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Mean monthly flows from thirty rivers in North and South America are used to test the short-term forecasting ability of
seasonal ARIMA, deseasonalized ARMA, and periodic autoregressive models. The series were split into two sections and
models were calibrated to the first portion of the data. The models were then used to generate one-step-ahead forecasts for the
second portion of the data. The forecast performance is compared using various measures of accuracy. The results suggest that
a periodic autoregressive model, identified by using the partial autocorrelation function, provided the most accurate forecasts.
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1. Introduction

Seasonality of geophysical data adds a degree of complexity to the selection and development of
an appropriate stochastic model to fit to a given series. By nature, geophysical data are often
seasonally stationary. That is, riverflows or temperatures for a particular season of the year are
statistically similar from year to year but may vary drastically across seasons. Hydrologists have also
found that riverflow time series exhibit an autocorrelation structure that depends not only on the time
lag between observations but also on the season of the year [Moss and Bryson (1974)]. For example, if
snowmelt is an important factor in runoff that might occur in March or April, the correlation
between observed riverflows for these months may be negative whereas at other times of the year it is
usually positive. These characteristics offer a challenge to the practitioner while at the same time
provide a convenient structure for the modeller to exploit. A family of Periodic Autoregressive (PAR)
models specifically designed to account for seasonal variations is described in this paper.

To examine the efficacy of PAR models. a comprehensive forecasting study is carried out by
comparing their performance with that of several models used to model seasonal data. The PAR
models are compared to seasonal autoregressive integrated moving average (SARIMA) and desea-
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sonalized autoregressive moving average (ARMA) models using thirty monthly riverflow series.
Methods of model order selection for the PAR models are also compared. The experiments described
in this paper are the most comprehensive yet reported in the hydrological literature. Other published
comparisons have used only a few series and usually only two models [see for example Delleur et al.
(1976)]. Also, the majority of the hydrological forecasting research to date has concentrated on
shorter time intervals in the order of a few hours or days [see for example the Proceedings of the
Oxford Hydrological Forecasting Symposium, April 15-18 (1980) and Thompstone et al. (1983)].
However monthly riverflow forecasts are often used for operational planning of reservoir systems.
Even modest improvements in the operation of large reservoir systems can result in multi-million
dollar savings per year [Brochu (1978)]. Thus, the results of the forecasting study given in this paper
should be important of those concerned with the optimal medium and long-term operation of
reservoir systems.

The performance of our forecasts is assessed using the mean absolute percentage error (MAPE),
median absolute percentage error (MEDIAN APFE), mean absolute deviation (MAD) and root mean
square error (RMSLE) criteria. Although these criteria give an indication as to which models seem to
perform better, no statement concerning statistically significant differences can be made from such a
comparison. To address this question, a nonparametric Wilcoxon test is used to determine if a
particular model produces significantly better forecasts when compared to another model.

The next section of the paper describes the types of models used in the forecasting study. The
results of the forecasting study of the thirty monthly riverflow series are then described and
interpreted.

2. Time series models

Three main approaches to modelling seasonal time series are considered in this paper. In the first
approach, a separate autoregressive (AR) model 1s fitted to each month in order to form a PAR
model. This is done in an attempt to account for seasonal changes in the autocorrelation of the series.
Different ways are considered for identifying the order of the AR model for each season.

In the second approach, the series is deseasonalized by subtracting the seasonal means and perhaps
dividing the seasonal adjustment by the seasonal standard deviation. A non-seasonal ARMA model is
then fitted to the deseasonalized series.

In the last approach, the series is seasonally differenced. A linear stochastic model containing both
seasonal and non-seasonal parameters is then fitted to the differenced series to determine the
estimated SARIMA model. This type of seasonal model is discussed by Box and Jenkins (1970, ch. 9).
It has been used by various other researchers for modelling seasonal riverflow time series. The
SARIMA model is often considered the most parsimonious model.

2.1. Periodic Autoregressive (PAR) models

Models similar to the family of PAR models presented in this paper have previously been
employed by other researchers in hydrology and economics [see for example Clarke (1973) and
Parzen and Pagano (1979)]. However, additional results to be used at the identification, estimation,
and diagnostic check stages of model development are presented here and in more detail in Noakes
(1984).

