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Abstract. Hyperbolic decay time series such as fractional Gaussian noise or
fractional autoregressive moving-average processes exhibit two distinct types of
behaviour: strong persistence or antipersistence. Beran (Statistics for Long Memory
Processes. London: Chapman and Hall, 1994) characterized the family of strongly
persistent time series. A more general family of hyperbolic decay time series is
introduced and its basic properties are characterized in terms of the autocovariance and
spectral density functions. The random shock and inverted form representations are
derived. It is shown that every strongly persistent series is the dual of an antipersistent
series and vice versa. The asymptotic generalized variance of hyperbolic decay time
series with unit innovation variance is shown to be in®nite which implies that the
variance of the minimum mean-square-error one-step linear predictor using the last k
observations decays slowly to the innovation variance as k gets large.

Keywords. Covariance determinant; duality in time series; fractional differencing and
fractional Gaussian noise; long-range dependence; minimum mean-square-error
predictor; non-stationary time series modelling.

1. INTRODUCTION

Let Z t, t � 1, 2, . . ., denote a covariance-stationary, purely non-deterministic
time series with mean zero and with autocovariance function ãZ(k) �
cov (Z t, Z tÿk). As is discussed by Beran (1994), many long-memory processes
such as the fractional Gaussian noise (FGN) process (Mandelbrot, 1983) and the
fractional autoregressive moving-average (FARMA) process (Granger and
Joyeux, 1980; Hosking, 1981) may be characterized by the property that
káãZ(k)! cã as k !1, for some á 2 (0, 1) and cã . 0. Equivalently,

ãZ(k) � cãkÿá: (1)

As noted by Box and Jenkins (1976), the usual stationary ARMA models, on the
other hand, are exponentially damped since ãZ(k) � O(r k), r 2 (0, 1).

Beran (1994 p. 42) shows that an equivalent characterization of strongly
persistent time series is

f Z(ë) � c f ë
áÿ1 as ë! 0 (2)

where á 2 (0, 1), c f . 0 and f Z(ë) is the spectral density function given by
fZ(ë) �PãZ(k) eÿikë=(2ð). Theorem 1 below summarizes some results stated
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without proof in Beran (1994, Lemma 5.1). Since not all time series satisfying
Equations (1) or (2) are invertible, the restriction to invertible processes is
required.

THEOREM 1. The time series Z t satisfying (1) or (2) may be written in
random shock form as Z t � At �

P
ø l Atÿ l, where ø l � cø lÿ(1�á)=2, cø . 0,

and At is white noise. Assuming that Z t is invertible, the inverted form may be

written Z t � At �
P
ð l Z tÿ l, where ð l � cð lÿ(3ÿá)=2, cð . 0, and At is white

noise.

PROOF. By the Wold decomposition, any purely non-deterministic time series
may be written in random shock form. Now assume the random shock
coef®cients speci®ed in the theorem and we will derive (1). Assuming
var (At) � 1, ãZ(k) � øk �

P
øhøh�k ,

ãZ(k) � øk � c2
ø

X1
h�1

hÿ(1�á)=2(h� k)ÿ(1�á)=2

� øk � c2
ø

�1
1

hÿ(1�á)=2(h� k)ÿ(1�á)=2 dh� Rk

where the Euler summation formula (Graham et al., 1989, 9.78, 9.80) is used in
the last step and

Rk � ÿ 1

2
F(h)� 1

12
F9(h)� è

720
F -(h)

� �����1
1

where è 2 (0, 1) and F(h) � hÿ(1�á)=2(h� k)ÿ(1�á)=2. It is easily shown that
káRk ! 0 as k !1. Hence,

ãZ(k) � øk � c2
ø

�1
1

hÿ(1�á)=2(h� k)ÿ(1�á)=2 dh

� øk � kÿác2
ø

�1
1=k

xÿâ(x� 1)ÿâ dx

where â � (1� á)=2. Using Mathematica,�1
0

xÿâ(x� 1)ÿâ dx � 22âÃ(1ÿ â)Ã(ÿ1
2
� â)

4
p
ð

and so (1) now follows with cã � c2
ø2áÿ1Ãf(1ÿ á)=2gÃ(á=2)=

p
ð, where Ã(´)

is the gamma function. This shows that øk is a possible factorization of ãk and
this suf®ces to establish that Z t � At �

P
ø l Atÿ l.

