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SUMMARY

Model duality is defined between four models referred to as the primal, the dual, the
autoregressive adjoint and the moving average adjoint. A duality theorem which
generalizes the results of Box & Pierce (1970) and Pierce (1970) is presented. Applica-
tions of this duality theorem to autoregressive-moving average models and multipli-
cative seasonal autoregressive-moving average models are discussed. These applications
include:

(i) a convenient method for calculating the covariance matrix of the estimated
parameters;
(ii) convenient formulae for the variances of the residual autocorrelations;

(iii) the distribution of the inverse partial autocorrelations.

Finally, a useful approximation to the covariance determinant of multiplicative seasonal
models is derived.

Some key words: Covariance determinant; Inverse partial autocorrelations; Parameter estimation; Residual
autocorrelation.

1. INTRODUCTION
The multiplicative seasonal autoregressive-moving average (p, q) (s, g5)s model,

O(B°) p(B) 2, = O(B°) 0(B) a,, (1)
where
¢(B)=1—¢,B—...—¢,B?, 0(B)=1—0,B—...—0,B",
OB)=1-0@, B*—...—®, B, OB)=1-0,B—...—0, B,

B is the backshift operator, s the seasonal period and a, a sequence of independent
normal variables with mean zero and variance 2, was developed by Box & Jenkins
(1976). The regular autoregressive-moving average (p,q) model is obtained by taking
ps = q, = 0 in (1). Alternatively, the (p, q) (p, ¢;)s model may be considered as a special
case of the (p*, ¢*) model by taking

p*=p+tsp, ¢*=q+sq, ¢*(B)=QB)P(B), 6%(B)=0(B)0(B).

It will be assumed that the model is stationary, invertible and not redundant, so that the
polynomials ¢*(B) and 6*(B) have no roots in common and all roots are outside the unit
circle.

2. DuaLiTy

The concept of duality in autoregressive-moving average models has proved useful to
various authors. Theorem 1 below generalizes model duality results of Pierce (1970) and
Box & Pierce (1970).
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Consider the models
®(B*) ¢(B)z, = O(B°)0(B)a,, O(B")0(B)y, = ®(B") ¢(B)a,, (2)

E(B)¢B)x, = a, w,= E(B°) &(B) a,, (3)
where

EB)=1—3¢,B' = ¢(B)0(B), E(B’)=1-XE,B"=®(B)O(B).

These four models may be referred to as the primal, the dual, the autoregressive adjoint

and the moving average adjoint respectively. Note that all series are generated from the
same innovation series. Let

ﬁ = (¢11 --.;¢p, 01, ...,Oq, q)l,...,(Dps,@l, ""®Qs)’
t= v bpee Bu Bpra)

Given a series of nm observations from each model, let f,, B,, &, and &, denote
corresponding efficient approximate maximum likelihood estimates and denote the
corresponding residuals by @, ,, 4, ,, @, and @, ;.

THEOREM 1. Apart from a quantity which is O,(1/n),

a’z,t = a’y,t = a’x,t = &w,t’ (4)
by —a = —(8—0) = = (B,— ) = J(B.—P), (5)

where
J = (oi—j _¢i—j ®i—j _(I)i—j) (6)

and the (i, j)th entry in each partitioned matrix is indicated, and ¢;, 0;, D; and O; are defined
more generally for any integer i as minus the coefficient of B' in their respective polynomials
¢(B), 0(B), ®(B) and O(B).

Note that Pierce’s theorem (1970) corresponds to (5) with ¢ = p; = ¢, = 0, in which
case J is minus the identity matrix. The duality result of Box & Pierce (1970)
corresponds to (4) with p; = ¢, =0.

Proof. The proof is giveri only for p; = g, = 0 since the method extends directly to the
multiplicative seasonal case. Also, let 62 = 1.

Auxiliary processes v, and u, are defined by ¢(B)v, = —a, and 0(B)u, = a,. Let
Ay = 0—q, Vs gy ooy Uy —g) a0d Dy = — (T, .. &, ,—,) . If we use the technique
of Box & Jenkins (1976, p. 240) it is easily shown that the information matrix of f in the
2, process is I, 5 = E(4, 4;). Similarly, I, ; = B(4,4;) and I, , = ED,D;) =1,,,.

Consider the x,-process. Then da,/0x; = D, ;, 0a,/0¢; = A, ;and 0a,/00; = — A, ;. Also,
0o;/0¢; = —0;_; and 00;/00; = — ;. It follows that I, 5 = JI, ,J'.

From Lemma 2 of McLeod (1978), it may be shown, to O,(1/n), that

Ez—ﬁ = Iz_,[} 82,85 ﬁy_ﬁ = Iy_,; Sy, B> &x_a = Ix_,alzsx,an &w_a = I\;,tsw,a’
where s, p = —Za,4,/n, 8, 5= —8;p, 8x,0= —Xa,D,/n and s, , = —s, , Equation (5)
follows.