Let Z,, t=1, 2,... be a seasonal time series with period s. The time index ¢ may be regarded as a
function of the year T (T'=1,2,..., N), and the season, m(m =1, 2,...,s). Thus, the time index
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may be written as t = (7 — 1)s + m. The PAR ( p,, p5..... p,) model is conveniently described by

SR ZN =) =a, (1)
where ¢'"(B)=1-¢{"'B~ ... —¢"'B’»; B is the backward shift operator on r: p, = """ is the
mean for period m; and a, ~ NID(0, 6°""’). The superscript m obeys modulo arithmetic (i.e..
pV=ptt U= pt Dy The superscript A is the exponent of an appropriate Box—Cox transforma-

tion. The Box-Cox transformation [Box and Cox (1964)] is given by
Z,"\’=}\"[(Z,+constant)x—1], A#0,
= In( Z, + constant), A=0. (2)

Two convenient and efficient estimation techniques for PAR models are available. In the first
approach, approximate maximum likelihood estimates of the AR parameters are obtained directly
from the linear regression of Z* on Z*\. Z!*,. ..., Z/*) _The maximum order of autoregression
for each season, p,,, does not need to be equal. Subset regression [Morgan and Tatar (1972)] can be
used to constrain insignificant autoregression parameters to zero.

In the second scheme, the Yule—Walker equations are formulated and solved to obtain estimates of
the model parameters. In the Yule-Walker approach p,, may vary from season to season but all of
the AR parameters are estimated. The order of the AR model fit to each season ( p, ) may be
determined by using some automatic selection criterion such as the A/C [Akaike (1974)] or the BIC
[Schwarz (1978)] or by examining plots of the partial autocorrelation function ( PACF) for each
season.

In general, the A/C is defined by
AIC= ~2log L+ 2k, (3)

where log L is the maximized log likelihood and & is the number of free parameters estimated. The
difference between the 4/C and the BIC is the penalty assigned to the number of model parameters.
The second term in the B/C is klnn, where n is the number of observations. Previously. the A/C has
been used in stochastic hydrology for determining the orders of various kinds of seasonal and
non-seasonal models [see for example Hipel et al. (1977)]. In the case of the PAR model. the AIC for
the mth season is given by Noakes (1984) as

N
AIC, =2N log 6" =2A=1) Y log Z, \,,.,, +2n,, + 4. (4)

i=1

where 62"

is the residual variance for season m; A is the exponent of an appropriate Box—Cox
transformation; »,, is the total number of parameters for season m: N is the number of vears of data
and the constant 4 allows for the mean of season m and the residual variance parameter. Once the
best AR models are found for each season, the overall A/C value for the PAR model can be

calculated as

AIC =Y AIC +28,, (5)

=1

where 6, =0 when A=1 and 8, =1 when A # 1. The B/C may be calculated in a similar way.
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In both estimation procedures described in this section, the seasonal mean parameter p'”"’ is
estimated by

N

1
—'ZZ((‘/\J”\+’”, m=1.2,...,s. (6)
N

=1

A(/n)z

The residuals &, are calculated from (1) by setting initial values to zero. Then the residual variance is

v
A 2(m 1 . t
0-( ):_Za‘?—l T)s+m20 m:l'z”"’s' (7)
N
It should be noted that the model parameters for the mth season (i.e., p'™, o> ¢\,
¢5"',....¢") can be estimated entirely independently of the model of any other season. Also. since

the Fisher information matrix is block diagonal [Pagano (1978)], the estimates of the parameters in
different seasons are statistically independent.

In principle, the PAR model could be extended to the case of the periodic autoregressive
moving-average (PARMA) models as suggested by Tao and Delleur (1976) and Salas et al. (1982).
However, when there are moving average parameters present in the model, the resulting non-lineari-
ties cause difficulties in obtaining maximum likelihood estimates of the parameters. If the method of
moments is used, the estimates for the PARMA model parameters are inefficient. Consequently,
although basic statistical research should continue for PARMA models, this paper is concerned solely
with the more practical PAR case.

Six types of PAR models were considered in this study. In the first model, a separate AR(1) model
was fitted to each month (PAR /1) using linear regression. This model was originally suggested by
Thomas and Fiering (1962) and has been used extensively by hydrologists.

