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Abstract. A symbolic method is discussed which can be used to

obtain the asymptotic bias and variance coefficients to order O(1/n) for

estimators in stationary time series. Using this method the large sample

bias of the Burg estimator in the AR (p) for p = 1, 2, 3 is shown to be equal

to that of the least squares estimators in both the known and unknown

mean cases. Previous researchers have only been able to obtain simulation

results for the Burg estimator’s bias because this problem is too intractable

without using computer algebra. The asymptotic bias coefficient to O(1/n)

of Yule-Walker as well as least squares estimates is also derived in AR(3)

models. Our asymptotic results show that for the AR (3), just as in the

AR (2), the Yule-Walker estimates have a large bias when the parameters

are near the non-stationary boundary. The least squares and Burg are

much better in this situation. Simulation results confirm our findings.

Keywords. Asymptotic bias and variance; autoregression;

autoregressive spectral analysis; symbolic computation.

1. INTRODUCTION AND SUMMARY

Tjøstheim and Paulsen (1983, Correction 1984) showed that the

Yule-Walker estimates had very large mean-square errors in strongly

autocorrelated AR(2) models and that this inflated mean square error was

due to bias. This result was demonstrated by Tjøstheim and Paulsen

(1983) in simulation experiments as well as by deriving the theoretical bias

to order O(1/n). It was also mentioned by Tjøstheim and Paulsen (1983,
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p.397, §5) that the bias results from simulation experiments for the Burg

estimates were similar to those obtained for least squares estimates but

that they had not been able to obtain the theoretical bias term. For the

AR (p) with p = 1, 2, 3 we are now able to symbolically compute the

theoretical bias for Burg estimates as well as the least squares and

Yule-Walker estimates. It is found that the order n−1 bias coefficient of the

Burg estimator is equal to that of the least squares estimator while the

Yule-Walker estimator has the largest bias. For strongly autocorrelated

AR(p) models with p > 2, Tjøstheim and Paulsen (1983, p.393, §3)

suggested that the bias for the Yule-Walk estimator is at least as bad as

that for the AR(2) case. The theoretical large sample bias obtained using

our computer algebra methods confirms that this is the case.

As pointed out by Lysne and Tjøstheim (1987), the Burg estimators

have an important advantage over the least squares estimates for

autoregressive spectral estimation since Burg estimates always lie in the

admissible parameter space whereas the least squares estimates do not.

Burg estimators are now frequently used in autoregressive spectral

estimation (Percival and Walden, 1993, §9.5) since they provide better

resolution of sharp spectral peaks. As the Yule-Walker estimators, the Burg

estimators may be efficiently computed using the Durbin-Levinson

recursion. Our result provides further justification for the recommendation

to use the Burg estimator for autoregressive spectral density estimation as

well as for other autoregressive estimation applications.

It has been shown that symbolic algebra could greatly simplify

derivations of asymptotic expansions in the IID case (Andrews and
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Stafford, 1993). Symbolic computation is a powerful tool for handling

complicated algebraic problems that arise with expansions of various types

of statistics and estimators (Andrews and Stafford, 2000) as well as for

exact maximum likelihood computation (Currie, 1995; Rose and Smith,

2000). Cook and Broemeling (1995) show how symbolic computation can

be used in Bayesian time series analysis. Smith and Field (2001) described

a symbolic operator which calculates the joint cumulants of the linear

combinations of products of discrete Fourier transforms. A symbolic

computational approach to mathematical statistics is discussed by Rose and

Smith (2002). In the following sections, through deriving the order n−1 bias

coefficient of the Burg estimator in AR(2) models, we develop a symbolic

computation method that can be used to solve a wide variety of problems

involving linear time series estimators for stationary time series. Using our

symbolic method, we also perform an asymptotic bias comparison of the

Burg, least squares and Yule Walker estimators in AR(3) models.