On expanding the residuals in a Taylor series, we have that

Uy = “z+(ﬁz—ﬁ)Av CA”y,t = a’t_(ﬁy_ﬁ)At’
dx,t = a’t+(&x_a) -Dt’ a/w,t = at_(&w_a) -Dt'

Equality of the residuals follows.
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3. COVARIANCE MATRIX CALCULATION

As a simple application, consider the calculation of the large-sample covariance matrix
of B. For the autoregression, qS )z, = a,, the covariance matrix of the estimated
parameters may be obtained using a result givenr by Pagano (1973),

min (i, j)
cov (&) = n_1< k;1 Pi-i ¢j—k—¢p+k—i¢p+k—j>- (7)

Hence for (p, ¢) models, cov (f) = (J 1) cov (&) J ~!. This method is much simpler than
that recently proposed by Godolphin & Unwin (1983). The multiplicative (p,q) (s, ¢s)s
model may be treated as a special case of the (p*, ¢*) model or if s is large enough, say
§ 2 12, then the covariance matrix is approximately block diagonal corresponding to
(», 9) and (p,, ¢,) models.

4. CONVENIENT FORMULAE

Simulations reported by Ansley & Newbold (1979) suggest that diagnostic checks
using the residual autocorrelations, 7,(1) and 7,(s), may often be useful in detecting model
inadequacy. In an adequate model, the observed values of these residual autocorre-
lations should not differ from zero by more than about two standard deviations 95 per
cent of the time.

THEOREM 2. Provided that s is not too small,

nvar {#,(1)} = (¢,0,)% (8)
nvar {f,(s)} = (®,,0,,)> ‘ (9)
For a (p,q) model, (8) holds exactly asymptotically.

Proof. Due to duality, it is sufficient to prove this result for the (p, 0) (p,, 0); model,
®(B*) ¢(B) 2, = a,. If this model is reparameterized in terms of g; (¢ =1,...,p) and
G; (j=1,...,p,), where ¢(B) =II(1—g;B) and ®(B) =II(1—G,B), then the joint in-
formation for g; and G; can be shown to be

1(9:, G) = gi" 1 G}/(1—gi ™' G)). (10)

It follows that provided s is large enough, the information matrix for (¢y,...,¢,,
®,,...,®,) is approximately diag (Ip, Ips), where [, and I, are the information matrices
correspondlng to autoregressions ¢(B)v, = a, and CI)(B) V, = a,. If we use (7), the leading
entries in the inverse matrix are respectively 1 —¢2 and 1—®2,. The formulae now follow
directly from McLeod (1978, (44)).

5. INVERSE PARTIAL AUTOCORRELATIONS

Inverse correlations in a primal (p, ¢) model may be defined as the correlations in the
corresponding dual (Cleveland, 1972; Hipel, McLeod & Lennox, 1977). Inverse corre-
lations can be estimated by using a high-order autoregressive approximation to the
primal model, I1(B) z, = a,, where II(B) = 1 —II; B—... —II, B*. After fitting this model,
the inverse autocorrelations are then estimated by,

ri(l) = (—M+Z00,,,00)/Q+202) (=1,... k). (11)

The inverse partial autocorrelation 6, (I =1, ..., k) is estimated using ri (/) in place of
r(l) (I = 1,..., k). The usefulness of inverse correlations in model identification is greatly
enhanced by knowledge of their distribution. Hosking (1980) has shown that the
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distribution of the sample inverse autocorrelations is equivalent to that of the sample
autocorrelations in the dual model.

THEOREM 3. If 2, (t = 1, ...,m) is generated by a (0, q) model, \/ngk,k (k=q+1,9+2,..))
are asymptotically independent normal with mean zero and variance one.

Proof. The estimate, @k, x» corresponds to an estimate of the coefficient 0, ; in the model,
2 =0,—0; 10,1 —...— 0 ya,_,, using the method of Durbin (1960). Since, as shown by
Durbin, this is-asymptotically equivalent to the maximum likelihood estimate, Theorem
3 follows directly from Theorem 1 and the well-known result of Quenouille (1949).

6. COVARIANCE DETERMINANT

The asymptotic determinant, M(p,q) =1lim|6?T, |, where I', is the covariance
matrix of n successive observations, z, (t =1,...,n), from a (p,q) model, can be easily
calculated for small values of p and ¢ (McLeod, 1977). For (p,q) (ps, ¢5)s models, the
asymptotic determinant is given by M(p, q, p;, ¢, ) = M(p*, ¢*).

THEOREM 4. We have that
M(p, ¢, s 45 ) = M(p, q) { M (ps. 4,)}". (12)
The relative error in the approximation (12) is O(r®), where 0 < r < 1.

Proof. From the duality property noted by Finch (1960), it suffices to prove the result
for (p, 0) (p,, 0); models. Let ¢(B) = I1(1 —g; B) and ®(B*) = II(1 — G, B%). Then from the
result of Finch (1960, (6)),

—:9;l
M(p.0) ST/ il ] Erme
’ l—! Igl.q,l
|1-G;G,|
M(py,0) =Gy ... Gy, PP [ [
iJj |G |
Similarly
eyl 1—98 97 |
M(p*,0) = g% ... g5 | H e
i,j |gl gj |
where the g*’s denote values of the form ¢; (i=1,..,p) or G/ w* (j=1,...,p5
k=0,. 1), where w is a complex sth root of unity. Simplifying, using the identity
s—1
[[ 1-{a®)=1-0",
k=0

we have that M(p,0,p,,0,s) = M(p,0){M(p,, 0)}* T where
T =[]11-gi G’
LJ
The approximation (12) follows from the fact that |g;| <1 (¢ = 1, ..., p).
Fortran subroutines to evaluate M(p,q) and the approximate maximum likelihood
estimator (McLeod, 1977) using the approximation (12) are available (McLeod &
Holanda Sales, 1983).

Helpful suggestions from a referee are acknowledged.
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