For any stationary invertible linear process Z t,

ãZ(k) �
X1
h�1

ðhãZ(k ÿ h): (3)
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Assume that ãZ(k) satis®es Equation (1) and that ð l � cð lÿ(3ÿá)=2; then we will
show that Equation (3) is satis®ed.

ãZ(k) � ãZ(0)ðk � c
Xkÿ1

h�1

hÿ3=2�á=2(k ÿ h)ÿá � c
X1

h�k�1

hÿ3=2�á=2(h� k)ÿá

where c � cðcã. Now ãZ(0)ðk=ãZ(k) � 0 so the ®rst term will drop out. In the
second term, for k � h, (k ÿ h)ÿá � kÿá andXkÿ1

h�1

hÿ3=2�á=2 � Hâ as k !1

where Hâ �
P1

h�1 hÿâ ,1, â � 3=2ÿ á=2. In the ®nal term, when h� k,
(h� k)ÿá � hÿá, and soX1

h�k�1

hÿ3=2�á=2(h� k)ÿá �
X1

h�k�1

hÿ3=2ÿá=2

�
�1

k�1

hÿ3=2ÿá=2 dh

� (k � 1)ÿ(1�á)=2:

Again the Euler summation formula is used in the last step. Thus the ®nal term
is smaller asymptotically than ãk . This establishes the asymptotic equivalence of
the left-hand side and the right-hand side of Equation (3) and the theorem since
ãZ(k) uniquely determines the coef®cients ð l in the inverted model. j

The FARMA model of order ( p, q) (Granger and Joyeux, 1980; Hosking,
1981) may be de®ned by the equation

ö(B)(1ÿ B)d Z t � è(B)At (4)

where jdj, 0:5, At is white noise with variance ó 2
A, ö(B) � 1 ÿ

ö1 Bÿ . . . ÿ ö p B p, and è(B) � 1ÿ è1 B ÿ . . . ÿ èq Bq. For stationarity and
invertibility it is assumed that all roots of ö(B)è(B) � 0 are outside the unit
circle and jdj, 0:5. The series is strongly persistent or antipersistent according
as 0 , d , 0:5 or ÿ0:5 , d , 0. The special case where p � q � 0 is known as
fractionally differenced white noise.

Antipersistent series may arise in practice when non-stationary time series are
modelled. As suggested by Box and Jenkins (1976) a non-stationary time series
can often be made stationary by differencing the series until stationarity is
reached. Sometimes the resulting stationary time series may be usefully
modelled by an antipersistent form of the FARMA model. An illustrative
example is provided by the annual US electricity consumption data for 1920±
70. Hipel and McLeod (1994, pp. 154±59) modelled the square-root
consumption using an ARIMA (0, 2, 1) but a better ®t is obtained by
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modelling the second differences of the square-root consumption as fractionally
differenced white noise with d � ÿ0:4477� 0:1522 SD. The Akaike informa-
tion criterion (AIC) for the latter model is 1011.5, compared with 1020.4.
Diebold and Rudebusch (1989) and Beran (1995) also used this approach for
modelling non-stationary data.

The determinant of the covariance matrix of n successive observations Z t,
t � 1, . . ., n, is denoted by G Z(n) � det fãZ(iÿ j)g. It will now be shown in
Theorem 2 that, for fractionally differenced white noise, g Z(n) �
óÿ2n

A G Z(n)!1 as n!1, where 0 , ó 2
A ,1 is the innovation variance

given by Kolmogoroff's formula (Brockwell and Davis, 1991, Equation (5.8.1)).
In Theorems 7, 8, and 9 this result will be established for a more general
family of processes. Since g Z(n) is the generalized variance of the process
Z t=ó A, it will be referred to as the standardized generalized variance. Without
loss of generality we will let ó A � 1.

THEOREM 2. Let Z t denote fractionally differenced white noise with

parameter d 2 (ÿ1
2
, 1

2
) and d 6� 0. Then g Z(n)!1.