2. ASYMPTOTIC EXPECTATIONS AND COVARIANCES

Consider n consecutive observations from a stationary time series,

zt, t = 1, ..., n, with mean µ = E (zt) and autocovariance function

γk = Cov (zt, zt−k). If the mean is known, it may, without loss of generality

be taken to be zero. Then one of the unbiased estimators of autocovariance

γ(m− k) may be written as

Sm,k,i =
1

n + 1− i

n∑

t=i

zt−mzt−k, (1)
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where m, k and i are non-negative integers with max(m, k) < i ≤ n. If the

mean is unknown, a biased estimator of γ(m− k) may be written as

Sm,k,i =
1

n

n∑

t=i

(zt−m − zn)(zt−k − zn), (2)

where zn is the sample mean.

Theorem 1. Let the time series zt be the two-sided moving average,

zt =
∞∑

j=−∞
αjet−j, (3)

where the sequence {αj} is absolutely summable and the et are independent

N(0, σ2) random variables. Then for i ≤ j,

lim
n→∞n Cov (Sm,k,i,Sf,g,j) =

∞∑

h=−∞
Th, (4)

where

Th = γ(g−k+i−j+h)γ(f−m+i−j+h)+γ(f−k+i−j+h)γ(g−m+i−j+h).

Theorem 2. Let a time series {zt} satisfy the assumptions of Theorem

1. Then

lim
n→∞n E (Sm,k,i − γ(m− k)) = −|i− 1|γ(m− k)−

∞∑

h=−∞
γ(h) (5)

and

lim
n→∞n Cov (Sm,k,i,Sf,g,j) =

∞∑

h=−∞
Th, (6)

where

Th = γ(g−k+i−j+h)γ(f−m+i−j+h)+γ(f−k+i−j+h)γ(g−m+i−j+h).

These two theorems may be considered as the extensions of Theorem

6.2.1 and Theorem 6.2.2 of Fuller (1996). Letting p = m− k and q = f − g,
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the left side of (4) or (6) can be simplified,

∞∑

h=−∞
Th =

∞∑

h=−∞
γ(h)γ(h− p + q) + γ(h + q)γ(h− p). (7)

There is a wide variety of estimators which can be written as a function of

the autocovariance estimators, Sm,k,i or Sm,k,i, such as, autocorrelation

estimator, least squares estimator, Yule-Walker estimator, Burg estimator,

etc. The asymptotic bias and variance may be obtained by the Taylor

expansion. Unfortunately, in the most cases, those expansions include a

large number of expectations and covariances of the autocovariance

estimators. It is too intractable manually. Theorems 1 and 2 provide the

basis for a general approach to the symbolic computation of the asymptotic

bias and variance to order O(1/n) for those estimators. The definition of

(1) or (2) allows an index set {m, k, i} to represent an estimator so that

Theorem 1 or 2 can be easily implemented symbolically.

3. BIAS OF BURG ESTIMATORS IN AR(2)

The stationary second-order autoregressive model may be written as

zt = φ1zt−1 + φ2zt−2 + at, where at are normal and independently

distributed with mean zero and variance σ2 and parameters φ1 and φ2 are

in the admissible region, |φ2| < 1, φ1 + φ2 < 1 and φ2 − φ1 < 1. The Burg

estimate for φ2 may be obtained directly from Percival and Walden (1993,

eqn. 416d) and then the estimate for φ1 may be obtained using the

Durbin-Levinson algorithm. After simplification, these estimates may be

written as

φ̂2 = 1− CD2 − 2ED2

CD2 + 8F 2G− 4FHD
, φ̂1 =

2F

D
(1− φ̂2) (8)
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where

C =
1

n− 2

n∑

t=3

(z2
t + z2

t−2), D =
1

n− 1

n∑

t=2

(z2
t + z2

t−1), E =
1

n− 2

n∑

t=3

(z2
t z

2
t−2),

F =
1

n− 1

n∑

t=2

(ztzt−1), G =
1

n− 2

n∑

t=3

z2
t−1, H =

1

n− 2

n∑

t=3

(ztzt−1 + zt−2zt−1).