The second and third PAR models were fitted to the data using the algorithm of Morgan and
Tatar (1972). This algorithm calculates the residual sum of squares of all possible regressions for each
season. The A1C and BIC can thus be calculated for all possible models. The PAR model which gave
the minimum value of the AIC or BIC (with p, < 12) was selected as the most appropriate. This type
of procedure has been called subset autoregression by McClave (1975), and thus will be referred to as
SUBSET/A41C or SUBSET/BIC modelling.

The next PAR models were obtained by solving the appropriate Yule—-Walker equations. In the
first case p,, was selected on the basis of the minimum value of the A/C or BIC. Unlike the previous
case, however, intermediate parameters were not allowed to be constrained to zero. Thus, all of the
parameters from ¢! to ‘7’/(7,,:,') were estimated in this model for a given season to produce the
PAR/AIC and PAR/BIC models.

The last PAR models were identified by examining plots of the monthly partial autocorrelation
function (PACF). In general, an AR( p, ) model was fitted to month m, where p,, was the last lag for
which the PACF was significantly different from zero. The adequacy of the selected model was
checked by testing for significant residual correlation or non-normality [Noakes (1984)]. Thus the
PAR/PACF is the natural extension to PAR models of the modelling philosophy recommended by
Box and Jenkins (1970). Once again no intermediate parameters were constrained to zero.

2.2. Deseasonalized models

A common approach to modelling seasonal geophysical data is first to deseasonalize the series and
then fit an appropriate non-seasonal stochastic model to the deseasonalized data. This procedure has
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been followed by a number of researchers [see for example Delleur et al. (1976)] and it has proven to
be particularly useful in modelling seasonality in geophysical data for the purpose of simulation.
Two standard deseasonalization techniques that have been employed are

wo,=Z =, (8)
and
w, = (Z:(.>\/)_ ]1/)/5/, (9)

where ZY;) is the transformed observation for the ith year: jth month; §, is the fitted mean for
season j; 6, is the fitted standard deviation for season j; and A is the exponent of an appropriate
Box—Cox transformation. In this study the series were deseasonalized using both (8) and (9). The
monthly means and standard deviations were estimated by

D Qi
:u’/:_]v Z Zl(.);)’ (10)

i=1

and

0/2

¥ I (Zf.é’—n)z} ()

i=1

After the series were deseasonalized, non-seasonal ARMA models were fitted to the data. Models
fitted to data deseasonalized by (8) and (9) will be referred to as ARMA /DSM and ARMA /DES
respectively. In both cases, the parameters in the ARMA models were estimated using the maximum
likelihood estimation algorithm of McLeod and Sales (1983).

The deseasonalization procedures given in (8) and (9) probably reflect the inherent properties of
many geophysical time series. For example, when considering average monthly riverflow data, the
observations for any particular month tend to fluctuate about some fixed mean level. Consequently,
the deseasonalization method in (8) may be appropriate if the monthly standard deviations of the
Z,‘_A/) series are more or less constant throughout the year. When both the means and the standard
deviations of the Z,‘_é’ sequence are different from month to month, then the transformation in (9)
should be used.

2.3. Seasonal Autoregressive Integrated Moving Average (SARIMA) models

The SARIMA model for a time series Z,, Z,,... can be written as
o(B)®(B)(1-B)'(1-8)"(2N~p,)=0(B)O(B)a,. (12)

where ¢ is the observation number, s is the number of seasons per year, and «, i1s the noise
component of the stochastic model assumed to be NID(0, o). The terms ¢(B) and @(B") are the
non-seasonal AR operator of order p and the seasonal AR operator of order P, resectively. Similarly.
f(B) and O(B") are the non-seasonal and seasonal MA operators of orders ¢ and Q, respectively.
The non-seasonal differencing operator (1 — B)“ is of order d and the series is seasonally differenced
D times using (1 — B*)”. The Box—Cox parameter A is as in eq. (2). The SARIMA models are usually
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represented by the notation ( p. d. ¢)( P, D, Q), where the first set of brackets contains the order of
the non-seasonal operators and the second set of brackets the orders of the seasonal operators. The
SARIMA models used for the monthly riverflow series were all determined to be of the form
(p.0.¢)0. 1. Q),, with A =0 and with typical values of p. ¢ and Q being 1. 0. and 1.

