.3.2 is the best
tool available for detecting nonwhiteness and assisting in developing a better model when the
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residuals are correlated. If residual problems are caused by non-normality and/or heteroscedasti-
city, these can often by corrected by invoking a Box-Cox transformation from [3.4.30] and then
refitting the model.

The average annual riverflows of the St. Lawrence River at Ogdensburg, New York (Yevje-
vich, 1963), and the yearly sunspot numbers (Waldmeier, 1961) are used throughout Part III to
explain clearly how model building is executed in practice. Some model building results are
also referred to in Parts II and III for the other annual time series listed in Tables 5.4.1 and 5.4.2.
For the case of the St. Lawrence riverflows, model identification plots in Figures 5.4.2 t0 5.4.5
efficiently identify a constrained AR(3) model without ¢, as being the best model to fit to the
flows. In Section 6.4.2, the MAICE procedure and the likelihood ratio test confirm this as the
most appropriate model to describe the series. Finally, the choice of a constrained AR(3) is rein-
forced by the diagnostic checks carried out in Section 7.6.2.

When examining the yearly sunspot numbers, the identification graphs of Figures 5.4.7 to
5.4.10 do not clearly pinpoint the most suitable ARMA type model to fit to the series. Rather,
the need for a square root data transformation as well as the parameters required in the model are
iteratively decided upon in Section 5.4.3 by examining a range of models. The final selection is
a constrained AR(9) model without ¢3 to ¢g that is fitted to the square roots of the sunspot
numbers. In Section 6.4.3, the MAICE procedure also chooses this model from many possible
candidates. When the constrained AR(9) model undergoes diagnostic testing for whiteness, nor-
mality and homoscedasticity in Section 7.6.3, the results confirm that the model is adequate.

After iteratively developing a model according to the steps in Figures III.1 and 6.3.1, one
can use the calibrated model for practical applications. Two important applications of time
series models are forecasting and simulation, which are now described in Part IV of the book.

PROBLEMS

7.1 Select an average annual time series that is of interest to you. Following the three stages of
model construction and using an available time series program such as the MH Package
mentioned in Section 1.7, fit the most appropriate ARMA(p,q) model to the data set. Over-
specify the fitted model by adding an additional MA or AR parameter. Estimate the param-
eters of the overspecified model and comment upon the size of the SE’s. Employ the likeli-
hood ratio test of [7.2.1] to ascertain if overfitting is needed to start with and also to deter-
mine if the overfitted model is better than the simpler model.

7.2 An ARMA(2,1) model is written as
Z, - 0.132‘_1 + 0»3621_2 = a‘ - 0'401_1

where it is assumed that the mean of z, is zero. Can this model be written in a more parsi-
monious fashion?

7.3 Deliberately fit an overspecified ARMA or ARIMA model to an annual time series by
assuming the model is ARMA(3,4). Comment upon the size of the SE’s for the parameter
estimates. Try to roughly factor this model to discover parameter redundancy. Determine
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the most appropriate model to fit to the time series.

7.4 Assume that one has an ARMAC(1,1) model and L =5 in [7.3.2] and [7.3.3]. Determine the
entries of the matrix U in [7.3.3] for the distribution of the RACF.

7.5 Deliberately fit an underspecified ARMA or ARIMA model to a given annual time series.
Based upon the RACF for this model, explain how the model can be expanded to provide a
better fit to the series. If necessary, use other tools in your search for an improved model.

7.6 In Section 7.3.3, three versions of a Portmanteau statistic are presented for use in whiteness
tests. By referring to appropriate references compare the relative advantages and draw-
backs of the three statistics.

1.7 Explain why the autocorrelation function of the squared residuals is capable of detecting
nonlinear statistical dependence in the residuals of fited ARMA models.

7.8 The normality tests of Section 7.4 are described for use with the residual series from a fit-
ted ARMA model. However, the tests can be employed with any given series such as the
w; series given in [4.3.3]. If the w, series has a mean, then the mean should be subtracted
from each w, observation when calculating a given normality test statistic. Using a given
annual series of your choice, determine if the series is Gaussian using the following tests:
(i) skewness coefficient,

(ii) kurtosis coefficient,
(iii) normality plot.

7.9 For a residual series obtained by fitting an ARMA model to a yearly time series, check for
normality using the tests described in Sections 7.4.2 and 7.4.3.

7.10 Describe three additional normality tests beyond those given in Section 7.4.

7.11 A general test for homoscedasticity is described in Section 7.5.2. Assuming that one is
checking for variance change over time and hence K(¢) = ¢, describe in detail using equa-
tions how the test is carried out.

7.12 Select a yearly hydrological time series to model. Using a time series package, follow the
three stages of model construction to ascertain the best ARMA or ARIMA model to fit to
the data. Clearly explain all of your steps and show both identification and diagnostic
check graphs.

7.13 In Figure 6.3.1, two main approaches are shown for using the AIC in model construction.
Follow both of these approaches to find the most appropriatt ARMA or ARIMA models
for fitting to an annual riverflow series and also a yearly water demand series. Include both
numerical and graphical results with your explanations of how you modelled the series.
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