Using a Taylor series expansion of φ̂1 and φ̂2 about µA = E (A), where

A = C,D,E, F,G and H, the order n−1 bias coefficient,

limn→∞ n E (φ̂− φ), may be expressed in terms of the order n−1

expectation coefficients of products and cross products involving

C, D, E, F, G and H. There are six squared terms and fifteen cross product

terms involved in each expansion, that is, it is required to compute and

simplify for each of these twenty one expansions involving C,D, E, F,G and

H. These terms may all be written in terms of the unbiased estimate of the

autocovariance, Sm,k,i. The required asymptotic expectation coefficients of

each term in the expansions are obtained by Theorem 1, that is,

lim
n→∞n Cov (Sm,k,i,Sf,g,j) =

∞∑

h=−∞
Th, (9)

where Th = γ(h)γ(h− p + q) + γ(h + q)γ(h− p), p = m− k, q = f − g and

γ(h) =
ζ2

1+h − ζ1
2 ζ2

1+h + ζ1
1+h

(
ζ2

2 − 1
)

(
ζ1

2 − 1
)

(ζ1 − ζ2) (ζ1 ζ2 − 1)
(
ζ2

2 − 1
) , (10)

where h ≥ 0, ζ1 and ζ2 are the roots, assumed distinct, of the polynomial

ζ2 − φ1ζ − φ2 = 0. The order n−1 coefficient of the covariance expansion of

Sm,k,i and Sf,g,j given in eqn. (9) may be evaluated symbolically by defining

an operator of Sm,k,i and Sf,g,j, LCOV [{m, k, i}{f, g, j}]. To illustrate this

symbolic method consider the evaluation of limn→∞ n Cov (2C,H) which is
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one of the twenty one order n−1 expansion coefficients involving

C, D, E, F, G and H mentioned above. It may be obtained by

lim
n→∞n Cov (2C, H) = 2{ LCOV [({0, 0, 3}+ {2, 2, 3})({0, 1, 3}+ {2, 1, 3})]}

= 2{ LCOV [{0, 0, 3}{0, 1, 3}] + LCOV [{0, 0, 3}{2, 1, 3}]
+ LCOV [{2, 2, 3}{0, 1, 3}] + LCOV [{2, 2, 3}{2, 1, 3}]},

since C = S0,0,3 + S2,2,3, H = S0,1,3 + S2,1,3, and LCOV [·] follows the

linearity and the distributive law.

After algebraic simplification the order n−1 bias coefficients are found

to be

lim
n→∞n E (φ̂1 − φ1) = −(ζ1 + ζ2)

and

lim
n→∞n E (φ̂2 − φ2) = (3ζ1ζ2 − 1)

More simply, in terms of the original parameters we have the large sample

biases,

E (φ̂1 − φ1)
.
= −φ1/n (11)

and

E (φ̂2 − φ2)
.
= −(1 + 3φ2)/n. (12)

We verified, using the same approach, that eqns. (11) and (12) also hold for

the case of equal roots of the polynomial ζ2 − φ1ζ − φ2 = 0.

For the stationary second-order autoregressive model with an unknown

mean, the Burg estimators can be written as the same ratio function of the

biased estimators of the autocovariances, Sm,k,i, as was given in eqn. (8).

