Distribution of the Residual Autocorrelations in Multivariate ARMA Time
Series Models

W. K. Li, A. I. McLeod

Journal of the Royal Statistical Society. Series B (Methodological), Volume 43, Issue 2
(1981), 231-239.

Stable URL:
http://links jstor.org/sici?sici=0035-9246%281981%2943%3A2%3C231%3ADOTRAI%3E2.0.CO%3B2-7

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Journal of the Royal Statistical Society. Series B (Methodological) is published by Royal Statistical Society. Please
contact the publisher for further permissions regarding the use of this work. Publisher contact information may be
obtained at http://www jstor.org/journals/rss.html.

Journal of the Royal Statistical Society. Series B (Methodological)
©1981 Royal Statistical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2002 JSTOR

http://www.jstor.org/
Mon Jun 10 17:17:13 2002



J. R. Stat. Soc. B (1981),
43, No. 2, pp. 231-239

Distribution of the Residual Autocorrelations in Multivariate ARMA Time Series Models

By W. K. L1 and A. I. McLEOD
University of Western Ontario, London, Ontario, Canada N6A 5B9
[Received May 1980. Revised November 1980]

SUMMARY
The large-sample distribution of the multivariate residual autocorrelations in the vector
ARMA model is derived. This result is somewhat less complicated for the vector
autoregressive model. A new multivariate portmanteau test for checking the adequacy of
fitted vector ARMA models is developed. A simulation study shows that a simple
modification of the portmanteau test improves its accuracy in small samples.
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1. INTRODUCTION

THE recent paper of Tiao and Box (1979) describes a practical approach to vector ARMA
modelling of multivariate time series data by following the three stages of statistical model
development: identification, estimation and model criticism. At the model criticism stage, Tiao
and Box (1979) suggest using the multivariate residual autocorrelations to check the adequacy
of a fitted vector ARMA model. In this paper, the large sample distribution of the multivariate
residual autocorrelations in vector ARMA models is derived and a new multivariate generaliz-
ation of the univariate portmanteau test of Box and Jenkins (1970) and Box and Pierce (1970) is
given. Hosking (1981) gives an alternative but somewhat less general and less direct derivation
of these results using an hypothesis testing technique. Previously, Chitturi (1974) and Hosking
(1980) have obtained another multivariate generalization of the portmanteau test but their
approaches use a less standard definition of multivariate autocorrelations.

2. NOTATION AND LEMMAS

The multivariate zero-mean ARMA model for a k-dimensional time series Z{ = (Z, ..., Z; )
can be written

¢(B)Z, = 0(B)a,, (1)

where

¢(B) = 1k _¢l B—.. _d)p Bp,

6B)=1,-6,B—..—-6, B,
where

1, is the k x k identity matrix,

¢1 = (¢ij, l)k xks

91 = (91’], l)ka’

and B is the backshift operator, BZ, = Z,_, and Ba, = a,_,.
The innovation series a, is a sequence of independent and identically distributed vector
random variables with {a,> = 0 and

var(a,) = A = () xpo

where (- ) denotes mathematical expectation and A is positive definite.
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The (g, h) element of A~ ! will be denoted by ¢?”. It is assumed that the fourth moment of a; ,
exists for i = 1,2,...,k and that the model is stationary and invertible so that for all |B | <1,

detdp(B)#0 and detO(B)#0.
Consequently, inverses exist and can be written

®B) ! =1,+¢,B+¢, B> +.., (2
and
6B '=1,+6,B+0,B>+....
It is further assumed that the model is identifiable so that the large sample information matrix is
non-singular. Conditions for identifiability are discussed in Hannan (1969).
LetB = (vecd], ..., vecdy, vec 8], ..., vec 0]) where the vec of a k x k matrix is a vector with the
(i, j) matrix element in the (j— 1)k +i position.
For any B, and n>t>p+1, let

a,=2,—6,2,_ ,—..—b,Z,_,+0,a,_,+..+0,3,_,
where
a,=0 forit<p.