PROOF. As in McLeod (1978), g Z(n) �Qnÿ1
k�0 ó

2
k , where ó 2

k denotes the
variance of the error in the linear predictor of Z k�1 using Z k , . . ., Z1. From
the Durbin±Levinson recursion,

ó 2
k �

ãZ(0) k � 0

ó 2
kÿ1(1ÿ ö2

k,k) k . 0

�
where ök,k denotes the partial autocorrelation function at lag k. For the special
case p � q � 0 in (4), Hosking (1981) showed that ök,k � d=(k ÿ d) and
ãZ(0) � (ÿ2d)!=(ÿd)!2. Using the Durbin±Levinson recursion,

ó 2
k �

k!(k ÿ 2d)!

(k ÿ d)!2
:

Applying the Stirling approximation to log (t!) for large t, log (t!) �
(t � 1

2
) log (t)ÿ t � 1

2
log (2ð), yields log (ó 2

k) � a(k), where

a(k) � k � 1

2

� �
log

k(k ÿ 2d)

(k ÿ d)2

� �
� 2d log

k ÿ d

k ÿ 2d

� �
:

Since ó 2
k is a monotone decreasing sequence and, for d 6� 0, ó 2

k . 1, it follows
that log (ó 2

k) is a positive monotone decreasing sequence. By Stirling's approxi-
mation log (ó 2

k)a(k)! 1 as k !1. So for large k, a(k) must be a monotone
decreasing sequence of positive terms. Expanding a(k) and simplifying
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a(k) � k � 1

2

� �
log 1ÿ 2d

k

� �
� 2 k � 1

2

� �
log 1� d

k
� d

k

� �2

� . . .

( )

� 2d log 1� d

k ÿ 2d

� �
� d2

k
� O

1

k2

� �
where the expansion log (1� x) � x� x2=2� x3=3 � . . ., jxj, 1, has been
used. Hence,

ka(k)! d2 as k !1 (5)

and by the theorem given by Knopp (1951, Section 80, p. 124),
P

a(k) diverges
for d 6� 0. So for d 6� 0,

P
log (ó 2

k) diverges and consequently so does g Z(n). j

Equation (5) shows that ó 2
k � 1� O(kÿ1) which implies that ó 2

k decays very
slowly. The divergence of g Z(n) can be slow. See Table I.

2. HYPERBOLIC DECAY TIME SERIES

The stationary, purely non-deterministic time series Z t is said to be a hyperbolic
decay time series with decay parameter á, á 2 (0, 2), á 6� 1, if for large k

ãZ(k) � cãkÿá (6)

where cã . 0 for á 2 (0, 1) and cã , 0 for á 2 (1, 2). When á 2 (1, 2) the time
series is said to be antipersistent. As shown in the next theorem, antipersistent
time series have a spectral density function which decays rapidly to zero near the
origin. The term antipersistent was coined by Mandelbrot (1983) for FGN
processes with Hurst parameter 0 , H , 1=2. Hyperbolic decay time series
include both FGN time series with parameter H � 1ÿ á=2, H 2 (0, 1),
H 6� 1=2, and FARMA time series with parameter d � 1=2ÿ á=2, d 2
(ÿ1=2, 1=2), d 6� 0.

THEOREM 3. The spectral density function of hyperbolic decay time series

satis®es (2).

TABLE I

GENERALIZED VARIANCE g Z (n) FOR n � 10k , k � 0, 1, . . ., 7, OF FRACTIONALLY DIFFERENCED WHITE

NOISE Z t WITH PARAMETER d

d k � 0 k � 1 k � 2 k � 3 k � 4 k � 5 k � 6 k � 7

ÿ0.4 1.1831 1.6225 2.3318 3.3685 4.8688 7.0375 10.1725 14.7059
ÿ0.1 1.0145 1.0366 1.0607 1.0854 1.1107 1.1365 1.1630 1.1901

0.1 1.0195 1.0434 1.0678 1.0927 1.1181 1.1442 1.1708 1.1990
0.4 2.0701 3.1588 4.5923 6.6417 9.6009 13.8775 20.0591 28.9951
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PROOF. Beran (1994) established this result when á 2 (0, 1) as was noted
above in Equation (2). However, the theorem of Zygmund (1968, Section V.2)
used by Beran (1994, Theorem 2.1) does not apply to the case where
á 2 (1, 2).