3. The forecasting study

The data used in this study comprised thirty monthly unregulated riverflow time series ranging in
length from thirty-seven to sixty-eight years. The rivers are from a number of different physiographic
regions and vary in size from rivers with mean annual flows less than two cubic meters per second
(cms) to rivers with mean annual flows exceeding 100 cms. The data for the Canadian rivers were
obtained from Water Survey of Canada records, the American riverflow series are from the United
States Geological Survey. The Brazilian data were obtained from Electrobras (the national electrical
company of Brazil). The rivers and their mean annual flows (in cms) for the water year (October to
September) are displayed in exhibit 1.

The general procedure was first to truncate the transformed data sets by omitting the last thrity-six
Exhibit 1
Monthly riverflow data sets.

River Location Period Obser- Mean flow
vations (cms)
1 American Fair Oaks. California 1906-1960 660 106
2 Boise Twin Springs. Idaho 1912-1960 588 33
3 Clearwater Kamish, Idaho 1911-1960 600 231
4 Columbia Nicholson, British Columbia 1933-1969 444 109
5 Current Van Buren, Missouri 1922-1960 468 54
6 W.B. Delaware Hale Eddy, New York 1916-1960 540 30
7 English Sioux Lookout. Ontario 1922-1977 660 123
8 Feather Oroville, California 1902-1977 708 167
9 James Buchanan. Virginia 1911-1960 600 69
10 Judith Utica. Montana 1920-1960 492 1
11 Mad Springfield. Ohio 1915-1960 552 14
12 Madison West Yellowstone, Montana 1923-1960 456 13
13 McKenzie McKenzie Bridge. Oregon 1911-1960 600 47
14 Middle Boulder Nederland, Colorado 1912-1960 588 2
15 Missinaibi Mattice. Ontario 1921-1976 672 103
16 Namakan Lac La Croix. Ontario 1923-1977 648 108
17 Neches Rockland, Texas 1914-1960 564 69
I N. Magnetawan Burke Falls, Ontario 1916-1977 732 6
19 Oostanaula Resaca, Georgia 1893-1960 816 78
20 Pigeon Middle Falls, Ontario 1924-1977 636 14
21 Rappahannock Fredericksburg. Virginia 1908-1971 768 45
22 Richelieu Fryers Rapids. Quebec 1932-1977 468 331
23 Rio Grande Furnas, Minas Gerais. Brazil 1931-1978 576 896
24 Saint Johns Fort Kent, New Brunswick 1927-1977 600 30
25 Saugeen Walkerton, Ontario 1915-1976 744 68
26 S.F. Skykomish Index. Washington 1923-1960 456 278
27 S. Saskatchewan Saskatoon, Saskatchewan 1911-1963 624 272
28 Trinity Lewiston, California 1912-1960 588 47
29 Turtle Mine Centre, Ontario 1921-1977 672 37
30 Wolf New London, Wisconsin 1914-1960 564 49
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Exhibit 2. Logged monthly riverflow of the Middle Boulder Creek and one-step PAR /PACF forecasts.

observations. All data in this study were transformed by taking natural logarithms. This procedure
was found to be the most appropriate Box—Cox transformation. The log transformation was needed
to ensure that the model residuals were approximately normally distributed and homoscedastic. We
used appropriate identification, estimation, and diagnostic checking techniques [Hipel et al. (1977),
Noakes (1984)]. SARIMA, ARMA /DSM, ARMA /DES, SUBSET /41C, SUBSET/BIC, PAR/AIC,
PAR/BIC, PAR/1, and PAR/PACF models that best fit the first portion of the data were then
calibrated. The nine models were then used to generate thirty-six one-step-ahead forecasts for the
logarithmic flows. Exhibit 2 shows a time series plot of the logarithmic flows and their forecasts using
the PAR /PACF method for river number 14,

The forecasts, when simply the monthly means of the logarithmic flows (MEANS) were used, were
also computed. The logarithmic forecast errors associated with each of the ten forecasting models
were then compared using the forecast performance measures RMSE, MAD, MAPE and MEDIAN
APE.