The corresponding residual autocorrelation matrices are defined by

R, = (ifDkxx  (120), A3)
where
i'ij(l) = éij(l)/\/(éii(o) éjj(o)) (1<i, j<k),
where
b= 3 iy @
Also, let

i = (vecRY, vecR], ..., vecRY).

Let f§ be an asymptotically efficient estimate of B and let 4; , and R, be the corresponding
residuals and residual autocorrelations. Similarly g; , and R, are the residuals and residual
autocorrelations corresponding to f.

Lemma 1. The distribution of f does not depend on (6;), i = 1,..., k.

Proof. This follows from the fact that #;(I) is invariant under arbitrary scale transformations
on each of the components of the Z,-series.

From Lemma 1, it can be assumed without loss of generality that A is in correlation form, so
that o; = 1,i=1,...k '

Lemma 2. \/n-r is asymptotically normal with mean 0 and covariance matrix
Y=1,0(A®A) ©)

Proof. Consider the covariance matrix of \/nvecR], I>0. If this covariance matrix is
partitioned into k? k x k blocks, the (i, j) element in the (g, k) block is neglecting quantities of

Op(1/n)
n-cov (r,(1), ryi1)
= ;g <ag,tai,t—lah,s aj,s—l)/n

= aij O'gh. (6)
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The last line follows from a well-known fourth moment result (Hannan, 1970, p. 23). Similarly, it
can be shown that \/n-vecR], and /n-vec R] are asymptotically uncorrelated when I#1.
Asymptotic normality is established by the martingale central limit theroem as in McLeod
(1978, 1979).

3. THE AUTOREGRESSIVE CASE
For any P define the auxiliary series V, by

HB)V, =4, ()

_aér/ad’ij,z = Dij V:—za (8)

where D;; is a k x k matrix with 1 at position (i, j) and 0 elsewhere.
Given n data points Z,Z,,...,Z,, let p satisfy the invertibility restriction. Then under
assumptions of normality the log-likelihood of (§,A) is then (Wilson, 1973)

Then we have

L(B,A):—n/210g|A|—%t;1 aTA 'a, 9)

Algorithms for obtaining maximum likelihood estimates f§ and A are given by Wilson (1973),
Nicholls and Hall (1979) and Tiao and Hillmer (1979). Let

S=Y alA~'a, (10)
t=1

Let B be the least square estimate of p by maximizing (9) then \/ n(p — B) is asymptotically normal
with mean 0 and covariance matrix I~ (Wilson, 1973) where

. %S
I='}Lrg<—amr>/(2n). (11)
Lemma 3. .
B—B=1""S+Op(1/n),
where

S¢ = —(2n)~105/op.
Proof. Expanding 0S/0p using Taylor’s series and evaluating at f gives

oS 9*S 4
0= W+w(ﬂ—ﬂ)+opﬂ)- (12)
As in McLeod (1978) it can be shown that

' 1.0*S

20pop"
Lemma 3 now follows by inverting 6* S/(dp oB"). Note that

e _—1

ij,1 = (2n) aS/a¢ij,l

= nl+ Op(y/n). (13)

Oa,
0,1

z::fgl a;, 0"V, (14)

_lgmA-t
= Zt:a,A

S |-
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Thus, the cross covariance of \/n(S§;, ) and \/n-c,(!') is given by

<S” lcgh(l » = _<(Z Viie-i ;af,t a’’) (g a,s ah,s—l)>

%é saf{<V, 18r <8y @y o) +<V; 218, )
xLay @y s—p )+ <V i1y s-ry<asa, 0} (=),
Z(V, 1,—ry (g=1iand l'>]),
= 0, otherwise. (15)
The last equality follows from the fact that

V. =a+¢] at—1+¢,2 Yyt

Let X" be the asymptotic cross covariance matrix of S° and r. Then

Ay, Ay, o Ay,
X" = : I (16)
A A

pl ves pm

¢;—iAa 07 07
A = 05 ¢j—iA, 0,‘.. ¢/‘ A

ij j—i

where

=1L ®¢;_;A (j=i)
=0, otherwise.