Let Yt have the spectral density f Y (ë) � c f ëáÿ1, á 2 (1, 2).

ãY (k) � 2

�ð
0

c f ë
áÿ1 cos (ëk) dë

� 2c f kÿá
� kð

0

uáÿ1 cos (u) du

Using Mathematica,�1
0

uáÿ1 cos (u) du �
p
ðÃ(á=2)

(1=4)(áÿ1)=2Ãf(1ÿ á)=2g
and so ãY (k)! c=ãkÿá, where cã � 2c f

p
ðÃ(á=2)=[(1=4)(áÿ1)=2Ãf(1ÿ á)=2g]

, 0.
Assume f Z(ë) satis®es Equation (2) and we will derive (6). Since

f Z(ë)=(c f ëáÿ1)! 1 as ë! 0 there exists ë0 such that, for all ë, ë0,
c f ëáÿ1 , 1 and j f Z(ë)=(c f ëáÿ1)ÿ 1j, E=(2ð). Hence, for all ë, ë0,
j f Z(ë)ÿ f Y (ë)j, E=(2ð). Consider the systematically sampled series Z t, l �
Z tl for l > 1. Then Z t, l has spectral density function f Z(ë=l). Let L � ð=ë0.
Then j f Z(ë=l)ÿ f Y (ë)j, E=(2ð) for ë 2 (0, ð) provided that l . L. Hence, for
any l . L,

jãZ(kl)ÿ ãY (k)j, 2

�ð
0

j cos (ëk)jj f Z

ë

l

� �
ÿ f Y (ë)jdë

, 2

�ð
0

���� f Z

ë

l

� �
ÿ f Y (ë)

����dë
, E:

This shows that (2) implies (6). Since the spectral density uniquely de®nes the
autocovariance function, the theorem follows. j

Hyperbolic decay time series are self-similar: aggregated series are
hyperbolic with the same parameter as the original.

THEOREM 4. Let Z t satisfy Equation (6). Then so does Yt, where

Yt �
Pm

j�1 Z( tÿ1)m� j=m and m is any value.

PROOF. For large l,
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ãY (l) � mÿ2 cov
Xm

h�1

Z( tÿ1)m�h,
Xm

k�1

Z( tÿ1� l)m�k

 !

� mÿ2
Xm

h�1

Xm

k�1

cã(k � ml ÿ h)ÿá

� mÿ2
Xm

h�1

Xm

k�1

c9ã lÿá 1� k ÿ h

ml

� �ÿá
� c9ã lÿá

where c9ã � mÿácã. j

3. DUALITY

Duality has provided insights into linear time series models (Finch, 1960; Pierce,
1970; Cleveland, 1972; Box and Jenkins, 1976; Shaman, 1976; McLeod, 1977,
1984). In general, the dual of the stationary invertible linear process
Z t � ø(B)At is de®ned to be ø(B)�Z t � At, where ø(B) � 1� ø1 B�
ø2 B2 � . . . and B is the backshift operator on t. Equivalently, if Z t has
spectral density f Z(ë) then the dual has spectral density proportional to 1= f Z(ë)
with the constant of proportionality determined by the innovation variance. Thus
in the case of a FARMA ( p, q) with parameter d the dual is a FARMA (q, p)
with parameter ÿd. The next theorem generalizes this to the hyperbolic case.

THEOREM 5. The dual of a hyperbolic decay time series with decay

parameter á is another hyperbolic decay series with decay parameter 2ÿ á.

PROOF. The spectral density near zero of the dual of a hyperbolic decay time
series with parameter á is 1=(c f ëáÿ1) � cÿ1

f ë(2ÿá)ÿ1 which implies a hyperbolic
process with parameter 2ÿ á. j

THEOREM 6. The time series Z t satisfying (6) may be written in random
shock form as Z t � At �

P
ø l Atÿ l where ø l � cø lÿ(1�á)=2 and cø . 0 for

á 2 (0, 1) and cø , 0 for á 2 (1, 2) and in inverted form as Z t � At �P
ð l Z tÿ l where ð l � cð lÿ(3ÿá)=2 and cð . 0 for á 2 (0, 1) and cð , 0 for

á 2 (1, 2).

