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Improved Box-Jenkins estimators

By A.I. MCLEOD
Department of Statistics, University of Waterloo, Ontario

SuMMARY

An easily implemented modification of the estimation procedure given by Box & Jenkins
(1970) for the autoregressive-moving average time series model is suggested and some new
results on covariance determinants are given. The proposed modification provides a closer
approximation to the exact maximum likelihood estimators. Simulation experiments which
demonstrate the effectiveness of this modification are presented.

Some key words: Autoregressive-moving average time series; Covariance determinant; Time series
estimation.

1. INTRODUCTION
Consider the autoregressive-moving average time series model of order (, g),

¢(B)wt = Q(B)a’t (t = 19---3”):

where ¢(B) =1—-¢, B—...—¢,B?, 0(B) =1—-0,B—...—0,B%, B is the backshift operator
and a, is a sequence of independent, normally distributed disturbances with mean zero and
variance o2, This model is considered admissible if and only if it is stationary and invertible,
or, equivalently, ¢(z)0(z) = 0 has all roots outside the unit circle. Then the likelihood of
@15 eees D Oy, -, 04, 02 can be shown to be (Box & Jenkins, 1970, p. 273)

S(;I:;P)},

L(®,0, 0% o~ U7-0(®, ) exp -

where @ = (¢, ..., ¢,), © = (0, ..., 6,), S(P, O) is the unconditional sum of squares function of
Box & Jenkins (1970) and

MP9(D,0) = (TP (D, 0,0?)} 1,
where I'P:9(®, ©, 02) is the covariance matrix of the series, that is the n x # matrix
r{.9(0,0,0%)
has (1,5)th element y,_;, where y;, = E(w, w;_;,). The unconditional sum of squares function,
n
8(0,0)= X 4
t=—c0

where &, = E(a,|wy, ..., w,; ®;0), is readily calculated using the back forecasting algorithm of
Box & Jenkins (1970, pp. 215-20).

In general, the quantity |MP-9(®,®)| cannot be readily calculated and so it is suggested
that we replace it by m,, ,(®, ®), where m,, (®,0) = lim | M- 2(®, ®)| as n->co. This limit
clearly exists and is nonzero since the sequence |M, | is bounded and nondecreasing. The
approximate likelihood is then

Ly(®,0,0%) oc {m,, (0, O)}Fexp | -

(1)

202

S(®, ®)} .
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For any covariance stationary time series, wy,, it is easily shown that
n—1
Tyl = IT o*(k),
E=0

where |I',| is the covariance determinant of » consecutive observations, ¢%(0) =y, and
o%(k) (k= 1, 2, ...) is the mean squared error of prediction of w, using the minimum mean
squared error linear predictor ¢ ;w; 3+ ...+ ¢y, w; . For autoregressive-moving average
models it can be shown that o?(k) = 62+ O(r*), where 0 < r < 1. It follows that

| M0(®, 0)] = 1y, (@, 0) +0(r™) )

and that the relative error of the approximation in (1) to the exact likelihood is O(r*). For
autoregressive models the relative error of this approximation will be zero since

My

o(@) = [ M3 0(D)|
provided that n > p.

The more standard modified maximum likelihood approach, summarized by Hannan
(1970, §v1.6), drops the factor | M P 9(®, ©)| altogether. The relative error of this approxima-
tion to the exact likelihood is O(1). For small-sample estimation the more accurate approxima-
tion to the likelihood given by (1) can be expected to be useful.

2. GENERAL PROCEDURE
It was shown by Finch (1960) that

1 P'(z) ')
1 0,0 =——fJ‘ N dp. 3
B PO =2 )| il @ | # ®)
It follows that
logmp,q(q)’ ®) = IOg mp,o(q)) + logmq,0(®) + hp,q(q)’ G)),
where

2 §()0¢)
P, o( @, 9) = wﬂnzm )0

Now consider the autoregressive model of order p + ¢ with autoregressive operator

$*(B) = ¢(B)0(B).
Then it follows from (3) that

log mp+q,0(q)*) = log mp,o(q)) + logmq,o(G) - hp,q(q)’ G))’
where ®* = (g5, ..., ¢5.,), and hence

_ (D) m3e(O)
My, o( P, 0) = Mg o(O)

If ¢ = 0, it is well known (Box & Jenkins, 1970, p. 275) that for n > p,
| o(@)] = | 3p-0(@)
and that (Pagano, 1973) the matrix M -9(®) has (¢,)th element

min (4, )
2_:0 (¢‘i~k—1 ¢j—k—1 - ¢p+1+k—i ¢p+1+k—j)’

where ¢y = — 1. Hence m,, o(®) = |MP-O(®)| and so to compute m,, ,(®, ®) all that is necessary
is to calculate the determinant of three easily obtained positive-definite matrices of orders p, ¢
and p+q.
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It is convenient to work with the modified sum of squares function
Sm(q), ®) = S((D5 G)){mp,q(q)’ @)}—l/n.