Theorem 1. The asymptotic joint distribution of \/n(B—p) and \/n-r = \/n-(vecR1,.
vec RY) is normal with mean 0 and covariance matrix

S PR S o , 18
|:XI NOY :|k2(p+M)Xk2(P+m) o

where Y is given by equation (5).

Proof. Asymptotic normality follows from Lemma 3 and the martingale limit theorem
(Billingsley, 1961) as in McLeod (1978, 1979) while Lemma 2 and the preceding discussions give
us the covariance matrix.

Theorem 2. \/n f is asymptotically normal with mean 0 and covariance matrix
(Y-XI"tX").

Proof. Expanding R, using a Taylor’s series expansion about (B, A), evaluating at (B, A) and
using the fact that 0a,/06;; = 0 gives

i =r—X(@—p)+Op(1/n).

Theorem 2 follows immediately.
Since A is positive definite and symmetric there exists a non-singular matrix ¢ such that

GgT = A7, (19)
GAGT = 1,
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Let
G=1,0¢%®%" (20)
and
F = Gf.
By Theorem 2 ,/n- F is asymptotically normal with mean 0 and covariance matrix Q where
Q=1,.—- GXI"'X"G" (21

Theorem 3. XT(GGT) X1 provided m is large enough so that ¢;=0 for i>m.
Proof. From (14)

1i
1 @S I
T Rl W A

o.kt
=zt:V;",z—l’ Vj,z—lalll
=SV Ve 2

Taking expectations,

62 S i'i r
T / () = & s =1

where
')’vv,j'j(l_ =<V, VzT—t>j'j~
Hence
G a,,T> / (2n) = [A™ @ 1,1~ 23)
By (20)
B,;, .. B.
XT(GGT)=[ : : ] (24)
B, B,

where B;; are k% x k? matrices of the form

11 1k
c o, .. o O,
AT'Rd;; = : 5 ;
1k
a*¢i_;, ... M,

J—1

Cyy .. Cy,
XT(GGT)X=[ : : ] (25)
C

(j=1i) and 0 (j<i). Hence,

pl
where C,, are k* x k?* matrices of the form

ATI® X i AdL, (2D,

AT'® X bl AGL, (I<D).
Now
Yoll=1) =<z, 2{_})

=< '(B)a,_/)(® '(B)a,_)").
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For m large enough,

Yol=1= Y &, AT (if I>1 and s = 1-1),
t=0

~Y ¢AdL, (ifI'>land s=1-I).
t=0

Hence, by comparing (23) and (25) for m sufficiently large so that ¢,=~0 for s>m, we have
X"GGM) XL

It follows from Theorem 3 that Q is very nearly idempotent with rank k?(m — p) provided
that m is large enough so that ¢;=~0 for i>m. And hence the statistic

()" (R; ' ® Ry ")#(0), (26)

Ms

On=n-

i=1

where ~

#(i) = vecRT
is approximately y?-distributed with k?(m —p) DF for suitable m and n. This result provides a
new generalization of the portmanteau test of Box and Pierce (1970) for checking model
adequacy.

4. THE ARMA CASE
The method of Section 3 directly extends to the ARMA model case. However, the derivation is
more involved since the partials 04,/0¢,, , and 0a,/00,, , are much more complicated (unlike the
corresponding situation in the univariate case). Let

a, = 0" (B)(B) Z, 27
then
aét/aoaﬂ,l =6- (B) D2, (28)
and
—08,/0¢,5,=0"(B)D,; & '(B)0(B)a,_,. (29)
Define
¢*#(B) =0~ '(B)D,; ¢ (B)8(B),
04(B) = 0~ '(B)D,,, (30)
Let
(g
be the coefficient of B* in ¢*(B)(0*#(B)).
Let
_, Oa,
—”'Sfﬂ,z-_-;a:TA lm, (31)

where Y corresponds to etiher 6 or ¢ and Iét
—V:Iil = aas/ad)aﬁ, b

ap
U;_, 0a,/00,4 ,. (32)