RMSE results are given in exhibit 3 for each river. The results for each performance measure are
summarized in exhibits 4 through 7 where rank and rank-sum comparisons appear.

The rank-sums for the models are the sums of the product of the rank and the associated table
entry. Thus, models with lower rank-sums performed better than those with larger rank-sums. The
models PAR/PACF, PAR /1, PAR/A4IC, PAR/BIC, and SUBSET/BIC performed very well on
the basis of all performance criteria. As expected, using the MEANS proved unsatisfactory in most
cases. The MEANS had the worst overall performance and produced the largest RMSE for
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Exhibit 3
RMSE x 1000 of the logarithmic forecast errors.

River PAR/ PAR/1 PAR/ PAR/ SUBSET/ SUBSET/ ARMA/ ARMA,/ SARIMA MEANS

PACF AIC BIC AIC BIC DSM DES
1 857 896 813 864 796 796 801 907 690 1240
2 280 279 273 280 307 289 264 289 273 248
3 323 330 334 331 346 330 359 339 367 544
4 183 190 180 198 204 211 184 181 182 209
5 426 418 445 410 464 423 389 408 390 357
6 658 642 628 666 681 664 689 690 698 775
7 191 218 187 203 218 201 209 205 440 633
8 337 338 394 338 415 335 354 347 358 481
9 516 495 536 544 562 548 489 489 488 579
10 470 469 463 469 500 471 582 427 576 746
1 435 428 416 431 481 440 426 431 424 539
12 98 91 120 90 125 98 98 118 107 127
13 175 175 208 176 254 221 167 171 169 186
14 273 273 272 274 281 296 290 290 302 365
15 619 614 604 618 634 626 707 639 752 961
16 242 244 238 243 248 238 253 259 261 515
17 909 909 930 910 1078 906 916 907 969 1147
18 407 407 416 407 419 407 408 411 419 440
19 424 418 425 420 427 425 448 447 446 487
20 600 591 592 604 627 618 673 707 694 1118
21 530 546 536 547 570 535 553 552 564 569
22 250 266 264 270 326 274 277 270 260 600
23 230 226 265 229 294 241 241 236 242 335
24 411 412 398 420 414 428 389 385 398 379
25 425 402 430 421 479 422 433 423 432 532
26 380 391 407 422 434 401 411 416 411 476
27 436 438 420 379 500 391 464 445 461 587
28 626 624 624 633 603 632 628 639 627 822
29 282 283 282 283 318 283 283 301 297 410
30 355 358 408 367 368 372 352 361 352 465
Exhibit 4

RMSE of one-step MMSE forecasts of logged series (number of times each method had indciated rank).

Rank PAR/ PAR/1 PAR/ PAR/ SUBSET/ SUBSET/ ARMA,/ ARMA,/ SARIMA MEANS

PACF AlC BIC AIC BIC DSM DES

1 4 3 7 3 1 4 1 1 3 3
2 3 h) 5 2 0 5 4 3 3 0
3 10 2 3 4 1 4 2 2 2 0
4 3 11 0 7 0 2 2 3 2 0
S S 3 5 6 1 3 3 3 1 0
6 3 3 2 2 5 1 7 6 1 0
7 1 1 2 4 4 3 4 3 7 1
8 1 2 4 1 3 5 5 S 4 0
9 0 0 2 1 11 1 2 4 7 2
10 0 0 0 0 4 2 0 0 0 24
Rank-

sum 110 119 127 134 230 145 166 173 178 268
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Exhibit 5
MAD of one-step MMSE forecasts of logged series (number of times each method had indicated rank).