PROOF. The case á 2 (0, 1) was established in Theorem 1. When á 2 (1, 2)
the random shock coef®cients are given by
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ø l � ÿc2ÿð lÿf3ÿ(2ÿá)g=2

� cø lÿ(1�á)=2

where cø � c2ÿð. Similarly for the inverted form. j

4. GENERALIZED VARIANCE

For ARMA process Z t, lim g Z(n) is ®nite and has been evaluated by Finch
(1960) and McLeod (1977). McLeod (1977, Equation (2) showed g Z(n) �
m Z � O(r n), where r 2 (0, 1). The evaluation of this limit uses the theorem of
Grenander and Szeg�o (1984, Section 5.5) which only applies to the case where
the spectral density f Z(ë), ë 2 [0, 2ð), satis®es the Lipschitz condition
j f 9Z(ë1)ÿ f 9Z(ë2)j, Kjë1 ÿ ë2jò, for some K . 0 and 0 , æ, 1. Since, when
á 2 (0, 1), f 9Z(ë) is unbounded, this condition is not satis®ed.

LEMMA 1. Let X t and Yt be any independent stationary processes with

positive innovation variance and let Z t � X t � Yt. Then G Z(n) . GX (n).

PROOF. This follows directly from the fact that the one-step predictor error
variance of Z t cannot be less than that of X t. j

THEOREM 7. Let Z t denote a strongly persistent time process de®ned in

Equation (2). Then g Z(n)!1.

PROOF. Since Z t �
P
øk Atÿk , where At is white noise unit variance, we can

®nd a q such that the process Yt where

Yt �
X1

k�q�1

øk Atÿk

has all autocovariances non-negative and satisfying Equation (1). By using the
comparison test for a harmonic series, it must be possible to ®nd an N such that,
for n . N, the covariance matrix Ã Y (n) has every row-sum greater than Î, for
any Î . 0. It then follows from the Frobenius theorem (Minc and Marcus, 1964,
p. 152) that the largest eigenvalue of ÃY (n) tends to 1 as n!1. Assume now
that inf f Y (ë) � m where m . 0 and let mn denote the smallest eigenvalue of
Ã Y (n) and æn denote the corresponding eigenvector. Then
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mn � mnæ9næn

� æ9nÃ Y (n)æn

�
�ð
ÿð

X
h

X
l

æn,hæn, l eÿië(hÿ l) f (ë) dë

> 2ðm:

So mn > 2ðm hence gY (n)!1 as n!1. By Lemma 1, g Z(n)!1 also.
For the more general case where m � 0, consider a process with spectral

density function f (ë)� E, where E. 0. Let gE(n) denote the standardized
covariance determinant of n successive observations of this process. So
gE(n)!1 as n!1 for every E. 0. The autocovariance function
corresponding to f (ë)� E is

ãE(k) � ãZ(0)� 2ðE k � 0

ãZ(k) k 6� 0:

�
By continuity of the autocovariance function with respect to E,
lim gE(n)! g Z(n) as E! 0. Let Î . 0 be chosen as large as we please and
let ä. 0. Then for any E. 0 there exists an N (E) such that, for all n > N (E),
gE(n) .Î � ä. By continuity, there exists an E0 such that g ZfN (E0)g.
gE0fN (E0)g ÿ ä. Hence g ZfN (E0)g.Î. Since g Z(n� 1) � g Z(n)ó 2

n, where
ó 2

n . 1 is the variance of the error of the linear predictor of Z n�1 given
Z n, . . ., Z1, we see that g Z(n) is non-decreasing. It follows that g Z(n) .Î for
all n . N (E0).

Using a theorem of Grenander and Szeg�o (1984) this result is easily
generalized to any stationary time series Z t for which

P
ãZ(k) � 1.

THEOREM 8. Let Z t denote a time series for which f Z(ë)!1 as ë! 0.
Then g Z(n)!1.