As in (15) it can be shown that the covariance of \/n-S¥% , and \/n-c,(l') is equal to
1
;’ ; <W?31 atT—l’>gh = (‘P:ﬂ Ay (s=1-=D, (33)
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where W corresponds to V or U whenever

Y =¢orb.
Let the (g, h) element of $*# A be denoted by
lpaz,{i, gh, s
Then
X' = (Xuv)
Al 1 Alm
=1 : : , (34)
Ap+q oo Apiam d (ptgwr xmi2
where
Ayj = (Wap, gnj-) (j=ii<p, or j=i—p;i>p),
=0, otherwise.

In other words,
. /' .
Xgzritgsirejrn = Yigjns—s (S8 s<p, or s"=s—p; s>p),

=0, otherwise,
where
0<s"sm—1, 0<s<p+q-—1, 1<i,j,g,h<k

Theorem 4. \/n-f is asymptotically normal with mean 0 and covariance matrix
(Y —=XI"!XT) where X is given by (34) and I is the information matrix,

I = lim <0%S/op op™>/(2n),
where
S=Y a'A 'a,
t=1
Proof. This follows exactly as in Theorem 1 and Theorem 2.

Theorem 5. X"(GG™) X1 for m sufficiently large.

Proof. Multiply out X"(GG") X and <> S/(op 9B")). Again, if m is sufficiently large such that
¢ and 0 =0 for s>m, we see that X"(GGT) X =1.

It follows from Theorem 5 that the portmanteau test statistic defined in (26) is approximately
x2-distributed with k*(m—p—gq) DF when m and n are large enough.

The extension of the results of this section to the vector seasonal multiplicative ARMA model,
discussed by Tiao and Box (1979), is straightforward.

5. MODIFIED PORTMANTEAU TEST
Simulation experiments reported by Davies, Triggs and Newbold (1977) and Ljung and Box
(1978) showed that the univariate portmanteau test gives significance levels much lower than
that suggested by asymptotic theory even for moderate sample sizes. In this section a modified
portmanteau test statistic is suggested and its improvement over the unmodified test statistic is
demonstrated by a simulation study.
Our recommended multivariate modified portmanteau statistic is

. k2 m(m+1)
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Under the null hypothesis of model adequacy Q¥ is asymptotically y2-distributed with
k*(m — p— q) DF. Furthermore, it may be shown, along the lines of Ljung and Box (1978) that

Qx> = k*(m—p—q)
which suggests that the portmanteau test using Q;F will give a better approximation to the null
distribution. This is shown to be the case in the simulation study below. In the univariate case,

Ljung and Box (1978, p. 301, Section 4.2) suggested a very similar but not exactly equivalent

modification.
One thousand simulations of the first-order bivariate autoregressive model with n = 200,

1 o
= 9)

where o = +0-25, +0-5, +£0-75 and ¢, = A, B,C where
—-02 03 04 01 -15 12
A= (—0-6 1-1)’ B= <—1-0 0-5) and €= <—o‘9 o-5>
were done and the portmanteau statistics defined in (26) and (35) were calculated with m = 20.
The 5 per cent empirical significance levels for Q,, and Q%,, shown in Table 1, are defined as

the proportion of times that the statistic exceeds the upper 5 per cent point of y2¢. As expected,
the modified portmanteau test provides a significant improvement.

TABLE 1
Empirical significance of portmanteau test at 5 per cent level
(in per cent)

A B C

o Q20 2% Q20 2% Q20 0%

025 32 58 29 57 28 61
—025 31 56 28 52 27 55

05 33 56 27 56 28 62
-05 30 56 26 64 32 66

075 33 57 22 57 26 60
—-075 36 73 26 70 36 74
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