Rank PAR/ PAR/1 PAR/ PAR/ SUBSET/ SUBSET/ ARMA,/ ARMA,/ SARIMA MEANS

PACF AIC BIC AlIC BIC DSM DES
1 4 4 4 1 1 5 1 2 5 3
2 6 4 4 4 1 4 3 3 1 0
3 5 8 5 3 1 4 2 2 0 0
4 6 6 2 8 1 4 1 1 1 0
5 6 2 4 6 0 2 5 1 4 0
6 2 3 3 2 6 3 4 4 2 1
7 0 1 2 N 3 3 6 6 4 0
8 1 2 4 1 3 2 6 3 8 0
9 0 0 2 0 10 3 1 8 5 1
10 0 0 0 0 4 0 1 0 0 25
Rank-
sum 105 111 137 135 221 133 175 185 180 268

twenty-four of the series. Exhibit 3 shows that in the three cases (rivers 2, 5, and 24) where the
MEANS had the smallest RMSE there is very little difference between any of the forecast methods.
Moreover, in these three cases all methods had low MAPEs and RMSEs. At the other extreme, the
best alternative to MEANS for rivers 7, 16, and 22 had an RMSE less than half that of MEANS.
Next to the PAR models mentioned above, the ARMA/DSM, ARMA /DES, and SARIMA
performed about equally as well. The SUBSET /4JC model performance was disappointing although
not totally surprising. The large number of parameters associated with the SUBSET /4/C model does
not provide a sufficiently parsimonious model for accurate forecasts. The importance of parsimony in
forecasting models is discussed by Ledolter and Abraham (1981).

We noticed an extreme disparity between the MAPE and MEDIAN APE for several rivers. This
was found to be due to a defect in the absolute percentage error when the observed value is small. For
example, the observed logged flow for river 14 for November 1959 was 0.0024 and the PAR /PACF
forecast was —0.746. This resulted in an absolute percentage error of over 31,000!

Exhibit 6
MAPLE of one-step MMSE forecasts of logged series (number of times each method had indicated rank).

Rank PAR/ PAR/1 PAR/ PAR/ SUBSET/ SUBSET/ ARMA/ ARMA,/ SARIMA MEANS

PACF AlIC BIC AlIC BIC DSM DES
1 3 5 3 1 3 5 1 1 5 3
2 5 4 3 5 2 3 2 5 1 0
3 4 7 4 4 1 3 5 1 0 1
4 7 2 5 7 0 3 3 1 2 0
5 7 6 4 2 1 3 1 2 4 0
6 2 2 1 5 1 4 6 S 4 0
7 1 1 2 5 2 3 5 7 3 1
8 1 3 6 1 3 2 6 2 4 2
9 0 0 2 0 11 4 0 6 7 0
10 0 0 0 0 6 0 1 0 0 23
Rank-

sum 115 115 147 134 218 144 166 177 175 259
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Exhibit 7
MEDIAN APE of one-step MMSE forecasts of logged series (number of times each method had indicated rank).

Rank PAR/ PAR/1 PAR/ PAR/ SUBSET/ SUBSET/ ARMA,/ ARMA/ SARIMA MEANS

PACF AIC BIC AlIC BIC DSEM DES

1 5 1 3 1 6 4 2 1 3 4
2 3 3 5 4 4 2 1 3 4 1
3 4 5 6 2 0 3 3 4 2 1
4 6 4 3 6 2 3 2 3 0 1
5 4 5 S 6 2 1 3 2 2 0
6 3 3 1 3 4 6 3 2 4 1
7 3 6 2 2 2 6 2 S 2 0
8 1 1 2 3 3 2 7 4 5 2
9 1 1 3 1 4 2 4 5 8 1
10 0 1 0 2 3 1 3 1 0 19
Rank-
sum 123 150 131 154 160 156 190 175 177 234

Although the above results of the logarithmic forecast errors are certainly important, the real
concern of hydrologists is how well the models forecast actual riverflows. When obtaining forecasts of
the flows in the untransformed domain, the following method produces minimum mean squared error
(MMSE) forecasts [Granger and Newbold (1976)]:

Z=exp[2m+%6f], (13)
where Z™M is the one-step-ahead forecast produced by the model for the logged data and 67 is the
appropriate residual variance. Then Z is the MMSE forecast for the flow. The MSE of the flow
forecast errors are presented in Noakes (1984). A summary of those results is shown in exhibit 8.
Once again the same PAR models performed very well. As expected, there are some variations due to
the transformation given in (13). Note particularly the improvement of the MEANS model and the
dismal performance of the ARMA /DES models. The ARMA/DSM and SARIMA models still
performed reasonably well and the SUBSET /A4/C improved slightly.

Exhibit 8
RMSE of one-step MMSE forecasts of the flows (number of times each method had indicated rank).