PROOF. From Equation (10) of Grenander and Szeg�o (1984, Section 5.2), as
n!1, the largest eigenvalue of óÿ2

á Ã Z(n) approaches sup f Z(ë) � 1 while
the smallest eigenvalue approaches 2ðm, where m � inf f (ë). Note that
Grenander and Szeg�o's Equation (10), Section 5.2, applies directly to
unbounded spectral densities as is pointed out by Grenander and Szeg�o in
the sentence immediately following Equation (10), Section 5.2. If it is assumed
that m . 0, then the largest eigenvalue tends to in®nity and the smallest one is
bounded by 2ðm as n!1. Hence, g Z(n)!1 for this special case. The
more general case where m � 0 is handled as in Theorem 7. j

In the case of ARMA models, the asymptotic covariance determinant of the
dual and primal are equal (Finch, 1960). Since the hyperbolic decay time series
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are approximated by high order AR and MA models, it might be expected that
this property holds for hyperbolic series too. Theorem 9 which uses Lemma 2
proves that this is the case.

LEMMA 2. Let X t � At �
P1

1 ø l Atÿ l. Let X t(q) � At �
Pq

1ø l Atÿ l, and let

gq(n) denote its standardized covariance determinant. Then, for any l . 0,
gq� l(n) > gq(n).

PROOF. This follows directly from the fact that the one-step predictor error
variance of X t(q� l) cannot be less than that of X t(q). j

THEOREM 9. For hyperbolic decay antipersistent time series Z t, g Z(n)!1.

PROOF. Since the dual of the antipersistent time series Z t with parameter
2ÿ á, á 2 (0, 1), is a strongly persistent time series �Z t with parameter á, �Z t

may be represented in inverted form �Z t � At �
P
ðk

�Z tÿk , where At is white
noise and, for large k, ðk � cðkÿ(3ÿá)=2. So the antipersistent time series Z t

can be written Z t � At ÿ
P
ðk Atÿk . Let �gL(n) and gL(n) denote the

covariance determinant of n successive observations in the AR(L) and
MA(L) approximation to �Zt and Z t:

�Z t(L) � At �
XL

k�1

ðk
�Z tÿk(L)

and

Z t(L) � At ÿ
XL

k�1

ðk Atÿk :

By Theorem 7, for any Î. 0 and ä. 0 there exists an N1 such that, for
n . N1, g �Z(n) .Î � ä. Since �g k(n)! �g Z(n) as k !1 there exists a K1(n)
such that �g k(n) . �g Z(n)ÿ ä.Î for k . K1(n). From McLeod (1977),
�g k(n) � �g k(k) for n > k. Hence, for any n . N1, �g k(m) . �g Z(n)ÿ ä.Î for
k . K1(n) and m > k. So �gk(m)!1 as k !1 and m > k.

Hence there exists K2 such that �gk(n) .Î � ä for k . K2 and n > k. For
any k, gk(n) � �g k(n)� O(r n), where 0 , r , 1 (McLeod, 1977). Let k . K2.
Then there exists an N2(k) such that, for all n . N2(k), g k(n) . �g k(n)ÿ ä.Î.
So g k(n)!1 as k !1 and n > k.

For any n, g k(n)! g Z(n) as k !1. So for any n there exists a K3(n) such
that g Z(n) . gk(n)ÿ ä for all k . K3(n). We have already established that
there exists a K4 such that g k(n) .Î � ä for k . K4 and n > k. Holding n

®xed for the moment, let h . k. By Lemma 2, gh(n) > g k(n). By continuity,
since h . K4, g Z(n) . gh(n)ÿ ä. Since gh(n) .Î � ä it follows that
g Z(n) .Î. This establishes that g Z(n)!1 as n!1. j
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5. CONCLUDING REMARKS

Theorems 7 and 9 show that hyperbolic decay time series, even antipersistent
ones, exhibit a type of long-range dependence. The asymptotic standardized
generalized variance is in®nite. This implies that the variance of the one-step
linear predictor based on the last k observations decays very slowly compared
with the ARMA case where the decay to the innovation variance occurs
exponentially fast. Theorem 8 shows that this is a more general notion of long-
range dependence than the customary one.

Yakowitz and Heyde (1997) show that non-linear Markov processes can also
exhibit strongly persistent hyperbolic decay in the autocorrelation function.
Hence a better term for long-memory time series might be strongly persistent
hyperbolic decay series. It is then clear that the long-range dependent aspect is
merely a characterization of the autocorrelation structure.
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