
1

How to speed up your R computation by vectorization and parallel
programming

Lecture 1

1. Introduction

2. Knowing R data objects/structures and functions

3. Some examples

4. Monte Carlo simulation and apply functions

Introduction

• The main purpose of this workshop is to introduce you how to speed up your R

computation by vectorization, interfacing and coding in C/C++ level, and parallel

programming

• The first improvement of your R codes, also easiest to implement, is to vectorize the

codes as much as possible (Lecture 1)



2

• For some computations such as recursive looping in time series, MCMC, etc, porting R

codes into C/C++ level can speed up dramatically (Lecture 2)

• With the above improvements, if the computation time still requires weeks or months

to finish, you need to work with parallel programming:

a big computation job must be broken down into many small parts with which they can

be run concurrently

• Possible reasons for large computation: data are too big or/and models/methods are

too complicated

• Do you have any other reasons?

• Lecture 3 will introduce you to parallel programming environment, terminologies,

hardware and software, and how to run embarrassing parallel on a single PC with

multi-cores

• Lecture 4 will introduce you to MPI and some basic MPI operations and how to use R

package Rmpi to run R codes in a supercomputer such as SHARCNET

• Is parallel programming hard, and if so, what can you do about it?

? Added complexity: Computation must be broken down into many small parts

? Parallel programming is error-prone which makes debugging much hard



3

? Too little knowledge of new, innovative parallel cluster systems

? ...

• Facts: parallel programming was hard when it was implemented at C or Fortran level

• R, an interpreted language, shows its advantage in parallel programming

? R has advanced data structure and management

? It is relatively easy to move data among computation jobs in R

? No compiling is required to run parallel computing in R

Knowing R data objects/structures and functions

• Vectors

? Three basic vectors: integer, double, and character vectors

? They are the simplest data objects

? Vectorization: Treat vectors as the smallest objects and carry out all computations

as though they are like single numbers (without any explicit looping)

? A simple example:

> y=sin(x)



4

? Looping way

> y=double(length(x))

> for (in in 1:length(x)) y[i]=sin(x[i])

• Other data objects

? Matrix and data.frame: ordered set of vectors with equal length

? List: a collection of objects; useful for outputs rather than inputs

• Logical expressions of vectors

? ==,!=,<,>,<=, >=,|, &, all, any

? TRUE (=1), FALSE (=0)

? Extremely useful to work with subsets of vectors (matrices, data.frames, etc)

? An example: x — a vector of p values, calculate rejection rate of 0.05 level

> mean(x > 0.05)

? Another example: remove all missing values in a vector x

> x=x[!is.na(x)]



5

• Some useful functions with vectors as inputs

? Creating vectors: c, rep, :, seq

? Find attributes of a vector: length, mode, class, names

? Other functions:

∗ as.integer, as.double, is.integer, is.double, ...

∗ mean, sum, abs, rank, order, ...

• Structure of R functions

? new function name = function(arguments){
+ Function body (R expressions)

+ Return values, Side Effects

}
? It is crucial to prepare arguments=inputs well in advance and put all required data

objects into arguments

? Avoiding accessing global data objects in function body by all means

∗ Global objects: Any objects that are created outside a function are global objects

related to this function

∗ Local objects: Any objects created in a function are temporary and will be lost

after exiting the function



6

• Programming Style

? Modularize your codes

? Comment your codes

? Document your codes

? Use proper indent

? Use existing functions

? Use parentheses to make grouping explicitly

? Avoid unnecessary looping

Some examples

• Rejection method

? density of interest:f(x), a ≤ x ≤ b
? a known function: M(x) ≥ f(x), a ≤ x ≤ b
? algorithm: let m(x)=M(x)/(integral of M over [a,b])

? step1: Generate T with the density function m(x)

? step2: Generate U of Unif[0, 1]. If M(T ) ∗ U ≤ f(T ) then

X = T else go step1



7

? R codes

∗ Assume: a, b — finite, m(x)— unif[a,b]

∗ Simulate one observation

∗ Create a vector

∗ Vectorized method

• Simulate mixture distributions

? Mixture distribution:

M(x) = α1F1(x) + · · ·+ αkFk(x),

where αi > 0, α1 + · · ·+ αk = 1, and Fi(x) is a CDF for i = 1, . . . , k

? Algorithm:

1. Generate U following Binomial(α1, . . . , αk) or generate U = i with probability

αi, i = 1, . . . , k

2. If U = i, generate M according to the distribution Fi(x)

? Simulate a mixture of normals (normal with outliers)

95%normal(mu, sigma^2)+5%normal(mu, (k*sigma)^2)



8

? Simulate a mixture of 4 distributions

∗ A loop will work but is not efficient

∗ Using replicate results no much improvement

∗ Vectorized way is much more efficient

• Find a MLE in parameter estimation

? density: f(x,theta)

? data x

? log likelihood l(theta,x)=sum of log f(x, theta)

? vectorization: f(x, theta) can take vector x rather than f(x[i],theta)

• Work with ecdf function

? ecdf takes a vector as input and outputs as a function

? ecdf’s output can take a vector as input

? Vectorization can be done

• Summary: Vectorization is not difficult to implement as long as computation can be

carried in “parallel” way

Monte Carlo simulation and apply functions



9

• A typical simulation procedures

? DGP (data generating process): need to produce data x

? Modeling: a specific model under consideration

? Estimation: use model data to estimate θ (pretend it is unknown)

? Start the loop: Carry out the real simulation

∗ Need to choose sample sizes

∗ Need to choose simulation sizes

∗ Proper use of replicate function or apply function

? Analyze simulation results

• Before starting the loop, it is very important to implement one simulation as efficient

as possible

• Use R’s apply functions: apply, lapply, sapply, replicate, etc to start the loop

? replicate(10000, one.simulation(n, theta))

? sapply(rep(n, 10000), one.simulation, theta=theta)

• If simulation takes much long time, you may try to use parallel versions of apply

functions