Minimizing the modified sum of squares function §,,(®, ®) is equivalent to maximizing the
maximized approximate likelihood
- max {L,(D, 0, 0?): o2 varying}.
Furthermore if the observations are standardized by the transformation,
A = 24y o @, OO,
then the unconditional sum of squares of the standardized data is the suggested modified
sum of squares and the nonlinear least squares method proposed by Box & Jenkins (1970,
pPp. 208-42, 504-5) can be used. Alternatively, the modified sum of squares can be readily
minimized using the algorithm of Powell (1964).
Table 1. Estimates of airline data model

Modified sum of Unconditional sum
squares method  of squares method

0, 0-4018 0-3959
0, 0-5569 06135
&2 0-00135 0-00134

The following example is instructive since it illustrates that the proposed modified sum of
squares method involves only a slight increase in the computations and that the estimates do
sometimes differ somewhat from the unconditional sum of squares method, even in apparently
large samples. Box & Jenkins (1970, Chapter 9) suggest the multiplicative seasonal moving
average model w, = (1—0, B) (1—©, B'?)a;, where w; (t = 1, ..., 131) is the differenced and
seasonally differenced series of some logged monthly airline passenger data. This model was
fitted using the modified sum of squares and the unconditional sum of squares methods and
the calculations took respectively 14-4 and 8:5 seconds of processor time on a Honeywell
6060 Computer System using initial values 6; = ®; = 0-0. The two estimates of ©,, given in
Table 1, differ by about 80 9, of the estimated standard error.

3. SIMULATION EXPERIMENTS

A simulation study was done to examine the effects of the proposed modification in small
samples. For series of length n = 30, 60, 100 autoregressive-moving average models of orders
(1, 0), (0, 1), (1, 1) and the multiplicative model of order (0, 1) (0, 1), defined by

wy=(1-6,B)(1-0,B%a,

were simulated and fitted using the unconditional sum of squares and the modified sum of
squares methods. The relative efficiencies shown in Table 2, which were determined by the ratio
of the empirical mean squared errors in one thousand simulations of the models, are illustrative.
Based on Table 2 and simulation results for other parameter values, the following general
conclusions were made:

(i) the modified method was uniformly more efficient;

(ii) the improvement was greatest in the shorter series;

(iii) the improvement was more significant in the moving average parameters.
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It is also of interest that K. M. Kang, in an unpublished simulation study of the (0, 1) model,
found that in small samples an exact maximum likelihood procedure gave significantly smaller
mean squared errors than the unconditional sum of squares method.

Table 2. Percentage relative efficiency of unmodified versus modified method

(1,0) (0, 1) (1, 1) (0, 1) (0, 1),

(o ~A- h) C A h)

n $1=13 0,=1% $r=13% 0, =—-% 0,=1% 0, =1%
30 93 - 82 91 85 80 50
60 97 91 96 91 88 59
100 99 96 96 95 95 77

4. CONCLUDING REMARKS

The autoregressive-moving average model is said to be redundant if the equations ¢(z) = 0
and 6(z) = 0 have at least one root in common. Assuming that the model is not redundant, it
follows from (2) and (4) that

| M@ (D, 0)| = |15, o(P, ©)]

| Lp(@) [ | 1(©) [ [, o(®, ©) 2

where 0 < r < 1, I, ,(®, ©) is the large-sample information matrix per observation of ® and ©
in the autoregressive-moving average model, I,(®) and I(®) are the p x p and the ¢ x g sub-
matrices corresponding to ® and © alone and Jj, ,(®, ©) is the (p +g) x (p +¢) matrix obtained
by adjoining the matrices with (¢, j)th elements respectively 6, ; and ¢, ;, 6; = 0 unless
t=0,..,q 0,=—1and ¢, = 0 unless s = 0, ..., p. Equation (5) provides a more accurate
approximation to |M{:9(®, ®)| than that used by Box & Jenkins (1970, pp. 257, 283).

+0(™), (5)

I would like to thank the referees for suggestions which improved this paper and the Mathe-
matics Faculty at the University of Waterloo for providing computing facilities.

REFERENCES

Box, G. E.P. & Jexkins, G. M. (1970). Time Series Analysis: Forecasting and Control. San Francisco:
Holden-Day.

Fincr, P.D. (1960). On the covariance determinants of moving average and autoregressive models.
Biometrika 47, 423—6.

HAaNNAN, E. J. (1970). Multiple Time Series. New York: Wiley.

Pacano, M. (1973). When is an autoregressive process stationary? Commun. Statist. 1, 533—44.

PowEgLL, M. J. D. (1964). An efficient method for finding the minimum of a function of several variables
without calculating derivatives. Computer J. 7, 155-62.

[Received July 1976. Revised February 1977]