The symbolic approach is similar to the known mean case, but includes one
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more inner product associated with the biases of those autocovariance

estimators, Sm,k,i. The required asymptotic biases and covariances of Sm,k,i

are obtained by Theorem 2. The order n−1 bias coefficients are found to be

lim
n→∞n E (φ̂1 − φ1) = (ζ1ζ2 − ζ1 − ζ2)− 1

and

lim
n→∞n E (φ̂2 − φ2) = (4ζ1ζ2 − 2)

That is

E (φ̂1 − φ1)
.
= −(φ2 + φ1 + 1)/n (13)

and

E (φ̂2 − φ2)
.
= −(2 + 4φ2)/n. (14)

Once an estimator of a stationary time series is written as a well defined

function composed of Sm,k,i or Sm,k,i, by expanding it by a Taylor series, the

asymptotic bias and variance to order n−1 may be obtained by Theorem 1

or 2 with symbolic computation. This approach can be applied in the bias

derivation of the Burg estimator, ρ̂, in the first order autoregressive model,

AR(1). In this case, our method produced −2ρ/n in the zero mean case and

−(1 + 3ρ)/n in an unknown mean case for the large sample bias. Therefore,

for both of AR(1) and AR(2) cases, the large sample biases of the Burg

estimators are the same as the least squares estimators for a known mean

case as well as for an unknown mean case. These results are consistent with

the simulation study reported by Tjøstheim and Paulsen (1983).

4. BIAS OF BURG AND OTHER COMMONLY USED LINEAR

ESTIMATORS IN AR(3)
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For the generality, we discuss the unknown mean case. The stationary

third-order autoregressive model may be written as

zt − µ = φ1(zt−1 − µ) + φ2(zt−2 − µ) + φ3(zt−3 − µ) + at, where at are

normal and independently distributed with mean µ and variance σ2 and

parameters φ1, φ2 and φ2 are in the admissible region, |φ3| < 1,

φ1 + φ2 + φ3 < 1,−φ1 + φ2 − φ3 < 1 and φ3(φ3 − φ1)− φ2 < 1. The Burg

estimates for φi, i = 1, 2, 3 may be obtained from Percival and Walden

(1993, eqn. 416d). The explicit forms for the Burg estimates are much more

complicated in AR(3) models than in AR(2) models. For example, the

Burg estimate φ̂3 for the unknown mean case may be written as

φ̂3 =
N

D
, (15)

where

N = 2(S3,0,4 − φ12(S2,0,4 + S3,1,4 − S2,1,4φ12)

−(S1,0,4 + S3,2,4 − (S1,1,4 + S2,2,4)φ12)φ22 + S2,1,4φ
2
22)

and

D = S0,0,4 + S3,3,4 + φ12(−2(S1,0,4 + S3,2,4) + (S1,1,4 + S2,2,4)φ12)

−2(S2,0,4 + S3,1,4 − 2S2,1,4φ12)φ22 + (S1,1,4 + S2,2,4)φ
2
22.

Using eqn. (8), φ12 and φ22 may be written as,

φ22 = 1− S0,0,3 − 2S2,0,3 + S2,2,3

S0,0,3 + S2,2,3 − 2φ11(S1,0,3 + S2,1,3 − S1,1,3φ11)
,

φ12 =
(S0,0,3 − 2S2,0,3 + S2,2,3)φ11

S0,0,3 + S2,2,3 − 2φ11(S1,0,3 + S2,1,3 − S1,1,3φ11)
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where

φ11 =
2S1,0,2

S0,0,2 + S1,1,2

.

After the simplification, φ̂3 includes 856 indivisible subexpressions in terms

of Sm,k,i. The order n−1 bias coefficient may be obtained by Theorem 2

through defining

γ(h) = A1ζ
h
1 + A2ζ

h
2 + A3ζ

h
3 (16)

where

A1 = − ζ2
1

(ζ2
1 − 1)(ζ1 − ζ2)(ζ1ζ2 − 1)(ζ1 − ζ3)(ζ1ζ3 − 1)

A2 =
ζ2

(ζ1 − ζ2)(ζ1ζ2 − 1)(ζ2
2 − 1)(ζ2 − ζ3)(ζ2ζ3 − 1)

A3 = − ζ2
3

(ζ1 − ζ3)(ζ2 − ζ3)(ζ1ζ3 − 1)(ζ2ζ3 − 1)(ζ2
3 − 1)