Rank PAR/ PAR/1 PAR/ PAR/ SUBSET/ SUBSET/, ARMA,/ ARMA,/ SARIMA MEANS

PACF AlIC BIC AlC BIC DSM DES

1 2 5 7 0 4 4 3 0 2 3
2 5 4 5 6 0 3 3 0 4 0
3 11 3 3 5 0 3 2 0 1 2
4 6 6 4 5 1 5 1 1 0 1
S 1 8 2 8 2 6 0 0 3 0
6 4 3 3 3 5 1 6 0 1 4
7 1 0 4 1 2 5 3 S 4 5
8 0 1 1 1 5 2 7 5 4 4
9 0 0 1 1 10 1 4 1 8 4
10 0 0 0 0 1 0 1 18 3 7
Rank-

sum 105 112 115 129 202 135 178 268 196 210
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Exhibit 9
Results of Fisher’s test.

Model PAR/1 PAR/ PAR/ PAR/ SUBSET/ SUBSET/ ARMA/ ARMA/ SARIMA MEANS

YW1  AIC BIC AlIC BIC DSM DES

X 65.2 60.5 64.8 57.8 116.0 87.8 99.4 101.2 113.3 276
DF 60 40 58 40 60 60 60 60 60 60
sU(%) 30 2 25 3 1074 1 0.1 0.05 10°° 101

A Wilcoxon rank-sum test for paired data was used to test for statistically significant differences in
the forecasting ability of the various procedures. In this test the differences in the squares of the
logarithmic forecast errors were computed. These differences were ranked in ascending order, without
regard to sign, and assigned ranks from one to thirty-six. The sum of the ranks of all positive
differences [T( +)] were then computed and compared to tabulated values in order to ascertain if the
forecasts from one model were significantly better than the forecasts from a competing model. These
results were then used to examine the performance of the models across all thirty series. In this test,
the P — value associated with each 7(+) value was calculated by estimating the area in the tail of the
distribution. Then the Fisher (1970, p. 99) method for combining significance levels is

k
—ZZln P,:X§A~ (14)

i=1

where p is the calculated P-value associated with 7(+) and k is the number of series considered in
the test. This combination technique generally has greater power than alternative methods such as
simply summing the 7(+)s.

Fisher’s test was employed to compare the overall performance of the PAR /PACF model to that
of the other competing models. In addition, the PAR /1 parameters were also estimated using the
Yule—Walker equations to provide an additional model for comparison (PAR/YW1). In this way
identical forecasts produced by the PAR /PACF and PAR /YW1 models could be ignored, ensuring
that only the differences in the forecasting procedures were compared. The results of Fisher’s test are
presented in exhibit 9. The PAR /PACF was significantly better than all of the models except the
PAR /1 and the PAR/4IC at the five-percent level. Since different estimation procedures were
employed for the PAR /PACF and PAR /1 models, there were several forecasts that were almost but
not quite identical. These were all included in the analysis, thus masking the differences in the
performance of the two models. The PAR /YW1, however, emloyed the same estimation procedure,
thus resulting in identical forecasts when an AR(1) model was identified for a particular month for
the PAR/PACF model. This allowed ties to be dropped from consideration, and resulted in the
testing of only the differences between the two models. All series with fewer than five untied forecasts
were dropped from consideration in this test. The results of this comparison indciated that when ties
were ignored, the PAR /PACF model is better than the PAR /YW1 model at the two-percent level of
significance. Although the PAR/A4IC compares quite favourably with the PAR/PACF when the
significance levels are combined, detailed examination of the results revealed that for three rivers the
PAR /PACF forecasted significantly better at the five-percent level than the PAR /4IC. However, in
no case were the PAR /4JC forecasts significantly superior to those of the PAR /PACF. Additional
details are given in the thesis of Noakes (1984).
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4. Conclusions

Based upon the results of this study and also upon a physical understanding of how seasonal
hydrologic time series behave, certain types of PAR models are recommended for use in forecasting.
In particular, the PAR /PACF model forecasted most accurately for the data examined in this study.
Other models may be more parsimonious. but the PAR /PACF model gives the most parsimonious
adequate model due to the seasonal correlation effects.
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