,

and h ≥ 0, ζ1, ζ2 and ζ3 are the roots, assumed distinct, of the polynomial

ζ3 − φ1ζ
2 − φ2ζ − φ3 = 0. It has turned out that the order n−1 bias

coefficient of the Burg estimate φ̂3, limn→∞ n E (φ̂3 − φ3), includes

1,745,350 indivisible subexpressions in terms of ζ1, ζ2 and ζ3. Using a

similar method for φ3, the order n−1 bias coefficient of the least squares or

Yule-Walker estimate, limn→∞ n E (φ∗3 − φ3) or limn→∞ n E (φ+
3 − φ3),

includes 95,457 or 77,649 indivisible subexpressions in terms of ζ1, ζ2, ζ3

respectively. It is not practical to work with such formulae except by using

symbolic algebra software. These formulae were evaluated numerically for

selected parameter values and the results are given in Table I. The

parameters in the AR (3) models were chosen using the partial

autocorrelations, φk,k, k = 1, 2, 3 taking φ1,1 = φ2,2 = φ3,3.
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[Table 1 about here]

For all three autoregressive coefficients φ1, φ2 and φ3, results from Table

I show that the large sample bias of Burg estimates is equal to that of least

squares estimates while Yule-Walker’s is considerably worse when the

partial autocorrelation φ3,3 is relatively strong; overall, the biases are

getting larger when the partial autocorrelation φ3,3 is becoming stronger.

Simulation results confirmed the findings in Table I although for larger

partial autocorrelation values the difference between theoretical and

simulated results is fairly large. Tjøstheim and Paulsen (1983, p.394, §3)

observed the same phenomena in deriving the theoretical bias of

Yule-Walker estimates in case of AR(2) models.

5. CONCLUDING REMARKS

We used our computer algebra method to verify the bias results reported by

Tjøstheim & Paulsen (Correction, 1984). Since many quadratic statistics in

a stationary time series can be expressed in terms of Sm,k,i or Sm,k,i, our

computer algebra approach can be applied to derive their laborious moment

expansions to order O(1/n). As examples, using our method, we can easily

obtain the results by Bartlett (1946), Kendall (1954), Marriott and Pope

(1954), White (1961) and Tjøstheim and Paulsen (1983).

Mathematica (Wolfram, 2003) notebooks with the complete details of

our derivations and simulations are available from the authors.
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Table I. Bias to order O(1/n) for Burg φ̂, least squares φ∗ and Yule-Walker
φ+ estimates of the autoregressive coefficients φ1, φ2 and φ3 in AR(3) models.
The order n−1 bias of an estimate φ̂ of φ is defined as limn→∞ n E (φ̂ − φ).
In these models we set the partial autocorrelations, φk,k, k = 1, 2, 3, to be all
equal, φ1,1 = φ2,2 = φ3,3. Only one numerical entry is shown for the Burg
and least squares estimates since the biases to order O(1/n) are numerically
identical.

φ3,3 φ̂1, φ
∗
1 φ+

1 φ̂2, φ
∗
2 φ+

2 φ̂3, φ
∗
3 φ+

3

0.05 −1.145 −1.1749 −2.1955 −2.2865 −1.25 −1.401

0.25 −1.625 −1.3233 −2.9375 −3.2904 −2.25 −3.14

0.45 −1.945 −0.0796 −3.7595 −4.40173 −3.25 −5.6882

0.65 −2.105 5.69106 −4.8535 −6.12379 −4.25 −12.0918

0.75 −2.125 15.8827 −5.5625 −7.51594 −4.75 −22.1531

0.85 −2.105 54.7841 −6.4115 −9.86504 −5.25 −60.0761

0.90 −2.08 133.266 −6.896 −12.124 −5.5 −137.037

0.95 −2.045 568.435 −7.4245 −17.7786 −5.75 −567.331
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